A Balanced Model Reduction for Fuzzy Systems with Time Varying Delay

Seog-Hwan Yoo and Byung-Jae Choi

School of Electronic Engineering, Daegu University, Korea

Abstract

This paper deals with a balanced model reduction for T-S(Takagi-Sugeno) fuzzy systems with time varying state delay. We define a generalized controllability gramian and a generalized observability gramian for a stable T-S fuzzy delayed systems. We obtain a balanced state space realization using the generalized controllability and observability gramian and obtain a reduced model by truncating states from the balanced state space realization. We also present an upper bound of the approximation error. The generalized controllability gramian and observability gramian can be computed from solutions of linear matrix inequalities. We demonstrate the efficacy of the suggested method by illustrating a numerical example.

Key Words: T-S fuzzy system, generalized controllability/observability gramian, balanced realization, linear matrix inequality.

I. Introduction

For linear finite dimensional systems with high orders, optimal control techniques such as linear quadratic gaussian and H_{∞} control theory, usually produce controllers with the same state dimension as the model. Lower dimensional linear controllers are normally preferred over higher dimensional controllers in control system designs for some obvious reasons: they are easier to understand, implement and have higher reliability. Accordingly the problem of model reduction is of significant practical importance in control system design and has been a focus of a wide variety of studies for recent decades (see [1-6] and the references therein).

The stability analysis and control of linear time delayed systems are problems of practical and theoretical interest since many types of processes such as steel making process and chemical process can be modeled as dynamic systems with time delay. In the last decade, the linear matrix inequality(LMI) based controller design method for delayed systems has been developed remarkably [7-9]. A drawback of the LMI based controller synthesis is that computational requirements increase rapidly as the state dimension increases. Therefore the state dimension must be kept as low as possible.

In recent years, a controller design method for nonlinear dynamic systems modeled as a T-S(Takagi-Sugeno) fuzzy model has been intensively addressed [10-15]. Unlike a single conventional model, this T-S fuzzy model usually consists of several linear models to describe the global behavior of the nonlinear system. Typically the T-S fuzzy model is described by fuzzy IF-THEN rules. Based on this fuzzy model, many researchers use one of control design methods developed for linear parameter varying system. In order to alleviate computational burden in design phase and simplify the designed fuzzy controller, the state dimension of the T-S fuzzy model should be low.

In this paper, using a fuzzy approach we develop a balanced model reduction scheme for T-S fuzzy systems with time varying delay. In section II, we define the T-S fuzzy system with time varying delay. A generalized controllability gramian and a generalized observability gramian are defined and a balanced realization of T-S fuzzy system using the generalized controllability and observability gramian is also presented in section III. A model approximation bound is derived and a suboptimal procedure is described to get a less conservative error bound in section IV. Section V demonstrates a numerical example and finally some concluding remarks are given in section VI.

The notation in this paper is fairly standard. R^n denotes n dimensional real vector space and $R^{n \times m}$ is the set of real $n \times m$ matrices. A^T denotes the transpose of a real matrix A. 0 and I denote zero matrix and identity matrix respectively. $M \succ 0$ means that M is a positive definite matrix. In a block symmetric matrix, * in (i,j) block means the transpose of (i,j) block. Finally $\| \cdot \|_\infty$ denotes the H_∞ norm of the system.

II. T-S Fuzzy System

We consider the following fuzzy dynamic system with time varying delay $d(t)$.

Plant Rule $i (i = 1, \cdots, r):
\begin{align}
\text{IF } & \rho_j(t) \text{ is } M_{a_i} \text{ and } \cdots \text{ and } \rho_j(t) \text{ is } M_{a_r} \\
\text{THEN } & x(t) = A_{x}x(t) + A_{d_j}x(t-d(t)) + B_{u}u(t) \\
& x(t) = C_{x}x(t) + C_{d_j}x(t-d(t)) + D_{u}u(t) \quad (1)
\end{align}

where r is the number of fuzzy rules. $\rho_j(t)$ and $M_{a_j} (j = 1, \cdots, g)$ are the premise variables and the fuzzy set respectively. $x(t) \in R^n$ is the state vector, $u(t) \in R^m$ is the input, $y(t) \in R^p$ is the output variable and $A_{x}, A_{d_j}, B_{u},$
\[C, C_d, D_i \] are real matrices with compatible dimensions.

Define \(A_\phi = F_j + G, C_\phi = H_j \) where \(F_i, G \in \mathbb{R}^{n \times k}, \quad G \in \mathbb{R}^{k \times n}, \quad H_j \in \mathbb{R}^{n \times k} \). Note that \(F_i, G, H_j \) are not necessarily full rank matrices. The easiest choice might be \(F_i = A_\phi, \quad G = I, \quad H_j = C_\phi \). We also assume that time varying delay \(\delta(t) \) satisfies

\[0 \leq \delta(t) < \infty, \quad |\delta(t)| \leq m < 1. \]

Let \(\mu_{\lambda, \rho}(t) \), \(i = 1, \ldots, r \), be the normalized membership function of the inferred fuzzy set \(h_{\lambda, \rho}(t) \),

\[\mu_{\lambda, \rho}(t) = \frac{h_{\lambda, \rho}(t)}{\sum_{\lambda, \rho} h_{\lambda, \rho}(t)} \]

where

\[h_{\lambda, \rho}(t) = \prod_{i=1}^{r} M_{\lambda, \rho}(\delta_i(t)), \]

\[\rho(t) = (\rho_1(t), \rho_2(t), \ldots, \rho_r(t))^T. \]

In this paper, we assume for all \(t \geq 0 \),

\[\sum_{i=1}^{r} \mu_{\lambda, \rho}(t) > 0. \]

Then, we obtain

\[\mu_{\lambda, \rho}(t) > 0 \quad i = 1, 2, \ldots, r, \quad \sum_{\lambda, \rho} \mu_{\lambda, \rho}(t) = 1. \]

For simplicity, by defining

\[\mu_i = \mu_{\lambda, \rho}(t), \quad (i = 1, \ldots, r), \quad \mu^T = [\mu_1 \cdots \mu_r], \]

the fuzzy system (1) can be written as follows:

\[x(t) = A(x(t) + F(x(t) + B(x(t))u(t) + G u(t)) \]

\[= \sum_{i=1}^{r} \mu_i (A_i x(t) + F_i x(t) + B_i u(t)) \]

\[y(t) = C(x(t) + H(x(t) + D(x(t))u(t) \]

\[= \sum_{i=1}^{r} \mu_i (C_i x(t) + H_i x(t) + D_i u(t)) \]

\[z(t) = G x(t) \]

\[u(t) = \Theta(t) x(t) = z(t - \delta(t)) \]

where \(\Theta(t) \) is a delay operator.

In a packed matrix notation, we express the fuzzy system (8) as follows:

\[G = \begin{bmatrix} A(\mu) & F(\mu) \mid B(\mu) \\ G & 0 & 0 \\ C(\mu) & H(\mu) \mid D(\mu) \end{bmatrix}. \]

III. Generalized Controllability and Observability Gramians

In order to define controllability and observability gramians, we present the following lemma 1 and 2.

Lemma 1 : Suppose that there exist symmetric positive definite matrices \(Q \) and \(R \) such that the following LMI holds for each \(i = 1, \ldots, r \).

\[\begin{bmatrix} A_i^T Q + Q A_i + G^T R G & * & * \\ F_i^T Q & -(1 - \delta_i) R & * \\ C_i & H_i & -I \end{bmatrix} < 0. \]

When \(u(t) = 0 \) for all \(t \geq 0 \) in the system (9), the output energy is bounded above as follows:

\[\int_0^\infty y^T(t) x(t) dt \]

\[< x(0)^T Q x(0) + \int_0^\infty z(t)^T R z(t) dt \]

(proof) We define a Lyapunov function candidate \(V(x(t)) \) as follows:

\[V(x(t)) = x(t)^T Q x(t) + \int_0^t z(t)^T R z(t) dt \]

Since LMI (10) holds,

\[L_{\phi} = \begin{bmatrix} A \mu^T Q + Q A \mu + C \mu^T R C \mu + G^T R G \\ -F \mu^T Q - F \mu^T - G^T R G \end{bmatrix} < 0 \]

holds for all \(\mu \) satisfying (6). Moreover, the fuzzy system (9) is quadratically stable. Accordingly \(\lim_{t \to \infty} V(x(t), t) = 0 \). The output energy becomes

\[\int_0^\infty y^T(t) x(t) dt = \int_0^\infty y^T(t) x(t) dt + \frac{d V(x(t))}{dt} + V(x(0)) \]

\[< \int_0^\infty y^T(t) L_{\phi} x(t) dt + V(x(0)) \]

where \(\eta(t) = \begin{bmatrix} x(t) \\ G x(t) \end{bmatrix} \).

Lemma 2 : Suppose that there exist symmetric positive matrix \(P \) and \(S \) such that following LMI (15) holds for each \(i = 1, \ldots, r \).

\[L_{\phi} = \begin{bmatrix} A_i P + P A_i^T & * & * \\ S F_i^T & -(1 - \delta_i) S & * \\ G D_i^T & 0 & -S \end{bmatrix} < 0. \]

Then the input energy required to transit the state from \(x(-\infty) = 0 \) to \(x(0) \) is bounded below as follows:

\[\int_{-\infty}^0 u^T(t) x(t) dt \]

\[> x(0)^T P^{-1} x(0) + \int_{-\infty}^0 z(t)^T S^{-1} z(t) dt \]

(proof) We define a Lyapunov function candidate \(V(x(t)) \) as follows:

\[V(x(t)) = x(t)^T P^{-1} x(t) + \int_{-\infty}^0 z(t)^T S^{-1} z(t) dt \]

As in the proof of lemma 1,
\[
\mathcal{L}_{-} = \begin{bmatrix}
PA(\mu)^T + A(\mu)P + PG^T S^{-1}GP

S(\mu)\gamma

0

0

-(1-m)S

\end{bmatrix} \leq 0
\] (18)

holds for all \(\mu \) satisfying (6).

From the Lyapunov function candidate \(V(x(t)) \), we obtain
\[
0 = \int_{-\infty}^{0} (u(t))^T u(t) - u(t)^T \xi(t) dt
\]
\[
= \int_{-\infty}^{0} (\xi(t))^T \xi(t) - \xi(t)^T \xi(t) + \frac{dV(x(t))}{dt} dt
\]
\[
= \int_{-\infty}^{0} \xi(t)^T \xi(t) dt - V(x(0)) + \int_{-\infty}^{0} \xi(t)^T \mathcal{L}_- \xi(t) dt
\]
\[
< \int_{-\infty}^{0} u(t)^T u(t) dt - V(x(0))
\]

where \(\xi(t) = \begin{bmatrix} P^{-1}u(t) \\ u(t) \end{bmatrix} \). This completes the proof.

As in [6], we say \(Q \) and \(P \), solutions of LMI's (10) and (15), as the generalized observability gramian and controllability gramian respectively. While the observability and controllability gramian in linear time invariant systems are unique, the generalized gramsians of the fuzzy delayed system (9) are not unique. But the generalized gramsians are related to the input and output energy as can be seen in lemma 1 and lemma 2.

Using the generalized gramsians, we suggest a balanced realization of the fuzzy system (9). We obtain a transformation matrix \(T \) and \(U \) satisfying
\[
T^{-1}PT^{-T} = T^T QT = \Sigma = \text{diag}\{\sigma_1, \sigma_2, \ldots, \sigma_s\},
\]
\[
\sigma_1 \geq \sigma_2 \geq \cdots \geq \sigma_s
\]
\[
U^{-1}SU^{-T} = U^T RU = \Pi = \text{diag}\{\pi_1, \pi_2, \ldots, \pi_s\}
\]

(20)

With \(T \) and \(U \) defined in (20), the change of coordinates in the fuzzy system (9) gives
\[
G = \begin{bmatrix}
A_1(\mu) & A_2(\mu) & F_1(\mu) & B_1(\mu) \\
A_2(\mu) & A_3(\mu) & F_2(\mu) & B_2(\mu) \\
G_1 & G_2 & G_3 & 0 \\
C_1 & C_2 & C_3 & H(\mu)
\end{bmatrix}
\]
\[
= \sum_{i=1}^{s} \mu_i \begin{bmatrix}
A_{k,1} & F_{k,1} & B_{k,1} \\
G_{k,1} & 0 & 0 \\
C_{k,1} & H_{k,1} & D_{k,1}
\end{bmatrix}
\]
\[
= \sum_{i=1}^{r} \mu_i \begin{bmatrix}
T^{-1}A(\mu)^T & T^{-1}F(\mu)U & T^{-1}B(\mu) \\
U^{-1}GT & 0 & 0 \\
C(\mu)^T & H(\mu) & D(\mu)
\end{bmatrix}
\]
\[
= \sum_{i=1}^{r} \mu_i \begin{bmatrix}
A_{k,1} & F_{k,1} & B_{k,1} \\
G_{k,1} & 0 & 0 \\
C_{k,1} & H_{k,1} & D_{k,1}
\end{bmatrix}
\]
\[
= \sum_{i=1}^{r} \mu_i \begin{bmatrix}
A_{k,1} & F_{k,1} & B_{k,1} \\
G_{k,1} & 0 & 0 \\
C_{k,1} & H_{k,1} & D_{k,1}
\end{bmatrix}
\]

One can easily observe that the state space realization of (21) satisfy following LMI's (22) and (23).

\[
L_{\Phi} = \begin{bmatrix}
A_1(\mu) & A_2(\mu) & F_1(\mu) & C_1(\mu) \\
F_2(\mu) & A_3(\mu) & F_2(\mu) & C_2(\mu) \\
H_1(\mu) & H_2(\mu) & C_3(\mu) & 0 \\
0 & 0 & 0 & 0
\end{bmatrix}
\]
\[
L_{\Phi} = \begin{bmatrix}
A_1(\mu) & A_2(\mu) & F_1(\mu) & C_1(\mu) \\
F_2(\mu) & A_3(\mu) & F_2(\mu) & C_2(\mu) \\
H_1(\mu) & H_2(\mu) & C_3(\mu) & 0 \\
0 & 0 & 0 & 0
\end{bmatrix}
\]
\[
L_{\Phi} = \begin{bmatrix}
A_1(\mu) & A_2(\mu) & F_1(\mu) & C_1(\mu) \\
F_2(\mu) & A_3(\mu) & F_2(\mu) & C_2(\mu) \\
H_1(\mu) & H_2(\mu) & C_3(\mu) & 0 \\
0 & 0 & 0 & 0
\end{bmatrix}
\]

IV. Balanced Model Reduction

In this section, we develop a balanced model reduction scheme using the balanced gramian defined in section III. We also derive an upper bound of model approximation error resulting from the balanced model reduction. We assume that the fuzzy system (9) is already balanced and partitioned as follows:

\[
G = \begin{bmatrix}
A_1(\mu) & A_2(\mu) & F_1(\mu) & B_1(\mu) \\
A_2(\mu) & A_3(\mu) & F_2(\mu) & B_2(\mu) \\
G_1 & G_2 & G_3 & 0 \\
C_1 & C_2 & C_3 & H(\mu)
\end{bmatrix}
\]
\[
= \sum_{i=1}^{s} \mu_i \begin{bmatrix}
A_{k,1} & F_{k,1} & B_{k,1} \\
G_{k,1} & 0 & 0 \\
C_{k,1} & H_{k,1} & D_{k,1}
\end{bmatrix}
\]

where \(A_1(\mu) = R^{(s-r)+ix} \), \(A_2(\mu) = R^{-r} \) and the other matrices are compatibly partitioned. From (24) we obtain a reduced order model by truncating \(r \) states as follows:

\[
G = \begin{bmatrix}
A_1(\mu) & F_1(\mu) & B_1(\mu) \\
G_1 & 0 & 0 \\
C_1 & H_1 & D_1
\end{bmatrix}
\]
\[
= \sum_{i=1}^{s} \mu_i \begin{bmatrix}
A_{k,1} & F_{k,1} & B_{k,1} \\
G_{k,1} & 0 & 0 \\
C_{k,1} & H_{k,1} & D_{k,1}
\end{bmatrix}
\]

In order to derive an upper bound of model approximation error, we need the bounded real lemma for fuzzy systems with time varying delay.

Lemma 3 : Suppose that there exist symmetric positive definite matrices \(X \) and \(R \) satisfying LMI (26) for all \(\mu \) satisfying (6).

\[
\begin{bmatrix}
X & A(\mu)^T \\
RF(\mu)^T & -(1-m)R \\
B(\mu)^T & -I \\
\gamma C(\mu)X & \gamma^{-1}H(\mu)R \gamma^{-1}D(\mu) & -I \\
GX & 0 & 0 & -R
\end{bmatrix} \leq 0
\] (26)
Then the fuzzy delayed system (9) satisfies \(||G||_\omega \leq \gamma \). (proof) One can easily prove lemma 3 using the method of [7]. Hence we omit the detailed proof.

Theorem 4: The reduced order system (25) is quadratically stable and balanced. The model approximation error is given by

\[
\| G - G_r \|_\omega \leq 2 \sum_{k=r+1}^{\infty} \sigma_k.
\]

(proof) We partition the balanced gramian \(\Sigma \) as

\[
\Sigma = \text{diag}(\Sigma_1, \Sigma_2) \text{ where } \Sigma_1 \in R^{(s-\delta)\times(s-\delta)}, \Sigma_2 \in R^{\delta \times \delta}.
\]

Then the reduced order system \(G_r \) satisfies LMI's (28) and (29).

\[
\begin{bmatrix}
A_1(\mu)^T \Sigma_1 + \Sigma_1 A_1(\mu) + C_1(\mu)^T C_1(\mu) \\
F_1^T \Sigma_1 + H_1(\mu)^T C_1(\mu) \\
H_1(\mu)^T H_1(\mu) - (1-m)I & * \\
0 & * \\
A_1(\mu)^T \Sigma + \Sigma_1 A_1(\mu) + C_1(\mu)^T C_1(\mu) \\
F_1^T \Sigma + H_1(\mu)^T C_1(\mu) \\
H_1(\mu)^T H_1(\mu) - (1-m)I & * \\
0 & *
\end{bmatrix} \leq 0
\]

Hence the reduced order system \(G_r \) is quadratically stable and balanced. Without loss of generality we assume that \(r=1 \). Thus, \(\Sigma_2 = \sigma_n \). A state space realization of the error system \(G_e = G - G_r \) can be written by

\[
G_e =
\begin{bmatrix}
A_e(\mu) & 0 & 0 & F_e(\mu) & B_e(\mu) \\
0 & A_e(\mu) & A_e(\mu) & 0 & F_e(\mu) & B_e(\mu) \\
G_e & 0 & 0 & 0 & 0 & 0 \\
0 & G_e & 0 & 0 & 0 & 0 \\
-C_e(\mu) & C_e(\mu) & C_e(\mu) & -H(\mu) & H(\mu) & 0
\end{bmatrix}
\]

We define the coordinate transformation \(T \) as follows:

\[
T = \begin{bmatrix}
1/2 & I & 0 \\
1/2 & -1/2 & I \\
0 & 0 & I
\end{bmatrix}
\]

With \(T \) defined in (31), the change of coordinate in the error system \(G_e \) gives (32).

In order to prove \(||G_e||_\omega \leq 2\sigma_n \), we will show that there exist symmetric positive definite matrices \(X_e \) and \(\Pi_e \) satisfying following LMI (33).

\[
L_r = \begin{bmatrix}
\sigma_n^2 H_e(\mu)^T H_e(\mu) & \Pi_e & \sigma_n^2 H_e(\mu)^T H_e(\mu) \\
0 & 0 & 0
\end{bmatrix} < 0
\]

where

\[
L_r = A_e(\mu)^T X_e + X_e A_e(\mu) + \sigma_n^2 X_e C_e(\mu)^T C_e(\mu) X_e + B_e(\mu) B_e(\mu)^T
\]

Using Schur complement in LMI (26), LMI (33) can be derived. Let's choose \(X_e \) and \(\Pi_e \) as

\[
X_e = \begin{bmatrix}
\Sigma_1 & 0 \\
0 & 2 \sigma_n^2 \Sigma_1
\end{bmatrix}, \quad \Pi_e = \begin{bmatrix}
\Pi & 0 \\
0 & \Sigma_1
\end{bmatrix}
\]

Then LMI (33) can be expressed as follows:

\[
L_r = \begin{bmatrix}
M_1^T & 0 & 0 & 0 & 0 & 0 \\
0 & M_2^T & 0 & 0 & 0 & 0 \\
0 & 0 & M_3^T & 0 & 0 & 0 \\
0 & 0 & 0 & M_4^T & 0 & 0 \\
0 & 0 & 0 & 0 & M_5^T & 0 \\
0 & 0 & 0 & 0 & 0 & M_6^T
\end{bmatrix}
\]

where

\[
M_1 = \begin{bmatrix}
I & 0 & 0 \\
0 & 0 & I
\end{bmatrix}, \quad M_2 = M_3 = \begin{bmatrix}
1 & I \\
0 & 0
\end{bmatrix}, \quad N_1 = \begin{bmatrix}
\sigma_n \Sigma_1 & 0 \\
0 & 0 & 0 & 0
\end{bmatrix}, \quad N_2 = N_3 = \begin{bmatrix}
\sigma_n I & 0 \\
0 & 0 & 0 & 0
\end{bmatrix}
\]

Since \(X_e \) and \(\Pi_e \) defined in (34) satisfy LMI (33), we can conclude \(||G_e||_\omega \leq 2\sigma_n \). This completes the proof.

In theorem 4, we have proved that the model reduction error is bounded above by \(\sum_{i=1}^{r} \sigma_i \). In order to get a less model reduction error bound, it is necessary for \(\sigma_{n-r+1}, ..., \sigma_n \) to be small. Hence we choose a cost function as \(J = trace(P Q) = \sum_{i=1}^{n} \sigma_i^2 \). Thus, we minimize the non-convex cost function subject to the convex constraints (10) and (15). Since this optimization problem is non-convex, the optimization problem is very difficult to solve it. So we suggest a suboptimal procedure using an iterative method. We summarize an iterative method to solve a suboptimal problem.

1. Set \(i = 0 \). Initialize \(Q, P, S \), such that \(J = trace(P + Q) \) is minimized subject to LMI's (10) and (15).

2. Set \(i = i + 1 \).

a. Minimize \(J_i = trace(P_i Q_{i-1}) \) subject to LMI (15).

b. Minimize \(J_i = trace(P_i Q_i) \) subject to LMI (10).

3. If \(\|J_i - J_{i-1}\| \) is less than a small tolerance level, stop iteration. Otherwise, go to step 2.
V. A Numerical Example

We consider a T-S fuzzy system with time varying delay given by

Plant Rule 1:
\[
\begin{align*}
\dot{x}(t) &= A_1 x(t) + A_{a1} x(t - \delta(t)) + B_1 u(t) \\
\dot{y}(t) &= C_1 x(t) + C_{a1} x(t - \delta(t))
\end{align*}
\]
(36)

Plant Rule 2:
\[
\begin{align*}
\dot{x}(t) &= A_2 x(t) + A_{a2} x(t - \delta(t)) + B_2 u(t) \\
\dot{y}(t) &= C_2 x(t) + C_{a2} x(t - \delta(t))
\end{align*}
\]
(37)

where

\[
A_1 = \begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ -4 & -17 & -17 & -7 \\ 0 & 0 & 0 & 1 \end{bmatrix}, \quad A_2 = \begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ -6 & -17 & -17 & -7 \\ 0 & 0 & 0 & 1 \end{bmatrix}
\]

\[
B_1 = B_1^T = \begin{bmatrix} 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ -0.1 & 0.1 & 0.1 & 0.1 \end{bmatrix}, \quad C_1 = C_2 = \begin{bmatrix} 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}
\]

\[
A_{a1} = \begin{bmatrix} 0.1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0.01 & 0.01 & 0.01 & 0.01 \end{bmatrix}, \quad A_{a2} = \begin{bmatrix} 0.1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0.1 & 0.01 & 0.01 & 0.01 \end{bmatrix}
\]

We choose \(F_1 = A_{a1}, \quad F_2 = A_{a2}, \quad H_1 = H_2 = C_{a1}, \quad G = I \) for convenience. Using the iterative method described in section IV, we obtain

\[
P = 10^{-3} \begin{bmatrix} 8.97 & -0.431 & -2.71 & 0.341 \\ -0.431 & 2.96 & -0.181 & -6.56 \\ -2.71 & -0.181 & 6.98 & -0.963 \\ 0.341 & -6.56 & -0.963 & 102.0 \end{bmatrix}
\]
(38)

\[
Q = \begin{bmatrix} 3.27 & 2.90 & 1.11 & 0.154 \\ 2.90 & 3.12 & 1.27 & 0.180 \\ 1.11 & 1.27 & 0.538 & 0.0755 \\ 0.154 & 0.0755 & 0.0115 \end{bmatrix}
\]

Using (20) we also obtain the balanced gramian \(\Sigma = \text{diag}(0.1718, 0.0467, 0.0092, 0.0051) \). Accordingly we can expect the model reduction error is bounded by 0.0286 when we truncate last 2 state variables. Using (25) the reduced system can be obtained as follows:

Plant Rule 1:
\[
\begin{align*}
\dot{z}(t) &= A_{1,1} z(t) + F_{1,1} G_1 x(t - \delta(t)) + B_{1,1} u(t) \\
\dot{y}(t) &= C_1 z(t) + H_{a1} x(t - \delta(t)) + C_{a1} x(t - \delta(t))
\end{align*}
\]

\[
\begin{bmatrix} \dot{x}(t) \\ \dot{y}(t) \end{bmatrix} = \begin{bmatrix} 0.0193 & -0.2272 \\ 0.2142 & 0.2525 \end{bmatrix} \begin{bmatrix} x(t) \\ x(t - \delta(t)) \end{bmatrix} + \begin{bmatrix} 0.0907 & 0.0097 \\ 0.0097 & 0.0102 \end{bmatrix} \begin{bmatrix} u(t) \\ u(t - \delta(t)) \end{bmatrix} + \begin{bmatrix} 0.0193 & -0.0227 \\ 0.2142 & 0.2525 \end{bmatrix} \begin{bmatrix} x(t) \\ x(t - \delta(t)) \end{bmatrix}
\]
(40-1)

Plant Rule 2:
\[
\begin{align*}
\dot{z}(t) &= A_{2,1} z(t) + F_{2,1} G_1 x(t - \delta(t)) + B_{2,1} u(t) \\
\dot{y}(t) &= C_1 z(t) + H_{a1} x(t - \delta(t)) + C_{a1} x(t - \delta(t))
\end{align*}
\]

\[
\begin{bmatrix} \dot{x}(t) \\ \dot{y}(t) \end{bmatrix} = \begin{bmatrix} 0.1934 & -0.2272 \\ 0.2142 & 0.2525 \end{bmatrix} \begin{bmatrix} x(t) \\ x(t - \delta(t)) \end{bmatrix} + \begin{bmatrix} 0.0907 & 0.0097 \\ 0.0097 & 0.0102 \end{bmatrix} \begin{bmatrix} u(t) \\ u(t - \delta(t)) \end{bmatrix} + \begin{bmatrix} 0.0193 & -0.0227 \\ 0.2142 & 0.2525 \end{bmatrix} \begin{bmatrix} x(t) \\ x(t - \delta(t)) \end{bmatrix}
\]
(40-2)

When \(\delta(t) = 1 \), the model reduction error is depicted in Fig.1. In Fig.1, the solid line represents the model reduction error of the plant rule 1 and the dotted line represents that of the plant rule 2.

![Fig.1 H_m norm of model reduction error](image)

VI. Concluding Remark

In this paper, we have studied a balanced model reduction problem for T-S fuzzy systems with time varying delay. For this purpose, we have defined generalized controllability/observability gramians for the fuzzy system with delay. This generalized gramians can be obtained from solutions of LMI problem. Using the generalized gramians, we have derived a balanced state space realization. We have obtained the reduced model of the fuzzy system by truncating some state variables and also suggested an upper bound of model reduction error. In order to get a less conservative reduction error bound, we presented an iterative sub-optimization procedure for non-convex optimization. Finally, a numerical example is presented to demonstrate the efficacy of our method.

References

Seog-Hwan Yoo

He received the B.S. and M.S. degrees in electrical engineering from Seoul national university in 1975 and 1979 respectively. He received the Ph. D degree in electrical engineering from University of Florida in 1989. He is with Daegu university as a professor. His research interests are robust control theory, model reduction and control application in the steel making processes.

Phone : +82-53-850-6621
Fax : +82-53-850-6619
E-mail : shryu@daegu.ac.kr

Byung-Jae Choi

He received the B.S. degree in electronic engineering from Gyeongbuk national university in 1987. He received the M.S. and Ph. D degrees at KAIST in 1989 and 1998, respectively. He is with Daegu university as an assistant professor. His research interests are intelligent control theory and applications.

Phone : +82-53-850-6633
Fax : +82-53-850-6619
E-mail : bjchoi@daegu.ac.kr