Development of New Algorithm for RWA Problem Solution on an Optical Multi-Networks

Han-Ho Tack, Chang-Geun Kim

* Department of Electronic Engineering, Jinju National University
** Department of Computer Science, Jinju National University
150 Chilamdong, Jinju 660-758, Kyongnam, Korea.

Abstract
This paper considers the problem of routing connections in an optical multi tree networks using WDM (Wavelength Division Multiplexing), where each connection between a pair of nodes in the network is assigned a path through the network and a wavelength on that path, so that connections whose paths share a common link in the network are assigned different wavelengths. The problem of optimal coloring of the paths on the optical multi-networks is NP-hard[1], but if that is the coloring of all paths, then there exists efficient polynomial time algorithm. In this paper, using a "divide & conquer" method, we give efficient algorithm to assign wavelengths to all the paths of a tree network based on the theory of [7]. Here, our time complexity is O(m4log n).

Key Words: optical multi network, WDM (Wavelength Division Multiplexing).

1. Introduction

Optical technology plays a practical part in today's communication networks and a central role in LAN and WAN[2]. With this technology, an optical wave can support a great transmission rate of several gigabytes per second and serve multiple channels of sound, data and video.

Even better transmission rates are provided when several laser beams are used, spreading across through the same optical fiber links from different light wavelengths. This remarkable technology is thanks to the WDM (Wavelength Division Multiplexing) method of dividing optical bandwidths into several channels and transmitting data streams simultaneously through the different channels within the identical links.

At present, the representative network techniques are increasing the number of wavelengths to expand line bandwidths and routing wavelengths to increase node capacity and heighten wave efficiency. But the number of wavelengths has limits and the minimum is required to economize network construction cost and meet telecommunication needs. Therefore, RWA (Routing & Wavelength Assignment) has to be first solved for an optimum WDM network.

In this paper, a tree-type network is presupposed. In fact, the tree type is the standard in the current telecommunications[5]. Also, the number of problems can be reduced by half when the paths of node pairs are assigned. In particular, even though there are some heuristic algorithm models as far as RWA is concerned, most problems in symmetrical tree networks are NP-hard[6][7].

The symmetrical tree networks are the network topology of the two opposite links. Here, dipaths passing through an edge in the same direction should use different coloring. That is, in [7] where the problem of RWA is that of coloring, the minimum number of coloring is equal to the maximum number of wavelengths.

[Theorem 1] T is the given tree and S is the set of T's dipaths. If c(T) is the minimum number of coloring (or wavelengths) to color S, and if \(\delta(T) \) is the maximum number of dipaths to go through an edge in T, c(T) = \(\delta(T) \).

However, [7] has only been defined and proved up to now. There is no paper yet concerning its actual algorithm. So, this paper aims to suggest new efficient polynomial time algorithm for all possible paths, based on [7].

2. RWA Algorithm

The algorithm in this research is applied to all the paths in a common tree as given in Theorem 1. Wavelengths can be allotted based on c(T) or \(\delta(T) \). As these two values are identical, either one will do for our work here.

Let's find the value of \(\delta(T) \). It is the maximum number of paths among T's edges. In general, the amount of paths can be revealed by multiplying the total nodes in two subtrees of a given tree T. Then, this problem can be solved by examining the maximal number of nodes.

If a node in a given tree T is v, and if the node v's extra weight is \(w(v) \), \(w(v) \) is the total integral number of the subnodes including the node v itself. If the set of random nodes in the tree T is V, the following can be resulted:

\[w(V) = \sum_{v \in V} w(v) \]

(1)

For example, \(w(T) \) is the sum of all nodes in T. When a certain edge e is removed from T, two subtrees \(T_1 \) and \(T_2 \)
are born. Here, the number of paths from T_1’s nodes to T_2’s nodes is $w(T_1) \times w(T_2)$. Then, $K(T)$ is the maximum among the values of $w(T_1) \times w(T_2)$ against all edges. It is the maximum number of dipaths going through an edge in the same direction, while $c(T)$ is the minimum number of coloring or wavelengths to color S, the set of dipaths.

However, we need the process of rearranging T. As seen in Fig. 1, p (the mother node of node i) and all the above nodes are transformed into the tree of i’s son nodes and subnodes.

![Fig. 1. Process of and rearranging for tree.](image)

Therefore, there are two color assignment methods to all the paths of a given tree T:

1) Global coloring: Wavelength assignment in a certain order within the range of $K(T)$ as to original subtrees T_1 and T_2.

2) Local coloring: Wavelength assignment in a certain rule within the range of $K(T)$ as to subdivided trees T_1 and T_2 while meeting the following restriction.

[Restriction] Any two paths sharing an edge in the same direction in a given network cannot be assigned the same wavelength.

1) Global Coloring

Wavelengths are assigned as follows:

1) Assignment from T_1’s all nodes to those of T_1

 a) DFS (Depth First Search) is kept from T_2’s root node to all nodes of T_1, assigning in the order of Color 1, Color 2, Color 3, ..., Color $w(T_1)$. As extra weight, $w(T_1)$ here is the number of T_1’s all nodes.

 b) DFS is followed again from T_2’s next node to all nodes of T_1, assigning in the order of next color.

 c) This process is continued up to the final node of T_2, assigning as many as $K(T)$.

2) Assignment from T_1’s all nodes to those of T_2.

The orders reverse to the above are kept. Namely, wavelengths are assigned from $K(T)$ down to Color 1.

2) Local Coloring

![Fig. 2. Three types of tree.](image)

After the initial global coloring, local coloring is done as to subtrees T_1 and T_2. Here, the two subtrees are named T, and coloring is held among all the nodes of the two subtrees centered on a certain edge $e(i, j)$. As shown in Fig. 2, three types can be divided into three according to the number of i’s sun node number:

- **Type A**: When node i’s son node is 1, including node j (node i’s son node: node j)

- **Type B**: When node i’s son nodes are 2, including node j (node i’s son nodes: node j and k or j and p)

- **Type C**: When node i’s son nodes are 3, including node j (node i’s son nodes: nodes j, k, and p)

In addition, according to the existence of node p (node i’s parent node), subtypes are divided. Color assignment is made: $w(i) \times w(j)$. Here, $w(i)$ is T_1’s root node and the number of T_1’s all nodes, while $w(j)$ is T_2’s root node and the number of T_2’s all nodes.

The actual algorithm can be described as follows:

Stage 1: Extra weight $w(1), w(2), w(3), ..., w(v)$ (Here, $w(v)$ is a random node in the tree T.) are found to know the edge $e(i, j)$ with maximum paths.

Stage 2: Centered on this edge, the given tree T is rearranged with the node with the larger extra weight as the root node.

Stage 3: Centered on the particular edge $e(i, j)$ found in Stage 1, T is subdivided into T_1 and T_2.

Stage 4: Global coloring is applied when T’s all paths have no color. Otherwise, local coloring is held towards T_1 and T_2.

Stage 5: With the given subtrees T_1 and T_2 as T, all the processes from Stage 1 to Stage 5 are repeated until T is not divided.

When the number of nodes in a given tree is n, time
complexity in Stage 1 is $O(n)$ as each node is visited in the order of DFS. In Stages 2 and 3, it is $O(e)$ as one visit to e is enough.

The case is quite different in Stages 4 and 5, because practical wavelengths are assigned to all the paths in the tree. For global coloring, one performance is enough. So time complexity is $O(n^2)$.

For local coloring, it's a bit complex. Local coloring of $2^k(2 \leq k \leq \log n)$ is given per depth of $\log n$. The number of colors for each local coloring is $n^k(= n/2 \times n/2^{n/2})$. Then, as to the search time of $\log n$ to all the trees of $(n/2)^{k \times n/2^{k}}$, performance of $O(n^4 \log n)$ is achieved. This can be simply expressed as follows:

$$\sum_2 2^k \cdot \frac{n}{2^k} + \frac{1}{2^k} \cdot \frac{n^4 \log n}{2^k} \leq n^4 \log n$$

So, the present polynomial time algorithm in this paper has time complexity of $O(n^4 \log n)$, efficiently assigning wavelengths to all the paths in a given tree.

III. Conclusion

Optical multi-network technology is most significant in consideration of the upcoming superspeed information society. In particular, in terms of software, one of the urgent tasks in the environment of optical multi-networks is efficient assignment of wavelengths through the minimum number of wavelengths.

At present, most networks are simply composed of tree types. This paper covers the development of efficient polynomial time algorithm as far as RWA (Routing & Wavelength Assignment), or the matter of assigning wavelengths to all the given paths, goes.

The time complexity of the algorithm here is computed as $O(S \cdot V)$. This polynomial time algorithm needs to be improved. Task 1 in future is, therefore, how to improve total performance time by reducing the present time complexity. Task 2 is how to achieve more efficient wavelength assignment when partial link errors take place in the demanded tree or when additional connection is required after wavelength assignment to all the paths.

References

Han-Ho Tack was born July 6, 1959. He received the B.S. degree in Department of Electronic Engineering from Pukyong National University, Busan, Korea, in 1987. He received the M.S. degree in Department of Electronic Engineering from Dong-A University, Busan, Korea, in 1992. He received Ph. D. degree in Department of Electronic & Communication Engineering from the Korea Maritime University, Busan, Korea, in 1998. From 1987 to 1989, he was a Researcher at the Laboratory of Hung Chang Co. Ltd. Since 1991, he has been a faculty member of the Electronic Engineering at the Jinju National University, where he is currently a associate Professor. His research interests are Neural Network, Fuzzy System, Robotics, Factory Automation, Mechanical Vibration, Transportion, and Multimedia System etc. He is a member of IEEE, KIMISC, KMS, KIEE, and KFIS.

Phone : +82-55-751-3322
Fax : +82-55-751-3339
E-mail : fin tack@jinju.ac.kr

Chang-Geun Kim
Chang-Geun Kim was born November 20, 1962. He received the B.S. degree in Department of Computer Statistic from Gyeongsang National University, Jinju, Korea, in 1985. He received the M.S. degree in Department of Computer Science Gyeongsang University, Masan, Korea, in 1991. He received Ph. D. degree in Department of Computer Science from Gyeongsang University, Masan, Korea, in 1999. Since 1995, he has been a faculty member of the Department
Development of New Algorithm for RWA Problem Solution on an Optical Multi-Networks

of Computer Science at the Jinju National University, where he is currently a associate Professor. His research interests are Neural Network, Fuzzy System, Computer networks, and Multimedia Communication etc. He is a member of KIMISC, KMS, and KIEE.

Phone: +82-55-751-3324
Fax: +82-55-751-3329
E-mail: egkim@jinju.ac.kr