Photocatalytic Reaction of VOCs Using Titanium Oxide

Soo-Kyung Jung
Department of Culinary Arts, Kimpo College, Gyeonggi 415-761, Korea
(Manuscript received 9 October, 2007; accepted 15 January, 2008)

Abstract

The VOCs have a direct influence on indoor air pollution, and stimulate respiratory organs and eyes in human body. Also, most of VOCs are a carcinogenic substances and causes to SBS (sickness building syndrome). Therefore, this study was progressed in photocatalysis of VOCs using UV/TiO₂ which was a benign process environmentally. The experiments were performed to know photodegradation characteristics as crystalline structure of TiO₂ which had anatase, rutile and P-25 (anatase : rutile = 70 : 30). The main purpose of this study was to identify photocatalytic characteristics as inlet concentration of reactants, H₂O, and residence time.

Key Words: VOCs, UV/TiO₂, Photocatalysis, Photocatalytic Oxidation

1. 서 론

광촉매 반응에 대한 연구는 촉매화학의 분야에 있어서도 비교적 그 역사가 짧은 분야로 특히 1970년대 이후로 활발하게 진행되기 시작하였다. 괴수광분해 반응에 대한 Fujishima 등1)의 연구결과가 발표된 이후로, 태양에너지의 전환 및 저장에 대한 관심이 고조되었고, 이와 더불어 여러 차례의 오일쇼크를 거치면서 광촉매 반응에 대한 연구도 급속하게 진행되기 시작하였다. 광촉매 반응은 크게 산화 물반도체를 이용하는 불균일계와 유기금속화합물 을 이용하는 균일계로 구분할 수 있다. 특히 반도체 중에서도 산화물 반도체는 빛에 의한 여기(exciting)에 의해 생성되는 활성 성분인 가전자대(valance band)의 정공(hole)과 전도대(conducting band)의 전자(electron)의 에너지가 크고 취급이 쉽기 때문에, 활발한 연구의 대상이 되고 있다2-4).

광촉매로 사용될 수 있는 촉매로는 ZnO, CdS, WO₃, TiO₂ 등이 있지만, 광촉매의 종류에 따른 유기 물 분해능력에는 큰 차이가 없다. ZnO는 광촉매 반응동안 Zn 이온을 발생하는 단점이 있으며, WO₃는 특정물질에 대해서는 효율이 좋으나 사용할 수 있는 영역이 매우 제한적이다. 반면에 본 연구에서 사용된 산화티타늄은 자신이 빛을 받아도 변하지 않아 촉매의 피독현상이 없을 경우 반영구적으로 사용이 가능한 뿐만 아니라, 염소나 오존보다 산화력이 높고, 강력한 산화유기물 분해 능력을 가지며, 유기물을 분해기능에 의한 자체정화가 가능한 화기적인 재료이다.
2. 재료 및 방법

2.1. 시약 및 촉매

VOCs의 광분해 특성을 알아보기 위하여 특급시약인 benzene, toluene, m-xylene을 사용하였으며, 폭축매는 산화타터늄 (TiO₂, Degussa P-25)를 선택하였다. P-25의 결과는 약 70%가 anatase 형태를 갖고 있으며, 30%가 rutile 형태를 갖고 있다. Anatase와 rutile 형태는 산화타터늄은 결정구조에 따라 구분되는데 anatase는 점검촉 결정모양이고, rutile은 면검촉 결정모양이다. Anatase가 rutile에 비해 가격이 저렴하고, hydroxyl radical의 생성이 상대적으로 많아 광촉매 반응성이 뛰어난 것으로 알려져 있다. 이 촉매 입자의 평균 지름은 20~30 nm, 표면적이 55 m²/g이다. 폭축매 반응기를 Fig. 1(a)에서 보는 것과 같이 pyrex 재질의 외경 25 mm, 두께 2 mm, 길이 1,000 mm의 tube 형태로 설계하였다. 또한 반응기의 양쪽 끝 부분에는 gas distributor를 설치하여 공기의 흐름이 원활하도록 설계하였다.

2.2. 실험방법

산화타터늄을 메탄올에 분산시켜 슬러리 상태로 만든 후, 직경 4 mm의 glass bead에 코팅하였다. 산화타터늄이 코팅된 glass bead는 촉매가 anatase 형태로 전환되는 400℃가 넘지 않는 범위에서 2시간 동안 소성시켜 광촉매 반응기에 장착하였다. 또한 기상 VOCs의 광분해 정도는 Fig. 1(b)에 나타낸 바와 같이 설계하였으며, 사용된 UV �프는 Sankyo Denki사의 blacklight (BLB, F40T10, 40 W)를 4개 사용하였다. 이 램프의 파장 범위는 300~400 nm, 최대 발출 빛은 352~360 nm이며, radiometer (UVR-2 & UD-36, TOPCON)를 이용하여 측정한 빛의 세기는 4824 μW/cm²였다. 또한 알루미늄 재질의 reflector를 설치하여 UV 램프에서 나오는 자외선의 효율을 높게 하여 반응성을 증가하였다.

반응기에 유입되는 공기와 산소는 각각 mass flowmeter (Bronkhorst F-201C)를 사용하여 유량을 제어, 공급하였으며, -OH radical의 생성을 원활하게 하기 위해 조건을 공급하였다. 촉매의 양은 2.5 g에서 5.0 g까지 0.5 g씩 변화시키면서 광분해 실험을 수행하였으며, VOCs의 유일용량은 각각 50, 100, 200 ppm로 변화시키면서 실현하였다. 이때 수분 공급량은 각각 0, 500, 1000 mg/m³으로 변화시켰다.

2.3. VOCs 광분해

VOCs의 광분해 전환 특성을 알아보기 위하여 GC/FID (HP 5890)를 on-line으로 연결하였으며, 컬럼은 HP-1 (30 m×0.25μm)를 사용하였으며, 이동상은 고순도 절을 이용하였다. 반응 중 중간 생성물은 확인하기 위해 cold trap을 이용하여 반응 후 배출되는 기체를 포집하여 GC/MSD (HP 5890/HP 5972 series)를 사용하여 off-line 분석을 수행하였다.

3. 결과 및 고찰

3.1. 광분해 반응에서 한계 촉매량

촉매의 양에 따른 VOCs의 광분해 특성을 알아보
기 위하여 촉매의 양을 2.5 g에서 5.0 g까지 0.5 g씩 변화시켜 실험한 결과를 Fig. 2에 나타내었다. VOCs의 유입농도는 50, 200 ppmv로 일정하게 유지하였으며, 1000 mg/m³으로 수분을 일정하게 공급하여 광분해 특성을 살펴보았다. 채류시간(residence time)은 52 s이었으며, 반응시간 240분 후에 측정한 전환율을 나타내었다.

Fig. 2(a)는 유입농도가 50 ppmv, (b)는 유입농도가 200 ppmv인 VOCs의 광분해 결과이다. VOCs의 유입농도 증가에 따라 전환율이 감소하였음을 확인할 수 있었으며, benzene의 전환율이 toluene, m-xylene에 비해 높게 나타났으며 캐 반응이 가장 잘 진행되는 것으로 나타났다. 하지만 반응물의 능도가 증가하면서 VOCs의 전환율은 모두 감소하여 VOCs 종류에 따른 영향이 잘 관찰되지 않았다. 촉매 양을 증가시키면 VOCs의 전환율은 증가하나 촉매의 양이 4.0 g 이상에서는 변화가 거의 없었다. 일반적으로 광촉매 반응을 이용한 광분해 공정에서는 사용된 광촉매의 양이 증가함에 따라 광분해 전환율이 증가하는 것으로 알려져 있지만 일정 수준의 촉매 양 이상에서는 더 이상의 전환율의 증가를 나타내지 않게 된다. 이는 일정 수준의 광촉매 사용량 이상에서는 이미 반응에 필요한 촉매의 활성점이 충분히 존재하며, 또한 지나치게 많은 양의 촉매를 유리버드에 코팅하여 사용하게 되면 오히려 광에너지의 흡수와 투과를 방해하여 더 이상의 광촉매 활성화를 나타내지 않게 된다. 또한 VOCs의 광분해 반응이 주로 촉매의 표면에서 진행되고, 충분한 활성점이 존재하기 때문에 촉매의 증가에 따른 전환율의 증가 효과가 나타나지 않은 것으로 판단된다.

3.2. 광분해 특성 분석
반응기 내 반응물의 채류시간에 따른 영향을 알아보기 위해 VOCs의 유입농도를 50 ppmv로 수분의 양을 1000 mg/m³으로 일정하게 반응기 내로 공급하여 광분해 특성을 살펴보았다. 이때 반응물의 채류시간은 각각 52, 35, 26 s였으며, VOCs의 광분해 특성 결과를 Fig. 3에 나타내었다.

결과에서 알 수 있듯이 유속 증가에 따라 즉, 반응기 내 반응물의 채류시간이 감소함에 따라 반응 전환율이 크게 감소되었다. 또한 유입농도가 증가함에 따라 그 전환율의 감소는 더욱 크게 나타났다. Benzene의 전환율이 toluene, m-xylene에 비해 높게 관찰됨으로써 반응성이 우수한 것으로 나타났으며, 유속이 빠른 경우 채류시간의 감소로 인한 반응성의 감소가 나타났다. 또한 이러한 채류시간의 영향은 benzene에 비하여 toluene, m-xylene이 더 크게 받는 것으로 판단된다.

본 연구에서와 같이 작은 부하의 형태로 광촉매가 코팅되어 있는 유리버드를 채운 충전관형반응기(packed-bed tubular reactor) 형태의 불균일 광촉매 반응에서 자외선이 충분히 통과하여 모든 광에너지를 활용이 가능한 경우에는 유동층 반응기에서와는 달리 광촉매 입자간의 전달장치는 충분히 무시될 수 있다. 그러므로 반응물의 물질전달 및 표면반응 저항으로 광분해 반응의 육축단계를 설명할 수 있다. 만약 반응물의 물질전달이 육축단계인 경우 반응물
의 유속이 증가하게 되면 반응물의 물질전달 영향이 감소하므로 반응속도가 증가하게 된다. 그러나 본 실험의 결과와 같이 유속 증가에 따라서 오히려 VOCs의 광분해 전환율이 감소하는 것은 광분해 반응속도에 미치는 반응물의 물질전달에 의한 영향을 충분히 무시할 수 있음을 의미한다. 따라서 채류시간이 증가함에 따라 VOCs의 광분해 성능이 크게 나타날 이유는 광촉매와 반응물의 접촉시간이 반응기 내에서 증가하기 때문에 전환율이 증가된 것으로 사료된다.

VOCs의 유입농도에 따른 광분해 특성을 알아보기 위하여 유입농도를 각각 50, 100, 200 ppmv로 변화시키면서 실험을 수행한 결과를 Fig. 4에 나타내었다. 이때 수분의 양은 1000 mg/m³으로 일정하게 유지하여 공급하였으며, 반응기 내의 반응물의 채류시간은 52 s이었다.
결과에서 확인할 수 있듯이 유입농도 50 ppm benzene의 경우 초기에 90%에 가까운 농도 전환율을 나타내었으나 시간이 증가함에 따라 천천히 전환율이 감소하면서 240분 이후에는 약 50%의 일정한 전환율을 보이고 있다. 유입농도가 50 ppm인 toluene, m-xylene 역시 반응초기에는 각각 95% 이상의 농도 전환율을 나타내었으나, 반응시간이 길어짐에 따라 전환율이 감소하여 240분 이후에는 benzene보다 낮은 전환율인 43%, 41%를 나타내었다. 따라서 평균 반응성은 toluene, m-xylene에 비해 benzene이 더 높은 것으로 나타났으며, 이러한 결과는 모든 반응 조건에서 동일하게 관찰되었다.

유입농도가 100, 200 ppm로 증가함에 따라 VOCs 전환율의 전반적인 감소를 확인할 수 있었으며, toluene, m-xylene에 비해 benzene의 전환율 감소가 더 큰 것으로 관찰되었다. 따라서 반응물인 VOCs의 평균반응성은 benzene > toluene > m-xylene의 순서로 크게 나타났다. 이와 같은 결과로 평균화된 액체의 이용은 고농도에서보다 저농도에서 높은 제거효과를 가져올 수 있으며, toluene, m-xylene에 비하여 benzene의 제거에 더욱 효과적일 것으로 사료된다.

일반적으로 기상 오염물질의 처리에 있어서 초기 오염물질의 유입농도는 반응의 중요한 변수로 작용하고 있다. 또한 일반적으로 오염물질의 분해반응은 Langmuir-Hinshelwood 메커니즘을 따르며 초기 유입농도가 낮은 경우에는 대부분 1차 반응속도를 따르는 것으로 보고되고 있다. 따라서 반응속도는 유입농도에 반비례하여 유입농도가 높아짐수록 반응성이 높아지는 것으로 판단된다. 이러한 결과로 부터 평균화된 반응을 이용하여 기상의 오염물질을 평균화할 경우, 높은 농도의 기상 오염물질보다 낮은 농도의 기상 오염물질을 보다 효율적으로 분해, 처리할 수 있을 것으로 판단된다.

우리 주의의 실제 대기 중에 존재하는 오염물질을 포함하고 있는 유해가스에는 많은 양의 수분이 존재하고 있으며, 이들은 평축과 반응의 환경에 영향을 주는 것으로 알려져 있다. 따라서 반응물 중에 일정량의 수분을 함께 공급하여 VOCs의 평균반응속도를 보다 효율적으로 분해, 활용할 수 있도록 한다.

Fig. 5. Photocatalytic conversion of VOCs as amounts of H_2O.

변화시키면서 평균화 활성을 살펴본 결과를 Fig. 5에 나타내었다. 이때 반응기 내의 반응물의 체류시간은 52 s이다.

심층 결과에서 나타났듯이 유입되는 수분 양의 증가할수록 평균화 반응의 활성이 증가하는 것을 확인할 수 있었다. 일반적으로 평균화 반응을 이용한 분해 반응은 수분의 영향을 받는 것으로 알려져 있다. Isopropanol이나 TCE (trichloroethylene)의 분해
반응에서 수분의 공급은 광촉매 반응속도를 감소시키며, 1-butanol의 분해반응에서는 아무런 영향을 미치지 않는 것으로 알려져 있으며, VOCs의 평균 반응에서는 오히려 반응속도를 증가시키는 것으로 보고되고 있다. 본 연구 결과에서도 나타난 바와 같이 광촉매 반응을 이용한 분해반응에서 수분의 공급은 전환율을 증가시키는 것을 확인할 수 있었다. VOCs 모두 수분의 공급으로 인하여 전환율의 증가가 나타났으며, 수분의 공급이 전혀 없는 경우, 실험 결과에서 보는 바와 같이 반응물의 종류와 상관없이 반응시간 240분 이후에는 모두 20%정도의 낮은 전환율을 나타내었으며, 반응물질에 대한 평균 반응성도 비슷하게 나타난 것으로 관찰되었다. 공급되는 수분의 양이 500, 1000 mg/m³으로 증가하면서 각각의 전환율도 증가하였으며, 평균하여 반응성 역시 현저한 차이를 나타내었다. 또한 benzene의 toluene, m-xylene에 비해 전환율이 상대적으로 높게 나타났으며, 반응물질에 대한 전환율의 현저한 차이를 보임으로써 benzene의 높은 평균반응성으로 확인할 수 있었다. VOCs 모두 공급되는 수분의 공급량이 500, 1000 mg/m³인 경우 전환율의 차이가 크게 나타나지 않음으로써, 일정한 수분의 공급량 이상에서는 전환율에 있어서 증가율이 감소하는 것을 확인할 수 있었다.

광에너지를 흡수하여 생성된 정공과 수분의 반응으로 hydroxyl radical이 생성되며, 또한 hydroxyl radical은 VOCs와 수분 분자의 경계를 통과하는 흡착을 일으키게 된다. 따라서 산화미터늄 표면에서 수분 분자의 접착후 각자DAC의 흡착을 방해하게 되며, 수분의 농도가 낮은 경우에는 이렇게 진행되지만 수분의 농도가 높을 경우에는 빠른 속도로 진행되어 VOCs의 평균 반응속도를 감소시키는 것으로 판단된다. 이러한 경계효과에 의해 반응초기의 높은 전환율은 반응시간이 증가함에 따라 감소하여 240분 이후에는 정상상태로 유지된 것으로 판단된다.

4. 결론

UV/TiO₂ 광촉매 공정을 이용한 VOCs의 평균해 실험 결과 유입농도에 따른 영향으로는 유입농도가 증가함에 따라 전환율이 감소라는 경향을 확인하였으며, 또한 평균반응성은 benzene이 가장 높게 나타났으며, 평균반응량에 있어 수분이 증가할수록 평균예 환산이 증가하는 것을 확인할 수 있었다. 이는 평균반응량에 직접적인 역할을 하는 hydroxyl radical의 생성이 원활하기 때문인 것으로 사료된다. 수분이 공급됨으로써 VOCs의 전환율의 전반적인 증 가가 확인되었으며, 높은 전환율을 얻기 위해서는 수분의 공급이 반드시 이루어져야 한다.

VOCs의 평균해 전환율은 촉매의 양과 체류시간이 증가함에 따라 전환율이 증가하는 것을 확인할 수 있으며, 일정량의 촉매사용량 이상에서는 더 이상의 전환율이 증가하지 않았다. 이는 공급된 광에너지를 사용할 수 있는 촉매의 활성성이 충분히 존재하며, 촉매 사용량의 증가로 빌의 투과를 방해할 수 있기 때문인 것으로 사료된다. 또한 체류 시간의 증가에 따른 전환율이 증가한 것은 광촉매와 반응물의 접촉시간이 증가하기 때문인 것으로 사료된다.

참고 문헌