Developing the Evaluation Indicator of Pedestrian Environment for Promoting Walking Activity

Kyung-Hun Park, Jong-Wan Park*, Sung-Gwan Jung* and Ju-Han You**

Department of Landscape Architecture, Kyungpook National University, Daegu 702-701, Korea
Department of Environmental Engineering, Changwon National University, Changwon 641-773, Korea

*Department of Landscape Architecture, Kyungpook National University, Daegu 702-701, Korea
**Institute of Industrial Technology, Changwon National University, Changwon 641-773, Korea

(Manuscript received 14 May, 2007; accepted 17 October, 2007)

The promotion of walking and bicycling is recently a hot topic in the urban planning and design field. Many planners have already examined the many components of the land use-transportation connection and built environment-physical activity link. A rapidly growing area of urban form research is to measure the level of walkability in urban environments. With this background, this research conducted a preliminary study to develop the evaluation indicators of pedestrian environments. Based on the literature reviews on walking or pedestrian environments, we proposed the seventeen indicators related with pedestrian facilities, road attributes and walking environment. We also performed a questionnaire survey to evaluate the satisfaction of their neighborhood pedestrian environments for 302 randomly selected adults living in the City of Changwon, Gyeongsangnam-do. Finally, this research provided the valid model to evaluate the effects of physical environmental factors on the walking satisfaction using factor analysis and multiple regression analysis.

Key Words : Pedestrian environment, Walking activity, Walkability, Evaluation indicator

1. 서 론

과거 자동차 보급률이 낮고, 도로 여건이 좋지 않았던 시대에는 걷기가 주된 이동수단이었으나, 도시화·산업화 과정을 거치면서 자동차 보급이 확대되고, 국토개발에 따른 도로망 구축도 활발히 이루어짐에 따라 자동차가 주요 교통수단으로 이용되고 있다. 이와 같은 자동차 위주의 교통정책은 보행환경의 안전성, 폐적성, 기능성 등을 더욱 악화시켜, 일상생활 속에서의 걷기활동을 지속적으로 감소시키는 원인으로 작용해 오고 있다.

최근 들어 웰빙(well-being)과 고품질 시대의 도래로 다양한 양질에서 건강을 위한 걷기나 자전거 타기 등의 야외활동에 많은 관심과 시간을 투자하고 있다. 특히 걷기는 모든 교통의 시작과 끝을 구성하고 단순한 이동행위가 아닌 주변 환경과 교감, 주변 환경에 따른 경로선택에 관계하여 도시생활의 질을 측정하는 중요 인자로 인식되고 있으며, 유한수 운동의 하나로서 자연과 타기, 골프, 야구 등에 못지 않은 활동으로 소비하는 운동이다.

그러나, 국내외의 많은 도시들은 운동이나 여가의 목적을 고려하여 특정 구간을 중심으로 보행환경 개선사업을 실시함으로 인해, 아직까지 자동차를 대신하는 이동수단으로서의 걷기활동은 매우 미흡한 실정이라 할 수 있다. 따라서 운동이나 여가 등을 목적으로 한 특정 구간의 보행환경 개선이 아니라, 축·퇴근, 등·학교, 업무, 쇼핑과 같은 일상적인 목적의 이동수단이 자동차에서 걷기로 전환될 수 있도록 도시계획 또는 지구(지역)단위에서의 보행환경 개선 노력이 필요할 것이다. 결국 보행환경의 개

Corresponding Author : Kyung-Hun Park, Department of Environmental Engineering, Changwon National University, Changwon 641-773, Korea
Phone: +82-55-213-3747
E-mail: landpkh@changwon.ac.kr
선을 통한 경기활동의 증진은 자동차 수요 역제 효과뿐만 아니라 도시환경 전체를 변화시키는 중요한 역할을 하기 때문에 지속가능하고 건강한 도시를 만들기 위해서 적극적으로 추진되어야 할과제라 판단된다.

미국, 호주, 영국 등의 선진국은 1990년대 초부터 도시계획, 설계, 교통, 조경, 의학 등 전문가들이 공동으로 참여한 학계간 연구를 통하여 건강증진 및 녹색교통시스템의 구축을 위한 구체적인 견과리와 자기간 환경화 방안을 제시하고 있다. 특히, 도시의 다양한 물리적인 형상(토지이용 등)과 경기활동 등의 상관성 분석[1-6], 경합외부 환경측정 양식지의 개발[7-8], 건강 또는 자전거 타기에 영향을 미치는 물리적 환경인자의 간척적 측정 및 평가도구의 개발[9-10], GIS 기법을 활용한 환경평가평가법의 개발[11], 그리고 가로공간구조의 설계적 측면에서의 평가[8] 등과 같은 연구를 통해 도시계획 또는 근린지구 차원에서 경기활동을 증진시키는 보행환경 계획 및 설계 및 개선방안 등의 활용 가능한 결과를 제시하고 있다.

따라서 본 연구는 경기활동의 증진을 위한 보행 환경 조성방안을 제시한다는 궁극적인 목표 아래, 먼저 경기활동에 영향을 미치는 보행환경요소를 계량적으로 측정·평가할 수 있는 지표체계를 제시하고자 한다. 또한, 경상남도 청원시를 대상으로 경기활동에 영향을 미치는 물리적인 환경인자와 보행 환경의 만족도 voc에 미치는 영향을 규명하기 위한 평가모형을 제시함으로써, 향후 도시계획 및 근린생활권에서 경기활동의 증진을 고려한 보행환경 조성 및 개선방안을 마련하는데 기초자료로서 제공하고자 한다.

2. 연구방법

2.1. 연구대상지 선정

설문조사를 위한 연구대상지는 경상남도 청원시 (Fig. 1)로서, 1970년대 중반 우리나라 최초의 계획도시로 건설되어 격차형의 체계적인 도로망과 종부한 공원·녹지가 조성되어 있으나, 공원·녹지의 기능성에 있어 환경적 가치와 인간의 건강증진 등과 같은 이용자 중심의 개원이 미흡하다 할 수 있다. 하지만 2004년 창원시는 세계보건기구(WHO) 건강도시협의회에 국내 최초로 가입하여 물리적 환경이 깨끗하고 안전한 도시, 안정적이며 지속 가능한 생태계를 보존하는 도시 등을 목표로 하는 건강도시 조성을 지속적으로 추진하고 있어 연구대상지로 적합하다고 판단된다.

2.2. 분석방법

본 연구는 경기와 보행환경에 관련된 국내외 문헌연구를 통하여 경기활동에 영향을 미칠 수 있는 보행환경요소를 광범위하게 추출하고, 이 중 사용빈도가 높은 핵목들을 중심으로 예비설문조사를 실시하였다. 예비문서에 사용된 보행환경 평가지표는 문헌도 분석결과에 따라 체계적인 선례도를 제시하기 쉬운 경사거나, 또는 선례도를 높일 수 있도록 문과 자문에 의해 단어정의 및 설문문항에 변경하여 최종적인 보행환경 평가지표를 선정하였다.

최종적으로 선정된 지표를 중심으로 현장조사에 의한 객관적인 보행환경의 측정 및 평가가 이루어질 수 있다. 본 연구에서는 물리적 환경요소에 관련된 지표를 중심으로 창원시민들의 만족도 조사에 의한 보행환경 평가를 실시하였다.

설문조사는 2006년 2월에 예비조사물, 설문조사는 2006년 4월에 실시하였으며 직접면접방법을 적용하였다. 설문조사는 창원시(용·면단위 제외)에 주거하는 일반인들이며, 폭풍등을 비롯하여 12개 동별 및 성별 인구비례를 고려하여 추출하였다. 설문조사 결과는 SPSS ver. 10.0을 이용하여 통계처리하였다. 응답자의 일반적 수성, 보행 환경에 대한 만족도 등에 관한 전체적인 분포와 응답경향을 살펴
보기 위해 변도분석 및 기술통계분석을 실시하였다. 또한 물리적인 보행환경 요소들이 전체적인 보행 만족도에 미치는 영향을 평가하기 위한 모형을 제시하기 위하여 요인분석(factor analysis)과 다중회귀분석(multiple regression analysis)을 적용하였다.

3. 결과 및 고찰

3.1. 인구통계학적 속성

응답자의 인구통계학적 속성에 있어서는 성별의 경우 남성이 167명(55.3%), 여성이 135명(44.7%)으로 나타났다(Table 1).

연령은 20대가 119명(39.4%)으로 가장 높은 비율이었으며, 연령별 분포는 10대부터 40대까지 284명으로 전체의 94.0%를 차지하였다. 직업별로는 학생이 112명(37.1%), 주부가 42명(13.9%), 직장인이 105명(34.8%), 자영업 30명(9.9%) 및 기타직업이 13명(4.3%)으로 나타났다. 이는 공업지구는 지역적 특성으로 인해 청·장년층과 남성의 높게 나타난 것으로 판단된다. 응답자의 동별 분포현황의 경우 동남동 47명(15.6%), 용두동 42명(13.9%), 사과동 41명(13.6%)의 순으로 가장 많이 분포되었고 응답자 및 성주동이 각각 3명(1.0%)으로 가장 낮은 분포를 나타내었다.

3.2. 보행환경 평가지표의 선정

국내·외 관련문헌을 중심으로 건가활동에 영향을 미치는 보행환경요소를 추출하고, 이 중에서 사 용횟수가 높은 항목을 에비평가지표로 선정하였다 (Table 2).

<table>
<thead>
<tr>
<th>Table 1. Demographic profile of respondents</th>
</tr>
</thead>
<tbody>
<tr>
<td>Demographic Variables</td>
</tr>
<tr>
<td>------------------------</td>
</tr>
<tr>
<td>Gender</td>
</tr>
<tr>
<td>Male</td>
</tr>
<tr>
<td>Female</td>
</tr>
<tr>
<td>Age(years)</td>
</tr>
<tr>
<td>less than 19</td>
</tr>
<tr>
<td>20-29</td>
</tr>
<tr>
<td>30-39</td>
</tr>
<tr>
<td>40-49</td>
</tr>
<tr>
<td>50-59</td>
</tr>
<tr>
<td>over 60</td>
</tr>
<tr>
<td>Employment</td>
</tr>
<tr>
<td>Student</td>
</tr>
<tr>
<td>Housewife</td>
</tr>
<tr>
<td>Employed</td>
</tr>
<tr>
<td>Self-employed</td>
</tr>
<tr>
<td>Other</td>
</tr>
</tbody>
</table>

국내문헌에서 가장 사용횟수가 높은 지표는 보도 (歩道) 폭과 조명시설이 8회, 다음으로 보행 장애물 (歩行 Açık 자료, 노징상 등)과 가로수의 유무가 7회로 확인되었고, 기타 보도의 포장재료 및 관리상태, 보행공간의 녹음성, 교통소음, 버스정류장 등이 각각 5회로 조사되었다. 국외문헌의 경우 건축물의 특성 8회로 가장 많았고, 보행 장애물, 차도와 보도 사이의 완충시설, 횡단시설, 제한속도, 버스정류장, 보도 관리상태, 조명시설 등이 7회로 나타났다. 그 다음으로 보도의 폭, 배수, 연속성, 경사도, 그리고 차도 폭(차선 수)이 6회였으며, 보행 장애물, 가로수, 자전거 시설, 주차장의 유무가 5회로 나타났다.

이상의 국내·외 문헌연구를 토대로 추출된 보행 환경요소 중에서 전체 사용횟수가 5회 미만인 차량 속도조절장치, 차도의 굴곡 유무, 자연경관을 제외 한 25개 항목을 에비적인 보행환경 평가지표로 선정하였다.

최종적인 지표 선정을 위해 예비적으로 선정된 25개 지표를 이용하여 에비설문지를 실시한 결과, 보도의 유무와 연속성, 차도의 폭, 주차장, 건물 건 임, 가로수, 식제형상, 청결상태, 건물 후이, 자전거 시설, 버스정류장 등 11개 지표는 응답률이 낮아 제외하였다. 한편, 에비설문문서 응답률이 낮게 나 왔으나, 연구가 판단 및 전문가 자문에 의해 신흥대 기간, 범죄율, 자연경관 등 3개 지표를 추가하여 총 17개 지표로 확정하였다.

선정된 보행환경 평가지표의 내적 일관성 및 신뢰성 확인을 위해 크론바하 알파계수를 이용한 신뢰도분석을 실시한 결과는 Table 3과 같이 요약되었다. 전체 계수가 0.760로서 일반적 기준인 0.6이상 이기 때문에 설문조사 및 평가지표에 대한 신뢰성에 있는 큰 문제가 없는 것으로 판단되었다. 하지만, 항목제 거 시 전체계수가 보다 높게 신뢰계수가 나타난 신 호대기시간, 범죄율, 건물주 특성은 추후 분석의 객 관성 확보를 위해 제외하였다. 양식시를 대상으로 한 최종적인 보행환경 평가지표는 총 14개로 선정하였다.

3.3. 창원시 보행환경의 만족도 평가

창원시의 보행환경 평가는 최종적으로 선정된 14 개 지표를 활용하여 현장조사에 의한 객관적인 평 가, 그리고 만족도 설문조사에 의한 주관적인 평가로 이루어질 수 있다. 본 연구는 우선적으로 5점 리 커트 점수로 작성된 만족도 설문조사를 토대로 창 원시의 보행환경을 평가하였다. 보행환경 평가지표 별 만족도 분석결과는 Table 4와 같은데, 특히 횡단 시설에 대한 만족도가 3.66으로 가장 높게 나타났고, 그 다음이 보도 폭 3.63, 조명시설 3.45, 경사도 3.42

1233
<table>
<thead>
<tr>
<th>Items measured</th>
<th>Foreign literatures</th>
<th>Domestic literatures</th>
<th>Frequency</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pedestrian facility</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Presence of sidewalk</td>
<td>●●●●●●●●●●</td>
<td>- - - - - - - -</td>
<td>8</td>
</tr>
<tr>
<td>Path width</td>
<td>- - - - - - - -</td>
<td>- - - - - - - -</td>
<td>14</td>
</tr>
<tr>
<td>Path slope</td>
<td>- - - - - - - -</td>
<td>- - - - - - - -</td>
<td>6</td>
</tr>
<tr>
<td>Path material</td>
<td>- - - - - - - -</td>
<td>- - - - - - - -</td>
<td>11</td>
</tr>
<tr>
<td>Sidewalk condition/maintenance</td>
<td>●●●●●●●●●●</td>
<td>- - - - - - - -</td>
<td>12</td>
</tr>
<tr>
<td>Path obstructions</td>
<td>- - - - - - - -</td>
<td>- - - - - - - -</td>
<td>14</td>
</tr>
<tr>
<td>Path connectivity</td>
<td>- - - - - - - -</td>
<td>- - - - - - - -</td>
<td>8</td>
</tr>
<tr>
<td>Buffers between road and path</td>
<td>●●●●●●●●●●</td>
<td>- - - - - - - -</td>
<td>8</td>
</tr>
<tr>
<td>Road attributes</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Road width (number of lanes)</td>
<td>●●●●●●●●●●</td>
<td>- - - - - - - -</td>
<td>8</td>
</tr>
<tr>
<td>Crossing aids in segment</td>
<td>- - - - - - - -</td>
<td>- - - - - - - -</td>
<td>11</td>
</tr>
<tr>
<td>Speed control devices</td>
<td>- - - - - - - -</td>
<td>- - - - - - - -</td>
<td>4</td>
</tr>
<tr>
<td>On-off parking lot spaces</td>
<td>- - - - - - - -</td>
<td>- - - - - - - -</td>
<td>9</td>
</tr>
<tr>
<td>Driveway to building</td>
<td>- - - - - - - -</td>
<td>- - - - - - - -</td>
<td>5</td>
</tr>
<tr>
<td>Traffic volume</td>
<td>- - - - - - - -</td>
<td>- - - - - - - -</td>
<td>7</td>
</tr>
<tr>
<td>Posted traffic speed</td>
<td>- - - - - - - -</td>
<td>- - - - - - - -</td>
<td>7</td>
</tr>
<tr>
<td>Presence of curb cut</td>
<td>- - - - - - - -</td>
<td>- - - - - - - -</td>
<td>3</td>
</tr>
<tr>
<td>Walking/Cycling environments</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Roadway/path Lighting</td>
<td>●●●●●●●●●●</td>
<td>- - - - - - - -</td>
<td>15</td>
</tr>
<tr>
<td>Street furniture (bench)</td>
<td>- - - - - - - -</td>
<td>- - - - - - - -</td>
<td>7</td>
</tr>
<tr>
<td>Presence of street tree</td>
<td>- - - - - - - -</td>
<td>- - - - - - - -</td>
<td>12</td>
</tr>
<tr>
<td>Trees shading walking area</td>
<td>- - - - - - - -</td>
<td>- - - - - - - -</td>
<td>8</td>
</tr>
<tr>
<td>Planting type of street garden</td>
<td>- - - - - - - -</td>
<td>- - - - - - - -</td>
<td>5</td>
</tr>
<tr>
<td>Cleanliness</td>
<td>- - - - - - - -</td>
<td>- - - - - - - -</td>
<td>9</td>
</tr>
<tr>
<td>Traffic noise</td>
<td>- - - - - - - -</td>
<td>- - - - - - - -</td>
<td>6</td>
</tr>
<tr>
<td>Building setbacks from street</td>
<td>- - - - - - - -</td>
<td>- - - - - - - -</td>
<td>6</td>
</tr>
<tr>
<td>Building features</td>
<td>- - - - - - - -</td>
<td>- - - - - - - -</td>
<td>12</td>
</tr>
<tr>
<td>Natural landscape</td>
<td>- - - - - - - -</td>
<td>- - - - - - - -</td>
<td>3</td>
</tr>
<tr>
<td>Bicycle facilities</td>
<td>- - - - - - - -</td>
<td>- - - - - - - -</td>
<td>6</td>
</tr>
<tr>
<td>Bus service (bus stops)</td>
<td>●●●●●●●●●●</td>
<td>- - - - - - - -</td>
<td>12</td>
</tr>
</tbody>
</table>

Table 3. Cronbach’s alpha Reliability coefficient for 17 indicators

<table>
<thead>
<tr>
<th>Indicator</th>
<th>Alpha if item deleted</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pedestrian facility</td>
<td></td>
</tr>
<tr>
<td>Path width</td>
<td>0.752</td>
</tr>
<tr>
<td>Path slope</td>
<td>0.743</td>
</tr>
<tr>
<td>Path material</td>
<td>0.752</td>
</tr>
<tr>
<td>Sidewalk condition/maintenance</td>
<td>0.751</td>
</tr>
<tr>
<td>Path obstructions</td>
<td>0.756</td>
</tr>
<tr>
<td>Buffers between road and path</td>
<td>0.758</td>
</tr>
<tr>
<td>Road attributes</td>
<td></td>
</tr>
<tr>
<td>Crossing aids in segment</td>
<td>0.763</td>
</tr>
<tr>
<td>Posted traffic speed</td>
<td>0.751</td>
</tr>
<tr>
<td>Traffic volume</td>
<td>0.752</td>
</tr>
<tr>
<td>Crosswalk signal waiting time*</td>
<td>0.777</td>
</tr>
<tr>
<td>Walking/Cycling environments</td>
<td></td>
</tr>
<tr>
<td>Roadway/path Lighting</td>
<td>0.754</td>
</tr>
<tr>
<td>Street furniture(bench)</td>
<td>0.753</td>
</tr>
<tr>
<td>Trees shading walking area</td>
<td>0.758</td>
</tr>
<tr>
<td>Traffic noise</td>
<td>0.706</td>
</tr>
<tr>
<td>Natural landscape</td>
<td>0.762</td>
</tr>
<tr>
<td>Building features*</td>
<td>0.772</td>
</tr>
<tr>
<td>Crime rate*</td>
<td>0.777</td>
</tr>
</tbody>
</table>

Hotelling’s T-Squared $F=49.04 (p=0.00) \text{ Alpha } = 0.769$

*The three deleted indicators to increase coefficient alpha

Table 4. The level of satisfaction in neighborhood’s pedestrian environments on a five-point Likert scale

<table>
<thead>
<tr>
<th>Indicator</th>
<th>Mean±S.D.*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pedestrian facility</td>
<td></td>
</tr>
<tr>
<td>Path width</td>
<td>3.63±0.81</td>
</tr>
<tr>
<td>Path slope</td>
<td>3.42±0.77</td>
</tr>
<tr>
<td>Path material</td>
<td>3.34±0.89</td>
</tr>
<tr>
<td>Sidewalk condition/maintenance</td>
<td>3.33±0.83</td>
</tr>
<tr>
<td>Path obstructions</td>
<td>2.57±1.14</td>
</tr>
<tr>
<td>Buffers between road and path</td>
<td>3.41±0.94</td>
</tr>
<tr>
<td>Road attributes</td>
<td></td>
</tr>
<tr>
<td>Crossing aids in segment</td>
<td>3.66±0.80</td>
</tr>
<tr>
<td>Posted traffic speed</td>
<td>2.61±0.94</td>
</tr>
<tr>
<td>Traffic volume</td>
<td>2.61±0.98</td>
</tr>
<tr>
<td>Walking/Cycling environments</td>
<td></td>
</tr>
<tr>
<td>Roadway/path Lighting</td>
<td>3.45±0.84</td>
</tr>
<tr>
<td>Street furniture(bench)</td>
<td>3.32±1.04</td>
</tr>
<tr>
<td>Trees shading walking area</td>
<td>3.30±0.88</td>
</tr>
<tr>
<td>Traffic noise</td>
<td>2.30±0.87</td>
</tr>
<tr>
<td>Natural landscape</td>
<td>3.19±0.97</td>
</tr>
</tbody>
</table>

Total satisfaction = 3.20±0.75

* S.D. is standard deviation

통해 축약된 정보 제공과 더불어 평가모형 구축을 위해 요인분석을 실시하였다(Table 5).

14개의 보행환경 지표는 요인분석에 의해 4개의 요인으로 축소되었는데, 먼저 Factor I 은 보행시설에 관련된 보도의 포장재료, 경사도, 관리상태, 폭의 4개 지표가 유형화되었다. 먼저 포장재료는 보행자 통행의 원활한 소통을 위해 지표화된 선행 유지를 목적으로 하고 있으며, 토양양성방지 및 포장면의 지지력 증대 등의 역할을 한다. 포장재료의 선정은 건강활동의 기능적 측면과 함께 특성 있는 가로 경관미를 창출할 수 있도록 설계, 시공할 필요성이 있다. 이를 통해 건기에 적합한 보행공간의 경사도와 폭을 유지하고, 이러한 보행공간의 전 기능을 지속적으로 유지할 수 있도록 관리하는 것도 매우 중요하다고 하겠다.

Factor II는 차량제한속도, 교통량, 교통량, 보행 정체로부터 급히 주로 보행공간의 인접한 도로 등의 주변 환경요인에 관련된 지표로 유형화되었다. 보행공간과 접한 도로의 여건은 주행하는 차량의 속도와 교통량, 그리고 차량에 의한 교통소음 등에 의해 결정되어진다. 또한, 도로를 비롯한 보행공간의 불법주차, 노점상 등과 같은 일시적 또는 구역적 장애물도 건강활동을 증가시키는데 커다란 영향을 미치게 된다.

다음으로 Factor III은 벤처 등의 가로 휴게시설, 자연공원, 녹음판의 3개 지표로 유형화되었으며, 다른 요인들과 달리 심리적 또는 정책적인 측면의 보행환경 요소로 구성되었다. 보행공간의 주요 경관 측(아)상에 하천, 공원, 도시공과 같은 자연스러운 경관요소들이 분포하고, 목적지에 이르는 보행공간에 휴식을 취할 수 있는 벤처, 싱글공원, 분수 등의 조성은 건강활동을 보다 증가시킬 수 있는 근정적인 작용을 할 것이다.

마지막으로 Factor IV는 횡단보도, 신호등, 유도, 지지도 등의 횡단시설, 가로등의 조명시설, 차도와 보도 사이의 화단 등의 완충시설로 유형화되었다. 이들 보행환경요소들은 주로 보행자들에게 안전성과 편리성을 제공하는데 관련된 물리적 환경요소들이다라 할 수 있다.

3.4.2. 다중회귀분석에 의한 보행환경 평가모형 개발

보행환경 평가모형은 건강활동에 관련된 물리적 환경요소들이 차량등 이어지는 기반적 인지학적 요인으로 어떠한 영향도 미치는 가를 예측하기 위한 것이다. 보행환경의 전체 만족도 점수를 종속변수로, 요인분석에 의해 유형화된 Factor I Ⅳ 각각의 요인점수(factor scores)를 독립변수로 설정한 다중회귀분석을 실시하였다(Table 6).
다중회귀분석 결과에 따르면, 평가모형은 F값이 43.435이고 유의확률은 0.000이며, 추정회귀식의 기울기 β=0이라는 귀무가설을 기각하여 통계적으로 유의한 것으로 나타났다. 평가모형의 결정계수(R²)는 0.369로 종속변수(전체 보행환경 만족도) 총 변동 크기의 약 36.9%를 독립변수(물리적 보행환경요소)들이 설명할 수 있는 것으로 나타났다.

보행환경 평가모형에 있어 독립변수가 종속변수에 미치는 인과관계의 영향은 비표준화 회귀계수의 방향(+, -)으로 판단할 수 있는데 4개요인 모두 양(+)의 부호를 가지고 있어 이를 같이 증가할수록 전체 만족도도 같이 증가함을 확인할 수 있다. 한편, 보행환경의 심리적 또는 경관적 요소들과 관련된 Factor III이 다른 요인들에 비해 많은 영향을 미치는 것으로 나타났다. 다시 말하면, 가로 평면설의 설치, 가로 녹지의 조성을 통한 홍통화, 녹지에의 중대와 같은 자연정리 및 상당 수의 보행환경 개선 등은 걷기활동을 증진시키는데 보다 많은 기여를 할 수 있을음을 의미한다. 다음으로 Factor I이 보행환경의 만족도에 많은 영향을 미치는 것으로 나타나, 기능적인 측면에서 걷기에 적합한 포장제로 선정, 적절한 경사도 유지, 충분한 보도 폭 확보, 그리고 지

| Table 5. The result of factor analysis on 14 pedestrian environmental indicators |
|---------------------------------|----------------|----------------|----------------|----------------|
| Indicator | Factor I | Factor II | Factor III | Factor IV |
| Path material | 0.805 | 0.082 | 0.187 | 0.186 |
| Path slope | 0.780 | 0.988 | 0.003 | 0.652 |
| Sidewalk condition/maintenance | 0.745 | 0.096 | 0.105 | 0.104 |
| Path width | 0.657 | 0.103 | 0.096 | 0.217 |
| Posted traffic speed | 0.077 | 0.791 | 0.033 | 0.162 |
| Traffic volume | -0.048 | 0.780 | 0.050 | 0.333 |
| Traffic noise | 0.102 | 0.666 | 0.122 | -0.319 |
| Path obstructions | 0.317 | 0.584 | 0.016 | -0.017 |
| Street furnitures(bench) | 0.132 | 0.041 | 0.817 | 0.164 |
| Natural landscape | 0.008 | 0.084 | 0.770 | 0.037 |
| Trees shading walking area | 0.210 | 0.040 | 0.671 | 0.083 |
| Crossing aids in segment | 0.120 | 0.010 | 0.011 | 0.797 |
| Roadway/path Lighting | 0.177 | 0.148 | 0.125 | 0.644 |
| Buffers between road and path | 0.236 | -0.008 | 0.304 | 0.511 |
| Eigenvectors | 3.785 | 1.752 | 1.433 | 1.218 |
| Communalty | 27.033 | 12.517 | 10.234 | 8.699 |
| Cumulative (%) | 27.033 | 39.551 | 47.985 | 58.484 |

Table 6. Results of multiple regression analysis of the satisfaction and physical indicators in neighborhood’s pedestrian environments

a) Anova test

<table>
<thead>
<tr>
<th>Model</th>
<th>Degree of freedom</th>
<th>Sum of squares</th>
<th>Mean square</th>
<th>F-value</th>
<th>Sig.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Regression</td>
<td>4</td>
<td>62.628</td>
<td>15.657</td>
<td>43.435</td>
<td>0.000</td>
</tr>
<tr>
<td>Residual</td>
<td>297</td>
<td>107.658</td>
<td>0.360</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Total</td>
<td>301</td>
<td>169.685</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

b) Regression analysis

Std. error of the estimate : 0.600; R² : 0.369; Adjusted R² : 0.361

<table>
<thead>
<tr>
<th>Variables</th>
<th>Unstandardized coefficients</th>
<th>Standardized coefficients</th>
<th>t value</th>
<th>Sig.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Constant</td>
<td>3.156</td>
<td>-</td>
<td>91.339</td>
<td>0.000</td>
</tr>
<tr>
<td>Factor score of Factor I</td>
<td>0.210</td>
<td>0.279</td>
<td>6.056</td>
<td>0.000</td>
</tr>
<tr>
<td>Factor score of Factor II</td>
<td>0.133</td>
<td>0.177</td>
<td>3.837</td>
<td>0.000</td>
</tr>
<tr>
<td>Factor score of Factor III</td>
<td>0.066</td>
<td>0.488</td>
<td>10.586</td>
<td>0.000</td>
</tr>
<tr>
<td>Factor score of Factor IV</td>
<td>0.111</td>
<td>0.148</td>
<td>3.205</td>
<td>0.001</td>
</tr>
</tbody>
</table>
실적의 유지·관리 등도 보행환경 조성·정비계획 수립시 충분히 고려할 필요성이 있다. 이를 위해, 보행 환경 요소들의 개별적인 측정 결과와 시민들이 느끼는 만족도와의 관계성을 토대로 검기에 가장 적합한 보행환경 요소별 설계지침 마련도 필요할 것으로 판단된다.

4. 결 론

경상남도 천안시의 건강활동 증진을 위한 보행환경 평가표 개발 및 도입체계에 대한 연구결과를 요약하면 다음과 같다.

먼저, 건강활동 관련 국내·외 문헌연구를 토대로 보도폭, 녹음장 등 총 28개를 추출한 후, 사유분도, 에비언문조사 및 전문가 자문 결과를 반영하여 17개 지표를 선정하였다. 선정된 평가지표들의 신뢰성 분석 결과, 크로스바하 알파계수 0.769로 일반적 기준인 0.6 이상으로 나타나, 통계적 문제는 발생하지 않았으나 전체 신뢰성을 저하시킬 수 있는 신호가 있다. 평가표는 체력, 건강을 특성으로 해하고 14개의 평가지표 특성을 종합적으로 선정하였다.

천안시민은 대상으로 한 보행환경의 평가표별 만족도를 분석한 결과, 횡단시설, 보도폭, 조명시설, 정소도, 공원시설 등이 만족도 3.4점 이상으로 비교적 높게 나타났다. 반면에, 보행 장애물, 차량화산도가, 교통량, 교통공작 등은 만족도가 2점대로 매우 낮게 나타났다.

요인분석에 의한 유형화 결과, 14개의 보행환경 지표는 4개의 Factor로 유형화되었는데, Factor I은 보행장로 등 4개 지표, Factor II는 차량화산도 등 4개 지표, Factor III은 가로 휴게시설 등 3개 지표, Factor IV는 횡단보도 등 3개 지표로 유형화되었다.

각각으로 Factor I ~ IV의 요인징수를 독립변수로 설정한 다중회귀분석을 실시한 결과, 통계적으로 유의한 평가모형(F값 43.435, 유의확률은 0.000)을 추출하였고, 물리적 보행환경요인들이 전체적인 보행환경의 만족도와 약 37%(R-sq 0.369) 정도 설명가능한 것으로 나타났다. 특히, 보행환경의 설계적 또는 경관적 요소와 관련한 Factor III은 다른 요인들에 비해 많은 영향을 미치는 것으로 나타나, 향후 가로 휴게시설 설치, 가로 녹지대 조성 등의 풍부한 녹음건강, 자연경관관리 향상 등의 보행환경 개선 노력이 중점적으로 이루어질 필요성이 있었다.

본 연구에서 제시한 보행환경 평가지표는 설계 및 시설 개발에 기여할 수 있는 도구로서, 향후에는 시민들에 대상으로 보행환경의 지표별 만족도 등과 같은 주관적 평가와 함께 도로 구간별 현장조사 기반의 지표별 객관적 평가를 동시에 적용할 필요성이 있음을 것으로 판단된다.

감사의 글

이 논문을 2005년도 정부재단(교육인적자원부 학술 연구조성을시행)으로 한국학술진흥재단(KRF-2005- 003-B0400)의 지원을 받아 연구되었다.

참고 문헌

3) 이병주, 박성영, 남궁문, 2006, 강서데이터를 이용한 보도환경의 관리평가에 관한 연구, 대한천문학회논문집, 26(2D), 265-273.
11) Lee C., 2004, Activity-friendly communities:
Physical environmental determinants of walking and biking, and their policy, Ph. D. Dissertation, University of Washington.

19) 柳岡, 2001, 近郊遠方の施設利用者者の行動・行動の関係, 公衆施設学研究, 6(1), 11–21.

20) 柳岡, 2001, 須田県の近郊施設の利用者の関係, 公衆施設学研究, 6(1), 11–21.

22) 柳岡, 2002, 千葉県の近郊施設利用者の行動, 公衆施設学研究, 6(1), 11–21.

26) 柳岡, 2002, 千葉県の近郊施設利用者の行動, 公衆施設学研究, 6(1), 11–21.
