Distribution Characteristics of Polycyclic Aromatic Hydrocarbons (PAHs) in Soils in Jeju City of Jeju Island, Korea

Yu-Kyoung Jin, Min-Gyu Lee* and Sang-Kyu Kam
Division of Civil & Environmental Engineering, Cheju National University, Jeju 690-756, Korea
Division of Applied Chemical Engineering, Pukyong National University, Busan 608-739, Korea
(Manuscript received 9 February, 2006; accepted 5 April, 2006)

Sixteen soil samples around six areas (residential area, traffic area, power plant area, incineration area and factory area) where the stationary and mobile sources of polycyclic aromatic hydrocarbons (PAHs) are estimated to be emitted in Jeju City, were collected during February to March, 2004, and analyzed for 16 PAHs recommended by US EPA as primary pollutants to investigate their distribution characteristics. The concentrations of total PAHs (t-PAHs) and total carcinogenic PAHs (t-PAHCARC) in soils of Jeju City were in the range of 21.7–264.2 ng/g on a dry weight basis with a mean value of 87.2 ng/g and 6.3–118.0 ng/g with a mean value of 33.4 ng/g, respectively. The concentrations of t-PAHs were low in comparison with those in soils of other domestic and foreign countries. The mean concentrations of t-PAHs and t-PAHCARC with area decreased in the following sequences: traffic area > incineration area > factory area > power generation area > harbor area > residential area. The correlation between t-PAHs and t-PAHCARC were very high ($r^2 = 0.9701$), indicating that t-PAHCARC concentration increases in proportion with t-PAHs. Comparing the distribution ratio of ring PAHs with area among 16 PAHs, it decreased in the order of 4-ring $>$ 5-ring $>$ 6-ring $>$ 3-ring $>$ 2-ring in all the areas except for harbor area, whereas for harbor area it was similar among 3-, 4- and 5-ring with high value. Low and no correlations between t-PAHs and soil compositions (organic matter content and particle size distribution) were observed, which is considered to be caused by the complex factors, such as the loading and characteristics of PAHs and diverse soil environment change, etc. From the examination of the three PAH origin indices, such as LMW/ HMW (low molecular weight 2–3 ring PAHs over high molecular weight 4–6 ring PAHs), phenanthrene/anthracene ratio and fluoranthene/pyrene ratio, it can be concluded that the soil PAH contaminations were ascribed to strong pyrogenic origin in all areas except for harbor area and to both pyrogenic and petrogenic origins.

Key Words: PAHs, Soils, Jeju City, Distribution, Origin Indices
2. 연구 방법
2.1. 시료 채취
본 연구의 토양 시료는 제주시의 지역별 특성을 고려하여 이동·고정 배출원의 영향이 예상되는 6개의 지역, 즉, 주거지역(residential area, R), 교통지역(traffic area, T), 화력발전소 지역(power plant area, P), 항구지역(harbor area, H), 소각장 지역/incineration area, I) 공장지역(factoy area, F)에서 2004년 2-3월 사이에 시료를 채취하였다. 주거지역은 아파트 밀집단지의 2개 지점(R-1, R-2), 교통지역은 교통이 혼잡한 지역의 2개 지점(T-1, T-2), 발전소 지역은 제주 화력발전소내 및 주변 인근지역 등 2개 지점(P-1, P-2), 항구지역은 제주시의 주요항 주항자항 내부지점, 소각장 지역은 제주시 봉계항에 위치하고 있는 광역 폐기물 소각시설에서 4범위로 변경 500 m 내외의 4개 지점(I-1, I-2, I-3, I-4), 공장지역은 제주시에서 공장이 밀집되어 있는 화복공단 지역을 중심으로 4범위로 변경 500 m 내(F-1, F-2, F-3, F-4) 및 공장지역내(F-5)의 5개 지점 등 16개 지점에서 시료를 채취하였다(Table 1 및 Fig. 1).

모든 토양 시료 채취는 PAHs가 대부분 토양 표면에 강하게 홍적하고 있을음을 감안하여, 토양 표면에서 0 5 cm 깊이의 표층을 채취하였으며, 채취한 토양은 투명이 Teflon으로 이루어진 병에 담아서 밀봉하고, PAHs 분석 전까지 -5°C에 보관 하였다. 그리고 토양의 유기물을 함량 및 입도분석 실험을 위 한 시료는 따로 polyethylene bag에 담아서 밀봉하고, 분석 전까지 냉장 보관하였다.

2.2. 실험방법
각 지점별로 채취한 토양 시료는 실험에서 약 1 주일 동안 간조한 다음, 나무가 풀, 동물이 등의 조 대물질을 제거한 후 마사지비에 넣어 조심스럽게 분쇄하였다. 토양 두께의 PAHs의 분석 과정은 Yim의 방법에 따라 행하였으며, 이는 크게 용매추출, 정제, 분석의 단계로 이루어져 있다. 즉, 굽이화된 시료 20 g를 닫아 샘플로우 틴블에 넣고 여기에 4
제주시 토양 중 다환방향족탄화수소류(PAHs)의 분포 특성

종류의 PAHs 내부표준물질(naphthalene-d_{10}, acenaphthene-d_{10}, perylene-d_{12}, chrysene-d_{12}, Ehrenstorfer, German)을 가한 후 200 ml CH_{2}Cl_{2} (Fisher, USA, HPLC grade)을 사용하여 속출원 추출장치에서 16시간 동안 추출하였다. 이온의 토양 시료로 105℃에서 4시간 건조시켜 수분 함량을 측정하였는데, 이는 토양 시료 중의 PAHs의 농도를 간접으로 추출량 (dry weight, dw)으로 나타내기 위함이다. 추출액은 60～70℃ 수분상에서 약 1 ml로 농축하고, 이를 2 ml의 n-hexane(Fisher, USA, HPLC grade)으로 용매 침착하였다. 시료 추출액은 450℃에서 활성화된 알루미나 1 g과 실리카겔 3 g (Sigma Chem. Co., USA)를 CH_{2}Cl_{2}로 현착시켜 충전된 glass column (내경 1 cm × 길이 30 cm)에서 25 ml의 n-hexane : benzene (1:1 v/v)으로 용매시켜 정제하고 이를 감압농축된(Turbo Vap® 500)로 1 ml로 농축한 후, 여기에 GC internal standard (hexamethylbenzene, Aldrich, Chem. Co., USA)을 넣었다.

농축된 시료는 fused capillary column (DB-5 MS, 30 m long x 0.25 mm I.D. x 0.25 μm film thickness, J&W Sci. Inc., USA)가 내장된 GC (HP 5890 series II)-MSD (HP 5972)로 특정 질량을 가지는 이온만을 선택하여 검출하는 방법인 SIM (selective ion monitoring) mode (electron impact ionization: 70 eV)를 이용하여, 주입구 온도(300℃), 오른 온도(60℃ (2 min) → 10℃/min to 240℃ → 1℃/min to 260℃ → 10℃/min to 300℃ (8 min)), 운반가스(H_{2}, 1.5 ml/min), injection mode (split-less)의 조건에서 다음과 같이 US EPA에서 우선 관리 대상물질로 선정한 16종의 PAHs에 대해 분석 하였으며, 시료 또는 표준물질 전 후에 공시험을 수행하였다: naphthalene (NaP), acenaphthylene (Acy), acenaphthene (Ace), fluorene (Flu), phenan-threne (Phe), anthracene (Ant), fluoranthene (Flf), pyrene (Pyr), benzo[a]anthracene (BaA), chrysene (Chr), benzo[b]fluoranthene (BbF), benzo[k]fluoranthene (BkF), benzo[a]pyrene (BaP), dibenzo [a,h]anthracene (DaA), benzo[g,h,i]perylene (BgP) indeno[1,2,3-cd]pyrene (IcP).

검량선은 상기 16종의 PAHs가 혼합된 표준 용액 (Supelco, USA)의 2, 20, 200, 1000 및 2000 ng/ml 농도에 대해 얻었고, 모든 검량곡선은 200 ng/ml 농도의 4 종류의 내부표준물질을 사용한 내부표준 법에 의해 수행되었다. 16종의 PAHs에 대한 검량선은 적절적이었고 결정계수(r^2)는 0.99 이상이었다. 토양 시료 추출액에 가한 4종류의 내부표준물질, 즉, naphthalene-d_{10}, acenaphthene-d_{10}, perylene-d_{12}, chrysene-d_{12}의 평균 회수율(± 표준편차)은 각각 58±8%, 78±6%, 95±5%, 102±4% 로 본 PAHs의 분석에 의한 각 내부표준물질에 대한 회수율은 신뢰 한학 범위인 40～120%^{16} 에 있을음을 알 수 있었다. 그리고 본 연구에 사용된 PAHs의 분석법을 검증하기 위해 검증 시료인 NIST SRM 1941a를 이용하여 본 분석법과 동일하게 수행하였으며 그 결과는 Table 2에 나타내었다. Table 2에서 보여 지는 바와 같이 회수율은 80.2～110.5%의 범위에 있었고, 평균 회수율은 95.1% 로 본 분석법은 대부분의 PAHs에 대해 신뢰할만한 수준에 있음을 알 수 있었다.

그리고 토양 중의 유기물 함량은 Walkley-Black 법에 의해, 일도 분석은 30% H_{2}O_{2}로 유기물을 분해
한 후 타오양 실험에 따라 수행하여 모래(sand, 2~0.02 mm), 심토(silt, 0.02~0.002 mm) 및 점토(clay, < 0.002 mm)의 함량을 구하였다.

3. 결과 및 고찰

3.1. PAHs의 농도수준

본 연구에서 채취한 제주시 16개 지점의 토양 시행 US EPA에서 우선적 오염물질(priority pollutants)로 권장되는 16중의 PAHs의 각각의 농도, 총 농도(t-PAHs)와 현재 IARC(International Agency for Research on Cancer)에서 발암 물질로 간주하고 있는 6종의 PAHs(BaA, BbF, BkF, BaP, IcP, DdA)의 총 농도(t-PAHs)를 Table 3에 나타내었다.

Table 3에서 보여지는 바와 같이 지역별로 또한 같은 지역 내에서도 조사지점에 따라 PAHs의 농도 분포는 큰 차이를 보임을 알 수 있다. 이는 발생된 PAHs의 농도 및 기상 환경 등의 요인에 의한 것으로 사료된다. 제주시의 토양 중 t-PAHs의 농도 범위(평균)는 21.7~264.2 ng/g dw (87.2 ng/g dw) 으로 나타났으며, 이는 국내외의 다른 지역의 농도와 비교하였을 때(Table 4) 매우 낮은 농도수준이다. 즉, 국내외의 타지역과 비교하였을 때 18~44%, 국외의 타 지역과 비교하였을 때 1~67%의 농도 수준으로 분포하고 있음을 알 수 있다. 지역별로 평균 t-PAHs 농도를 비교하면, 교통지역(149.3 ng/g dw) > 소각장지역(112.4 ng/g dw) > 공장지역(79.6 ng/g dw) > 발전소지역 (69.2 ng/g dw) > 항구지역 (48.7 ng/g dw) 순으로 교통지역이 가장 높은 농도로, 주거지역이 가장 낮은 농도로 분포하고 있었다. 지역별로 t-PAHs의 농도 수준을 살펴보면, 주거지역은 21.7~30.3 ng/g dw(평균 26.0 ng/g dw)으로 본 연구조사 지역 중 가장 낮은 농도를 보였으며, 이는 창원시의 주거지역에서의 10.90~77.98 ng/g dw(평균 49.58 ng/g dw), 스페인 Tarragona Country의 주거지역에서의 평균 농도 736 ng/g dw와 비교하여도 매우 낮은 농도로 분포하고 있었다. 교통지역의 t-PAHs의 농도는 78.9~219.7 ng/g dw(평균 149.3 ng/g dw)로 본 조사지역에서 가장 높은 농도를 보였으나 부산시의 교통지역에서의 농도 40~5,830 ng/g dw, 서울시의 교통지역에서의 농도 149.6~1,029.7 ng/g dw보다는 낮은 농도수준이다. 이러한 차이는 이동 통행량 및 기상의 영향적인 요인에 의한 것으로 사료된다. 그리고 T-2 지점이 T-1 지점보다 2.8배 높은 농도로 분포하는데 이는 T-2 지점이 T-1지점보다 이동차량이 많은 뜻을 의미한다. 발전소지역의 t-PAHs는 27.4~1110 ng/g dw(평균 69.2 ng/g dw)으로 조사지점에 따라 큰 차이를 보이며, 이는 지리적 특성인 해상으로 인한 오염물질의 확산 등의 영향으로 사료된다. 항구지역에서의 t-PAHs는 주로 제주항내 선박의 운행이나 주변 지역을 운행하는 차량에 의한 것으로 이 지역에서의 농도는 48.7 ng/g dw로 비교적 낮은 농도로 분포하고 있었다. 소각장지역은 65.9~264.2 ng/g dw(평균 132.5 ng/g dw)으로 평
지구 주요 도양 중 대환방향축각화수소류(PAHs)의 분포 특성

Table 3. Concentration (ng/g dw) levels of PAHs in soils of Jeju City

<table>
<thead>
<tr>
<th>PAHs</th>
<th>Residential Area</th>
<th>Traffic Area</th>
<th>Power Plant Area</th>
<th>Harbor area</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>R-1</td>
<td>R-2</td>
<td>Range (Mean)</td>
<td>T-1</td>
</tr>
<tr>
<td>Nap</td>
<td>1.2</td>
<td>2.6</td>
<td>1.2~2.6 (1.9)</td>
<td>1.6</td>
</tr>
<tr>
<td>Acy</td>
<td>nd</td>
<td>nd</td>
<td>nd</td>
<td>0.7</td>
</tr>
<tr>
<td>Ace</td>
<td>nd</td>
<td>nd</td>
<td>nd</td>
<td>1.0</td>
</tr>
<tr>
<td>Flu</td>
<td>1.6</td>
<td>1.0</td>
<td>1.0~1.6 (1.3)</td>
<td>3.3</td>
</tr>
<tr>
<td>Phe</td>
<td>1.6</td>
<td>0.2</td>
<td>0.2~1.6 (0.8)</td>
<td>0.7</td>
</tr>
<tr>
<td>Ant</td>
<td>1.4</td>
<td>2.5</td>
<td>1.4~2.5 (2.0)</td>
<td>9.7</td>
</tr>
<tr>
<td>Pyr</td>
<td>3.1</td>
<td>5.2</td>
<td>3.1~5.2 (4.2)</td>
<td>14.0</td>
</tr>
<tr>
<td>BaA</td>
<td>1.4</td>
<td>0.4</td>
<td>0.4~1.4 (0.9)</td>
<td>2.2</td>
</tr>
<tr>
<td>Chr</td>
<td>1.8</td>
<td>1.5</td>
<td>1.5~1.8 (1.7)</td>
<td>7.1</td>
</tr>
<tr>
<td>BbF</td>
<td>3.6</td>
<td>2.0</td>
<td>2.0~3.6 (2.8)</td>
<td>6.9</td>
</tr>
<tr>
<td>BkF</td>
<td>4.6</td>
<td>1.2</td>
<td>1.4~4.6 (3.0)</td>
<td>4.7</td>
</tr>
<tr>
<td>BaP</td>
<td>2.8</td>
<td>1.0</td>
<td>1.0~2.8 (1.9)</td>
<td>2.7</td>
</tr>
<tr>
<td>DaA</td>
<td>0.5</td>
<td>nd</td>
<td>nd~0.5 (0.3)</td>
<td>1.5</td>
</tr>
<tr>
<td>BgP</td>
<td>3.3</td>
<td>2.4</td>
<td>2.4~3.3 (2.9)</td>
<td>15.0</td>
</tr>
<tr>
<td>IcP</td>
<td>3.4</td>
<td>1.7</td>
<td>1.7~3.4 (2.6)</td>
<td>7.8</td>
</tr>
</tbody>
</table>

ΣPAHs^a | 30.3 | 21.7 | 21.7~30.3 (26.0) | 78.9 | 222.7 | 78.9~222.7 (150.8) | 27.4 | 111.0 | 27.4~111.0 (68.2) | 48.7 |
ΣPAHcarr^b | 16.3 | 6.3 | 6.3~16.3 (11.3) | 25.8 | 79.7 | 25.8~79.7 (52.8) | 9.9 | 42.6 | 9.9~42.6 (25.6) | 15.3 |
ΣPAHcarr/ ΣPAHs (%) | 54.0 | 29.0 | 29.0~54.0 (41.5) | 32.7 | 36.3 | 32.7~36.3 (34.5) | 36.1 | 38.4 | 36.1~38.4 (37.3) | 31.4 |

PAHs: castrogenic PAHs (BaA, BbF, BkF, BaP, IcP, and DaA); ^a detected. ^b sum of carcinogenic PAHs (BaA, BbF, BkF, BaP, IcP, and DaA); ^c undetected.

군 농도는 교통지역으로 보는 농도는 보았으며, 이는 서울시의 논문 학술지의 농도 37.1~ 257.4 ng/g dw (평균 151.7 ng/g dw)와 비슷한 농도 수준을 보였다. 본 논문 연구지역에서 지질학적으로 큰 차이를 보이는데, 즉, I-4 지질에서 264.2 ng/g dw으로 가장 높은 농도를, 1-2 지질에서 65.9 ng/g dw로 가장 낮은 농도를 보이며, 이는 발생되는 오염원의 기만화에 의한 영향으로 사료된다. 공장지역은 34.0~157.3 ng/g dw (평균 79.6 ng/g dw)로 창원시의 공단지역의 69.01~835.29 ng/g dw (평균 305.24 ng/g dw)보다 낮은 농도를 보였다. 서울시의 공장지역에서의 274.01~1,221.34 ng/g dw (평균 772.0 ng/g dw)는...
Table 4. Comparison of total PAH concentrations (ng/g dw) in soils of this study with those in other domestic and foreign areas

<table>
<thead>
<tr>
<th>Location</th>
<th>n</th>
<th>Range (Mean)</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jeju City (Korea)</td>
<td>16</td>
<td>22~264 (87)</td>
<td>This study</td>
</tr>
<tr>
<td>Korea</td>
<td>16</td>
<td>23~2,834 (236)</td>
<td>Nam et al.(15)</td>
</tr>
<tr>
<td>Ulsan City (Korea)</td>
<td>16</td>
<td>4~2,672</td>
<td>Lee(14)</td>
</tr>
<tr>
<td>Seoul (Korea)</td>
<td>16</td>
<td>15~1,221 (482)</td>
<td>Kim(13)</td>
</tr>
<tr>
<td>Changwon City (Korea)</td>
<td>16</td>
<td>11~835 (199)</td>
<td>Kim et al.(1)</td>
</tr>
<tr>
<td>Tarragona Country (Spain)</td>
<td>16</td>
<td>112~1,002 (504)</td>
<td>Nadal et al.(18)</td>
</tr>
<tr>
<td>Tianjin (China)</td>
<td>16</td>
<td>7.9~969 (229)</td>
<td>Tao et al.(19)</td>
</tr>
<tr>
<td>Takushima (Japan)</td>
<td>13</td>
<td>9~1,640 (442)</td>
<td>Yang et al.(20)</td>
</tr>
<tr>
<td>Zelzate (Belgium)</td>
<td>7</td>
<td>3,000~14,000</td>
<td>Bakker et al.(21)</td>
</tr>
<tr>
<td>Chiang-mai (Thailand)</td>
<td>16</td>
<td>(781)</td>
<td>Takashi(21)</td>
</tr>
<tr>
<td>Kohtla-Järve (Estonia)</td>
<td>12</td>
<td>(12,390)</td>
<td>Trapido(22)</td>
</tr>
<tr>
<td>Tallinn (Estonia)</td>
<td>12</td>
<td>(2,200)</td>
<td>Trapido(22)</td>
</tr>
<tr>
<td>Harjumaa (Estonia)</td>
<td>12</td>
<td>(32)</td>
<td>Trapido(22)</td>
</tr>
<tr>
<td>Bangkok</td>
<td>20</td>
<td>12~380 (129)</td>
<td>Wilcke et al.(5)</td>
</tr>
<tr>
<td>Welsh</td>
<td>14</td>
<td>108~54,500 (2,325)</td>
<td>Kavin et al.(23)</td>
</tr>
</tbody>
</table>

*n number of PAHs analyzed in each study.

dw¹³, 스페인 Tarragona Country의 공장이지역에서의 평균농도 356 ng/g dw¹⁸보다는 높은 합산농도로 분포하고 있는데, 이러한 차이는 공장 규모 및 활성화에 따른 차이에 의한 것으로 사료된다. 그리고 본 지역에서 지질분석을 통해 두 차이를 보이고 있는데, 공장이지역의 F-5 지역(157.3 ng/g dw)은 주변지역 (F-1~F-4)의 34.0~114.6 ng/g dw보다 1.4~4.6배 높은 농도로 분포하고 있었다.

IARC에서 발암원물로 간주하고 있는 6종의 총 PAHs의 총농도(t-PAH_{CARC})는 6.3~118.0 ng/g dw(평균 33.4 ng/g dw)로 나타났으며, t-PAHs에 대해 29.0~54.0%(평균 37.7%)의 비율로 분포하고 있었다(Table 3). 지역별로 평균 t-PAH_{CARC} 농도를 비교하면, 교통지역(52.8 ng/g dw) > 소각장지역(48.5 ng/g dw) > 공장지역(28.8 ng/g dw) > 발전소지역(26.3 ng/g dw) > 항구지역(15.3 ng/g dw) > 주거지역(11.3 ng/g dw) 순으로, t-PAHs의 높은 농도와 같은 패턴으로 분포하고 있음을 알 수 있었다. t-PAH_{CARC}와 t-PAHs 사이의 관련성을 알아보기 위해 이들 사이의 상관성을 검토하기 위해 그 결과를 Fig. 2에 나타내었다. 그 결과에서 보여지는 바와 같이 결정계수²가 0.9701로 매우 높은 상관성을 보였으며, 이 결과는 올스턴¹⁴ 및 장원석¹³의 토양에서 t-PAHs와 t-PAH_{CARC} 사이에 결정계수²가 각각 0.9333, 0.9306으로 높은 상관성을 보였다는 결과와 유사하다. 이 결과로부터 t-PAHs의 높은 농도가 높은 토양에서 발암성을 t-PAH_{CARC}가 높은 농도로 분포할 것을 알 수 있었다.

![Fig. 2. Relationship between t-PAHs and t-PAH_{CARC} concentrations in soils of Jeju City.](image)

3.2. 지역별에 따른 PAHs 및 환경별 PAHs의 분포특성

16종 PAHs 화합물의 분포특성은 지역별로 평균 농도로 하여 그 결과를 Fig. 3, 4, 그리고 5를 참조하되 Table 5에 나타내었다. Fig. 3 및 Table 5에서 보여지는 바와 같이 모든 지역에서 3개의 고리의 전체 Acy, Ace, Flu, Ant 및 5개의 고리의 전체 DaA가 비로소 검출되거나 불검출 되었다. 각 지역에서 PAHs 중 높은 비율을 차지하는 PAHs 화합물은 주거지역의 경우 Pyr, BbF, BkF, BgP 및 lpP이 있고, 이는 t-PAHs의 60%를 차지하였다. 교통지역의 경우에는 Flu, Pyr, Chr 및 BgP이며, 이는 t-PAHs의 약 53%로 분포하였다. 교통지역에서의 PAHs의 분포 특성은 Smith 와 Harrison²⁴의 영국의 Birmingham과 Smith 등²⁵
Fig. 3. Average concentration of each PAH with area.

Table 5. Relative abundance(%) of average individual PAH to average t-PAHs concentration with area

<table>
<thead>
<tr>
<th>PAHs</th>
<th>Residential Area</th>
<th>Traffic Area</th>
<th>Power Plant Area</th>
<th>Harbor Area</th>
<th>Incineration Area</th>
<th>Factory Area</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nap</td>
<td>7.2</td>
<td>3.7</td>
<td>2.7</td>
<td>10.9</td>
<td>2.8</td>
<td>4.2</td>
</tr>
<tr>
<td>Acy</td>
<td>0</td>
<td>0.5</td>
<td>1.7</td>
<td>1.9</td>
<td>1.3</td>
<td>1.2</td>
</tr>
<tr>
<td>Ace</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.3</td>
<td>0.1</td>
</tr>
<tr>
<td>Flu</td>
<td>0</td>
<td>1.1</td>
<td>1.3</td>
<td>4.5</td>
<td>1.8</td>
<td>1.9</td>
</tr>
<tr>
<td>Phe</td>
<td>4.9</td>
<td>6.2</td>
<td>7.5</td>
<td>18.3</td>
<td>8.3</td>
<td>12.6</td>
</tr>
<tr>
<td>Ant</td>
<td>3.0</td>
<td>1.4</td>
<td>1.3</td>
<td>1.4</td>
<td>2.0</td>
<td>2.5</td>
</tr>
<tr>
<td>Fle</td>
<td>7.6</td>
<td>14.2</td>
<td>13.0</td>
<td>9.9</td>
<td>10.7</td>
<td>10.8</td>
</tr>
<tr>
<td>Pyr</td>
<td>16.0</td>
<td>16.1</td>
<td>18.1</td>
<td>6.8</td>
<td>11.7</td>
<td>12.8</td>
</tr>
<tr>
<td>BaA</td>
<td>3.4</td>
<td>6.3</td>
<td>7.6</td>
<td>1.0</td>
<td>6.4</td>
<td>3.2</td>
</tr>
<tr>
<td>Chr</td>
<td>6.5</td>
<td>11.1</td>
<td>8.9</td>
<td>7.8</td>
<td>12.2</td>
<td>8.4</td>
</tr>
<tr>
<td>BbF</td>
<td>10.7</td>
<td>8.5</td>
<td>10.2</td>
<td>10.9</td>
<td>11.0</td>
<td>8.3</td>
</tr>
<tr>
<td>BkF</td>
<td>11.4</td>
<td>7.4</td>
<td>7.6</td>
<td>7.4</td>
<td>9.3</td>
<td>9.2</td>
</tr>
<tr>
<td>BaP</td>
<td>7.2</td>
<td>3.5</td>
<td>2.7</td>
<td>3.1</td>
<td>5.5</td>
<td>4.1</td>
</tr>
<tr>
<td>DaA</td>
<td>1.1</td>
<td>1.7</td>
<td>2.0</td>
<td>1.9</td>
<td>2.2</td>
<td>1.9</td>
</tr>
<tr>
<td>BgP</td>
<td>11.0</td>
<td>10.7</td>
<td>7.5</td>
<td>6.8</td>
<td>5.8</td>
<td>9.7</td>
</tr>
<tr>
<td>IcP</td>
<td>10.0</td>
<td>7.6</td>
<td>7.9</td>
<td>7.4</td>
<td>8.7</td>
<td>9.1</td>
</tr>
</tbody>
</table>
의 파키스탄의 Lahore에서의 도심지역 PAHs의 분포 특성과 유사한 경향을 보이고 있다. 이는 도심지역에서의 PAHs가 주로 자동차 영향을 의해 대기 중으로 방출되어 대기 환경에 의해 도양으로 유입되어 나타난 결과임을 의미하고 있다. 발전소지역은 Fe, Pyr, BbF, 항구지역은 Phe, Flue, BbF, 소각로지역은 Flue, Pyr, Chr, BbF, 공장지역은 Phe, Flue, Pyr, BbF이며, 이들 지역에서 이들 화합물의 함량 차지는 비율은 각각 41%, 39%, 46%, 47%이다. 각 지역의 태양에서 주요 PAHs의 분포에 차이를 나타내는 것은 명확히 설명하기는 어려우나 오염원의 종류(기름 누출 또는 연소), 연소시에 사용된 유기물 또는 화석연료의 종류, 연소 온도 등과 섞여진 PAHs의 기생 확산 등의 복합적인 영향에 의한 것으로 사료된다.

지역별로 환경요인 PAHs의 분포특성을 검토하기 위하여 각 환경요인 농도의 합을 t-PAHs에 대한 분율로 하여 Fig. 4에 나타내었다. 2-ring(NaP), 3-ring(AnP, Ace, Acm, Phe, Ant), 4-ring(Flue, Pyr, BaA, Chr), 5-ring(BbF, BkF, BaP, Daa), 6-ring(BgP, Icp)의 비율은 주거지역의 경우 각각 7.2%, 7.9%, 33.5%, 30.4%, 21.0%, 교통지역의 경우 각각 3.7%, 9.2%, 47.7%, 21.1%, 18.3%, 발전소지역의 경우 각각 2.7%, 11.8%, 47.5%, 22.5%, 15.4%, 항구지역의 경우 각각 10.9%, 26.1%, 25.5%, 23.3%, 14.2%, 소각로지역의 경우 각각 2.8%, 13.7%, 41.0%, 28.0%, 14.5%, 공장지역의 경우 각각 4.2%, 18.3%, 35.2%, 23.5%, 18.8%로 항구지역을 제외하고 4-ring의 PAHs가 33% 이상으로 가장 높은 비율을 차지하고 있으며 4-ring > 5-ring > 6-ring > 3-ring > 2-ring의 순으로 감소함을 알 수 있는데, 즉, 중·고비점의 4~6 ring의 PAHs가 높은 비율로 분포하고 저비점의 2~3 ring PAHs가 낮은 비율로 분포하고 있는데, 이는 PAHs의 주요 오염원이 화석연료의 연소에 기인하고 사용된 연료의 종류, 연소온도 등의 영향에 의해 다소 차이를 보이는 것으로 사료된다. 그러나 항구지역의 경우 3-ring, 4-ring 및 5-ring의 PAHs가 비슷한 분율로 높게 분포하고 있는데, 이는 명확한 설명은 어려우나 기름누출 및 화석연료의 연소 등의 복합적인 오염원에 의한 것으로 판단된다.

3.3. PAHs 농도와 토양조성(유기물, 입토분포)과의 상관성

유기 오염물질의 분포에 영향을 미치는 토양 중의 인자는 유기물 함량, 입토분포 및 화학 성분 등이라고 보고되고 있다. 본 연구에서는 PAHs 화합물의 분포에 미치는 토양 조성(유기물, 입토분포)의 영향을 검토하기 위하여 각 토양 중의 t-PAHs의 유기물 함량 및 입토분포와의 상관성을 검토하여 Fig. 5 및 Fig. 6에 각각 나타내었다. Fig. 5에서 보여지는 바와 같이 t-PAHs와 유기물 함량과의 상관성(r^2)은 0.1744로 상관성이 낮음을 알 수 있다. 이는 Yang 등(27)이 보고한 도시 자동차 도로 인근에서의 토양에서, Wilcke 등(5)이 보고한 열대성 지역의 땅에서의 토양에서, 그리고 Nadal 등(18)이 보고한 스페인의 Tarragona country에서의 토양에서의 t-PAHs와 유기물 함량과의 상관성이 낮다는 결과와 일치하고 있으나 긴 등(28)이 보고한 서울 부산, 광주 음산 등 지역에서의 t-PAHs와 유기물 함량과 낮은 상관성이 발견되었다. 일반적으로 PAHs와 같은 석유유기화합물 뿐만 아니라 유기물 함량과 높은 상관성을 보이게 되며, 이는 PAHs의 토양 재배양의 발생에 영향을 미칠 수 있다.
중의 유기물 함량의 PAHs 흡착용량에 형성 미치지 못하는 소량의 PAHs의 우량, PAHs의 물리화학적 특성 그리고 토양환경 변화 등의 복합적인 요인에 기인하는 것으로 사료된다.

Fig. 6은 t-PAHs와 입도포부와의 상관성을 나타낸 것으로 표시(sand, 2~0.02 mm), 실트(silt, 0.02 ~0.002 mm) 및 점토(clay, < 0.002 mm)의 상관성은 결정계수(\(r^{2}\))가 각각 0.077, 0.0818, 0.0547로 t-PAHs와의 상관성이 없음을 알 수 있었다. 일반적으로 토양의 입도가 작을수록 표면적이 증가하여 PAHs와 같은 소수성 유기물질의 흡착성이 증가하나 본 연구에서는 상관성을 보이지 않았다. 이는 유기물 함량과의 상관성에서 언급한 바와 같이 푸들형에서 PAHs 부하, PAHs의 특성 그리고 다양한 토양 환경 변화 등의 복합적인 요인에 기인한 것으로 보인다.

3.4. 토양에서의 PAHs의 오염 기원

본 연구에서는 제주시 토양에서의 PAHs 오염 기원을 추정하기 위해서 여러 문헌 등에서 꾸준히 이용되고 있는 오염 기원을 지수를 이용하여 검토하였다.

일반적으로 PAHs 오염 기원에 대한 분류로는 연소기원에 대한 PAHs 오염은 4~6개의 고리를 가진 고분자의 PAHs가 2~3벤젠 고리를 가진 저분자의 PAHs에 대해 상대적으로 풍부하며, 이에 반하여 유유기오염에 의한 기원은 2~3개의 고리를 가진 저분자 PAHs가 우세하며 5~6개의 고리를 가진 PAHs는 미량으로 검출되었다고 알려져 있다. 지역별로 2~3개의 고리를 가진 저분자(LMW)의 PAHs와 4~6개의 고리를 가진 고분자(HMW)의 PAHs의 비율 Table 6에 나타내었으며. Table 6에서 보여지는 바와 같이 모든 지역에 대한 이 저수준은 0.09~0.37로 이 저수준에 의한 PAHs 오염의 기원은 PAHs가 연소 기원에 의한 것임을 나타내고 있다. 또한 Yang 등(29)은 도시 자동차 도로 인접지역의 대기, 토양 및 식물에서 분석된 PAHs에서 Phe/Ant과 Fle/Pyr 비율을 이용해 PAHs 오염의 기원을 밝히는 방법을 이용하였다. 즉, Phe/Ant 비가 약 3이면 자동차 배기가스에 의한 기원, 50이상일 때는 유유기오염의 기원으로, Fle/Pyr 비가 1이하이면 연소기원, 1보다 큼 경우에는 유유기오염의 기원으로 분류하였다. 본 연구의 지역별 토양 내 Phe/Ant 비율 및 PAHs의 상태물(Table 6) 항구지역을 제외하고 Phe/Ant 비는 1.0~7.3이고, Fle/Pyr 비는 0.30~0.94로 유유기오염 기원보다는 자동차 배기가스, 유유기 또는 화석연료의 연소 등의 연소기원에 의한 것으로 사료된다. 그러나 항구지역의 경우 Phe/Ant 비는 12.7이고, Fle/Pyr 비는 1.45로 연소기원과 기름부화 등에 의해 PAHs가 존재하는 것으로 판단된다.

따라서 본 조사지역의 토양에서의 PAHs의 오염 기원을 살펴보면, 항구지역을 제외한 토양에서는 PAHs의 오염이 화석연료 또는 유기물의 연소에 의한 것이고, 항구지역은 연소기원과 유유기오염의 복합

<table>
<thead>
<tr>
<th>Table 6. The PAH origin indices with area in soils of Jeju City</th>
</tr>
</thead>
<tbody>
<tr>
<td>Area</td>
</tr>
<tr>
<td>Residential area</td>
</tr>
<tr>
<td>Traffic area</td>
</tr>
<tr>
<td>Power plant area</td>
</tr>
<tr>
<td>Harbor area</td>
</tr>
<tr>
<td>Incineration area</td>
</tr>
<tr>
<td>Factory area</td>
</tr>
</tbody>
</table>

\(a\)The ratio of sum of the low molecular weight 2~3 ring PAHs to sum of the high molecular weight 4~6 ring PAHs; \(b\)The value in the parenthesis indicates the mean of the range.
적인 요인에 기인한 것으로 사료된다.

4. 결 론
제주시의 지역별 특성을 고려하여 이동·고정 배출원의 영향이 예상되는 6개 지역(주기지역, 교통지역, 발전소지역, 항구지역, 소각소지역, 공장지역)의 16개 지점에서 토양을 채취하여 이들 토양에서의 PAHs의 분포특성을, 즉, PAHs의 농도순, 지역별에 따른 PAHs 및 환산한 PAHs의 분포특성을, 이의 분포에 영향을 미칠 것으로 예상되는 토양조성(유기물 및 입수범위)과의 상관성, 특정 PAHs 상대 비율을 통한 PAHs의 오염기원 등을 검토하여 다음과 같은 결론을 얻었다.

1) 제주시 토양 중의 총 PAHs(t-PAHs)의 농도 범위(평균)는 21.7~264.2 ng/g dw(87.2 ng/g dw)로 국내외 타지역에서의 토양과 비교하였을 때 매우 낮은 농도수준을 보였으며, 지역별로 평균 t-PAHs 농도를 비교하면, 교통지역(149.3 ng/g dw) > 소각지역(112.4 ng/g dw) > 공장지역(79.6 ng/g dw) > 발전소지역(69.2 ng/g dw) > 항구지역(48.7 ng/g dw) 순으로, 교통지역이 가장 높은 농도로, 소각지역이 가장 낮은 농도로 분포하고 있었다.

2) IARC에서 발암물질로 간주하고 있는 6종의 총 PAHs의 농도(t-PAHs)는 6.3~118.0 ng/g dw(평균 33.4 ng/g dw)로 나타났으며, t-PAHs에 대해 29.0~54.0%(평균 37.7%)의 비율로 분포하고 있었으며, 지역별로 따른 평균 t-PAHs의 농도는 t-PAHs의 농도와 같은 패턴으로 분포하고 있음을 알 수 있었다. 즉, t-PAHs와 t-PAHs의 사이의 상관성이 매우 높았는데, 이는 t-PAHs의 농도가 높은 토양에서는 발암성의 t-PAHs가 높은 농도로 분포한 것으로 보인다.

3) 지역별로 따른 환산별 PAHs의 분포는 항구지역을 제외하고 4-ring의 PAHs가 33% 이상으로 가장 높은 비율을 차지하고 있으며 4-ring > 5-ring > 6-ring > 3-ring > 2-ring의 순으로 감소함을 알 수 있는데, 즉, 중·고비정의 4~6 ring의 PAHs가 높은 비율로 분포하고 저비정의 2~3 ring PAHs가 낮은 비율로 분포하였으나 항구지역은 3-ring, 4-ring 및 5-ring의 PAHs가 비슷한 분율로 높게 분포하고 있었는데, 이는 명확한 설명은 어려우나 기울누출 및 화석연료의 연소 등의 복합적인 오염원에 의한 것으로 판단된다.

4) 제주시의 토양특성(유기물 함량, 염도분포)과 PAHs와의 상관관계는 나타나 있었는데, 이는 PAHs 부하 및 특성 및 다양한 토양환경 등의 복합적인 요인에 기인하는 것으로 사료된다.

5) 제주시 토양에서의 PAHs의 오염원은 항구지역을 제외한 토양에서는 PAHs의 오염이 화석연료 또는 유기물의 연소에 의한 것이고, 항구지역은 연소기구와 유류오염의 복합적인 요인이 기인한 것으로 사료된다.

감사의 글
이 논문은 2004년도 제주대학교 두뇌연구 21사업에 의하여 지원되었음.

참고 문헌

14) Lee, D. W., 2001, Contamination levels of polycyclic aromatic hydrocarbons (PAHs) in soil at Ulsan City, MS Thesis, Graduate School of Industry, Pukyong National University, 45pp.

17) 최정, 김현재, 신형오, 1985, 토양학 실험, 형성층 판사, pp.15-23.

