A Fixed Point for Pair of Maps in Intuitionistic Fuzzy Mtric Space

Jong Seo Park* and Seon Yu Kim**

*, **Department of Mathematic Education, Chinju National University of Education, Jinju 660-756, South Korea

Abstract

Park, Park and Kwon[6] is defined the intuitionistic fuzzy metric space in which it is a little revised from Park[5]. According to this paper, Park, Kwon and Park[11] Park and Kwon[10], Park, Park and Kwon[7] are established some fixed point theorems in the intuitionistic fuzzy metric space. Furthermore, Park, Park and Kwon[6] obtained common fixed point theorem in the intuitionistic fuzzy metric space, and also, Park, Park and Kwon[8] proved common fixed points of maps on intuitionistic fuzzy metric spaces. We prove a fixed point for pair of maps with another method from Park, Park and Kwon[7] in intuitionistic fuzzy metric space defined by Park, Park and Kwon[6]. Our research are an extension of Vijayaraju and Marudai’s result[14] and generalization of Park, Park and Kwon[7], Park and Kwon[10].

Key words: t-norm, t-conorm, Intuitionistic Fuzzy Metric Space, Fixed Point.

1. Introduction

Grabiec [1], Park and Kim[9] are studied a fixed point theorem in a fuzzy metric space. Also, Mishra, Shrama and Singh[4], Subremanym[13] are proved a common fixed point theorem in fuzzy metric spaces. Vijayaraju and Marudai[14] obtained fixed point for pair of maps in fuzzy metric spaces.

Recently, Park[5] is defined the intuitionistic fuzzy metric space, and Park, Park and Kwon[6] is defined the intuitionistic fuzzy metric space in which it is a little revised from Park[5]. According to this paper, Park, Kwon and Park[11] Park and Kwon[10], Park, Park and Kwon[7] are established some fixed point theorems in the intuitionistic fuzzy metric space. Furthermore, Park, Park and Kwon[6] obtained common fixed point theorem in the intuitionistic fuzzy metric space, and also, Park, Park and Kwon[8] proved common fixed points of maps on intuitionistic fuzzy metric spaces.

In this paper, we prove a fixed point for pair of maps in intuitionistic fuzzy metric spaces. Our research are an extension of Vijayaraju and Marudai’s result[14] and generalization of Park, Park and Kwon[7], Park and Kwon[10].

2. Preliminaries

We will give some definitions, properties and notation of the intuitionistic fuzzy metric space following by Schweizer and Sklar[12], Grabie[1] and Park, Park and Kwon[6].

Definition 2.1. ([12]) A operation $*: [0,1] \times [0,1] \rightarrow [0,1]$ is continuous $t-$norm if $*$ is satisfying the following conditions:

(a) $*$ is commutative and associative,
(b) $*$ is continuous,
(c) $a * 1 = a$ for all $a \in [0,1]$,
(d) $a * b \leq c * d$ whenever $a \leq c$ and $b \leq d$ $(a, b, c, d \in [0,1])$.

Definition 2.2. ([12]) A operation $\circ : [0,1] \times [0,1] \rightarrow [0,1]$ is continuous $t-$conorm if \circ is satisfying the following conditions:

(a) \circ is commutative and associative,
(b) \circ is continuous,
(c) $a \circ 1 = a$ for all $a \in [0,1]$,
(d) $a \circ b \geq c \circ d$ whenever $a \leq c$ and $b \leq d$ $(a, b, c, d \in [0,1])$.

Remark 2.3. ([5]) The following conditions are satisfied:

(a) For any $r_1, r_2 \in (0,1)$ with $r_1 > r_2$, there exist $r_3, r_4 \in (0,1)$ such that $r_1 * r_3 \geq r_2$ and $r_4 * r_2 \leq r_1$.
(b) For any $r_5 \in (0,1)$, there exist $r_6, r_7 \in (0,1)$ such that $r_6 * r_7 \geq r_5$ and $r_7 * r_7 \leq r_5$.

Definition 2.4. ([6]) The 5--tuple $(X, M, N, *, \circ)$ is said to be an intuitionistic fuzzy metric space if X is an arbitrary set, $*$ is a continuous $t-$norm, \circ is a continuous $t-$conorm and M, N are fuzzy sets on $X^2 \times (0, \infty)$ satisfying the following conditions; for all $x, y, z \in X$, such that
(a) \(M(x, y, t) > 0 \),
(b) \(M(x, y, t) = 1 \iff x = y \),
(c) \(M(x, y, t) = M(y, x, t) \),
(d) \(M(x, y, t) \ast M(y, z, s) \leq M(x, z, t + s) \),
(e) \(M(x, y, \cdot) : (0, \infty) \to (0, 1] \) is continuous,
(f) \(N(x, y, t) > 0 \),
(g) \(N(x, y, t) = 0 \iff x = y \),
(h) \(N(x, y, t) = N(y, x, t) \),
(i) \(N(x, y, t) \ast N(y, z, s) \geq N(x, z, t + s) \),
(j) \(N(x, y, \cdot) : (0, \infty) \to [0, 1] \) is continuous.

Then \((M, N) \) is called an intuitionistic fuzzy metric on \(X \). The functions \(M(x, y, t) \) and \(N(x, y, t) \) denote the degree of nearness and the degree of non-nearness between \(x \) and \(y \) with respect to \(t \), respectively.

Remark 2.5. (111) In an intuitionistic fuzzy metric space \((X, M, N, *, \circ) \), \(M(x, y, \cdot) \) is nondecreasing and \(N(x, y, \cdot) \) is nonincreasing for all \(x, y \in X \).

Throughout the paper, we shall use \(N \) to denote the set of natural numbers and \(X \) to denote an intuitionistic fuzzy metric space \((X, M, N, *, \circ) \) with the following properties:

\[
\lim_{t \to \infty} M(x, y, t) = 1, \quad \lim_{t \to \infty} N(x, y, t) = 0 \quad \text{for all } x, y \in X.
\]

Definition 2.6. (110) Let \(X \) be an intuitionistic fuzzy metric space.

(a) A sequence \(\{x_n\} \) in \(X \) is called a Cauchy sequence iff

\[
\lim_{n \to \infty} M(x_{n+p}, x_n, t) = 1, \quad \lim_{n \to \infty} N(x_{n+p}, x_n, t) = 0 \quad \text{for each } p \in \mathbb{N}, \ t > 0.
\]

(b) A sequence \(\{x_n\} \) in \(X \) is convergent to \(x \) in \(X \) iff

\[
\lim_{n \to \infty} M(x_n, x, t) = 1, \quad \lim_{n \to \infty} N(x_n, x, t) = 0 \quad \text{for each } t > 0.
\]

(c) \(X \) is said to be complete if every Cauchy sequence in \(X \) is convergent in \(X \).

Lemma 2.7. (110) Let \(\{x_n\} \) be a sequence in an intuitionistic fuzzy metric space \(X \). If there exists a positive number \(k \), \(0 < k < 1 \) such that

\[
M(x_{n+2}, x_{n+1}, kt) \geq M(x_{n+1}, x_n, t), \quad N(x_{n+2}, x_{n+1}, kt) \leq N(x_{n+1}, x_n, t), \quad t > 0, \ n \in \mathbb{N}.
\]

Then \(\{x_n\} \) is a Cauchy sequence.

Lemma 2.8. (110) If \(x, y \) are any two points in an intuitionistic fuzzy metric space \(X \) and \(k \) is a positive number with \(k < 1 \), and

\[
M(x, y, kt) \geq M(x, y, t), \quad N(x, y, kt) \leq N(x, y, t),
\]

then \(x = y \).

Lemma 2.9. (110) Let \(X \) be a complete intuitionistic fuzzy metric space and \(T \) be a self-map of \(X \) satisfying

\[
M(Tx, Ty, kt) \geq M(x, y, t), \quad N(Tx, Ty, kt) \leq N(x, y, t)
\]

for all \(x, y \in X \) and \(0 < k < 1 \). Then \(T \) has a unique fixed point in \(X \).

3. Main Results

In this section, we prove a fixed point for pair of maps with another method from Park, Park, Kwun[7] in intuitionistic fuzzy metric space defined by Park, Park, Kwun[6]. Our research are an extension of Vijayaraju, Marudai’s result[14] and generalization of Park, Park, Kwun[7], Park, Kwun[10].

Lemma 3.1. (110) Let \(\{x_n\} \) is a sequence in an intuitionistic fuzzy metric space \(X \). If

\[
M(x_n, x_{n+1}, t) \geq M(x_0, x_1, \frac{t}{\alpha^n}), \quad N(x_n, x_{n+1}, t) \leq N(x_0, x_1, \frac{t}{\alpha^n}),
\]

where \(\alpha \) is a positive number with \(0 < \alpha < 1 \) and \(n \in \mathbb{N} \), then \(\{x_n\} \) is a Cauchy sequence.

Lemma 3.2. (110) If \(X \) is an intuitionistic fuzzy metric space and \(\{x_n\} \) is a sequence in \(X \) such that

\[
M(x_{i+1}, x_{i+2}, kt) \geq M(x_i, x_{i+1}, t) \ast M(x_{i+1}, x_{i+2}, t),
\]

\[
N(x_{i+1}, x_{i+2}, kt) \leq N(x_i, x_{i+1}, t) \ast N(x_{i+1}, x_{i+2}, t),
\]

where \(0 < k < 1 \), \(i = 0, 1, 2, \ldots \) and \(t > 0 \), then

\[
M(x_{i+1}, x_{i+2}, kt) \geq M(x_i, x_{i+1}, t), \quad N(x_{i+1}, x_{i+2}, kt) \leq N(x_i, x_{i+1}, t).
\]

Theorem 3.3. Let \(X \) be a complete intuitionistic fuzzy metric space. If \(T, S \) are self maps on \(X \) such that

\[
M(Tx, Sy, \beta t) \geq M(x, Tx, t) \ast M(y, Sy, t), \quad N(Tx, Sy, \beta t) \leq N(x, Tx, t) \ast N(y, Sy, t)
\]

for all \(x, y \in X \) and \(0 < \beta < \frac{1}{2} \), then \(T \) and \(S \) have a unique common fixed point in \(X \).

Proof. Let \(x_0 \in X \) be fixed. We define a sequence \(\{x_n\} \subset X \) by

\[
x_{n+1} = Tx_n \text{ if } n \text{ is even, } \quad Sx_n \text{ if } n \text{ is odd}.
\]

Now, we will prove that

\[
M(x_{n+1}, x_n, lt) \geq M(x_0, x_1, t) \ast M(x_n, x_{n+1}, \frac{t}{1-\beta}) \ast M(x_0, x_1, t),
\]

\[
N(x_{n+1}, x_n, lt) \leq N(x_0, x_1, t) \ast N(x_n, x_{n+1}, \frac{t}{1-\beta}) \ast N(x_0, x_1, t).
\]
\[
M(x_1, x_2, \left(\frac{\beta}{1 - \beta} t\right)) \\
= M\left(Tx_0, Sx_1, \beta \cdot \frac{t}{1 - \beta}\right) \\
\geq M(x_0, x_1, \frac{t}{1 - \beta}) \ast M(x_1, x_2, \frac{t}{1 - \beta}) \\
\geq M(x_0, x_1, \frac{t}{1 - \beta}), \quad \text{(by Lemma 3.2)} \\
\geq M(x_0, x_1, t), \quad \text{(because of } \frac{t}{1 - \beta} > t) \\
N(x_1, x_2, \left(\frac{\beta}{1 - \beta} t\right)) \\
= N\left(Tx_0, Sx_1, \beta \cdot \frac{t}{1 - \beta}\right) \\
\leq N(x_0, x_1, \frac{t}{1 - \beta}) \circ N(x_1, x_2, \frac{t}{1 - \beta}) \\
\leq N(x_0, x_1, \frac{t}{1 - \beta}) \\
\leq N(x_0, x_1, t), \quad \text{(because of } \frac{t}{1 - \beta} > t).
\]

Thus the result is true for \(n = 1 \).

Suppose that the result is true for \(n = k \), that is,

\[
M(x_k, x_{k+1}, \left(\frac{\beta}{1 - \beta} k \cdot t\right)) \geq M(x_0, x_1, t) \\
N(x_k, x_{k+1}, \left(\frac{\beta}{1 - \beta} k \cdot t\right)) \leq N(x_0, x_1, t).
\]

Without loss of generality, let us assume that \(k \) is even,

\[
M(x_{k+1}, x_{k+2}, \left(\frac{\beta}{1 - \beta} \cdot k+1 \cdot t\right)) \\
= M\left(Tx_k, Sx_{k+1}, \beta \cdot \frac{k+1}{1 - \beta} \cdot t\right) \\
\geq M(x_k, x_{k+1}, \frac{t}{1 - \beta}) \ast M(x_{k+1}, x_{k+2}, \frac{t}{1 - \beta}) \\
= M(x_k, x_{k+1}, \frac{t}{1 - \beta} \cdot k) \ast M(x_{k+1}, x_{k+2}, \frac{t}{1 - \beta}) \\
\geq M(x_0, x_1, \frac{t}{1 - \beta}) \circ M(x_{k+1}, x_{k+2}, \frac{t}{1 - \beta}) \\
\leq N(x_0, x_1, \frac{t}{1 - \beta}) \circ N(x_{k+1}, x_{k+2}, \frac{t}{1 - \beta}) \\
\leq N(x_0, x_1, t).
\]

Then by Lemma 3.2, we have

\[
M(x_{k+1}, x_{k+2}, \left(\frac{\beta}{1 - \beta} \cdot k+1 \cdot t\right)) \\
\geq M(x_0, x_1, \frac{t}{1 - \beta}) \circ N(x_{k+1}, x_{k+2}, \frac{t}{1 - \beta}) \\
\leq N(x_0, x_1, t).
\]

Hence the result is true for all \(n \). Therefore

\[
M(x_n, x_{n+1}, \left(\frac{\beta}{1 - \beta} \cdot n\right) \geq M(x_0, x_1, t), \\
N(x_n, x_{n+1}, \left(\frac{\beta}{1 - \beta} \cdot n\right) \leq N(x_0, x_1, t),
\]

which can be written as

\[
M(x_n, x_{n+1}, \frac{1}{1 - \beta} \cdot n) \geq M(x_0, x_1, \frac{1}{1 - \beta} \cdot n), \\
N(x_n, x_{n+1}, \frac{1}{1 - \beta} \cdot n) \leq N(x_0, x_1, \frac{1}{1 - \beta} \cdot n).
\]

By Lemma 3.1, \(\{x_n\} \) is a Cauchy sequence in \(X \). Since \(X \) is complete, \(\{x_n\} \) converges to a point \(x \) in \(X \). That is,

\[
\lim_{n \to \infty} M(x_n, x, t) = 1, \quad \lim_{n \to \infty} N(x_n, x, t) = 0.
\]

Now, by Definition 2.3 and assumption of this theorem

\[
M(x, Tx, t) \\
\geq M(x, x_n, \frac{t}{2}) \ast M(x_n, Tx, \frac{t}{2}) \\
= M(x, x_n, \frac{t}{2}) \ast M(Sx_{n-1}, Tx, \frac{t}{2}) \\
\geq M(x, x_n, \frac{t}{2}) \ast M(x, Tx, \frac{t}{2 \beta}) \ast M(x_{n-1}, x_n, \frac{t}{2 \beta}), \\
N(x, Tx, t) \\
\leq N(x, x_n, \frac{t}{2}) \circ N(x_n, Tx, \frac{t}{2}) \\
= N(x, x_n, \frac{t}{2}) \circ N(Sx_{n-1}, Tx, \frac{t}{2}) \\
\leq N(x, x_n, \frac{t}{2}) \circ N(x, Tx, \frac{t}{2 \beta}) \circ N(x_{n-1}, x_n, \frac{t}{2 \beta}).
\]

Taking limit as \(n \to \infty \), we get

161
\[M(x, Tx, t) \geq 1 \cdot M(x, Tx, \frac{t}{2\beta}) \cdot 1 = M(x, Tx, \frac{t}{2\beta}), \]
\[N(x, Tx, t) \leq 0 \circ N(x, Tx, \frac{t}{2\beta}) \circ 0 = N(x, Tx, \frac{t}{2\beta}). \]

By lemma 2.9, \(Tx = x \).

Similarly, \(Sx = x \).

Now, we will show that \(x \) is a unique common fixed point of \(T \) and \(S \) in \(X \).

Assume that there exist another fixed point \(y \) in \(X(Ty = Sy = y) \). Then

\[M(x, y, t) = M(Tx, Sy, t) \]
\[\geq M(x, Tx, \frac{t}{\beta}) \cdot M(y, Sy, \frac{t}{\beta}) = 1, \]
\[N(x, y, t) = N(Tx, Sy, t) \]
\[\leq N(x, Tx, \frac{t}{\beta}) \circ N(y, Sy, \frac{t}{\beta}) = 0. \]

Therefore \(M(x, y, t) = 1 \) and \(N(x, y, t) = 0 \). Hence \(x = y \). Thus \(x \) is a unique common fixed point of \(T \) and \(S \) in \(X \).

Corollary 3.4. (10) If \(T \) is a self map on a complete intuitionistic fuzzy metric space \(X \) and if there exists a positive number \(\beta \) with \(0 < \beta < \frac{1}{2} \) such that

\[M(Tx, Ty, \beta t) \geq M(x, Ty, t) \cdot M(y, Ty, t), \]
\[N(Tx, Ty, \beta t) \leq N(x, Ty, t) \circ N(y, Ty, t) \]

for all \(x, y \in X \) and \(t \geq 0 \), then \(T \) has a unique fixed point in \(X \).

Proof. The proof follows immediately from Theorem 3.3 by putting \(T = S \).

Theorem 3.5. Let \(X \) be a complete intuitionistic fuzzy metric space. Also, let \(T \) and \(S \) be two self maps on \(X \) such that

(a) \(M(Tx, Sy, \alpha t) \geq M(x, y, t) \cdot N(Tx, Sy, \alpha t) \leq N(x, y, t) \), where \(0 < \alpha < 1 \), \(x, y \in X \), \(x \neq y \).

(b) \(S \) is a contraction on \(X \). That is, there exists \(\beta \) with \(0 < \beta < 1 \) such that \(M(Sx, Sy, \beta t) \geq M(x, y, t) \), \(N(Sx, Sy, \beta t) \leq N(x, y, t) \) for all \(x, y \in X \), and

(c) there exists \(x_0 \in X \) such that

\[x_{n+1} = \begin{cases} Tx_n & \text{if } n \text{ is even} \\ Sx_n & \text{if } n \text{ is odd} \end{cases} \]

with \(x_m \neq x_l \) if \(m \neq l \).

Then \(T \) and \(S \) have a unique common fixed point in \(X \).

Proof. If \(x_1, x_2 \) are two distinct points in \(X \), then it is impossible that \(Tx_1 = x_1 \) and \(Sx_2 = x_2 \). For if \(Tx_1 = x_1 \) and \(Sx_2 = x_2 \), then by (a),

\[M(x_1, x_2, \alpha t) = M(Tx_1, Sx_2, \alpha t) \geq M(x_1, x_2, t), \]
\[N(x_1, x_2, \alpha t) = N(Tx_1, Sx_2, \alpha t) \leq N(x_1, x_2, t). \]

This is a contradiction from Remark 2.5. Since \(S \) is contraction, \(S \) has a unique fixed point say \(x \) from Lemma 2.9. Therefore if \(T \) has a fixed point, it is unique and must coincide with \(x \). If \(x_0 = x_1 \), since \(x_1 = Tx_0 = x_0 = Sx_0 \), assume that \(x_0 \neq x_1 \). Let \(x_1, x_2 \) be any two members of \(\{x_n\} \) defined by (c). Then from (a),

\[M(x_1, x_2, t) \geq M(x_0, x_1, \frac{t}{\alpha}), \]
\[N(x_1, x_2, t) \leq N(x_0, x_1, \frac{t}{\alpha}). \]

Similarly, from

\[M(x_2, x_3, \alpha t) = M(Sx_1, Tx_2, \alpha t) \geq M(x_1, x_2, t), \]
\[N(x_2, x_3, \alpha t) = N(Sx_1, Tx_2, \alpha t) \leq N(x_1, x_2, t), \]

we have

\[M(x_2, x_3, t) = M(Sx_1, Tx_2, t) \geq M(x_0, x_1, \frac{t}{\alpha^2}), \]
\[N(x_2, x_3, t) = N(Sx_1, Tx_2, t) \leq N(x_0, x_1, \frac{t}{\alpha^2}). \]

\[\cdots \cdots \cdots \cdots \]
\[M(x_n, x_{n+1}, t) \geq M(x_0, x_1, \frac{t}{\alpha^n}), \]
\[N(x_n, x_{n+1}, t) \leq N(x_0, x_1, \frac{t}{\alpha^n}). \]

Hence by Lemma 3.1 and Lemma 2.7, \(\{x_n\} \) is a Cauchy sequence. Since \(X \) is complete, it converges to \(y_0 \) in \(X \). Therefore it satisfied the Definition 2.6(b).

Suppose that \(n \) is even integer. Then

\[M(y_0, Ty_0, t) \geq M(y_0, x_n, \frac{t}{2}) \cdot M(x_n, Ty_0, \frac{t}{2}) \]
\[= M(y_0, x_n, \frac{t}{2}) \cdot M(Sx_{n-1}, Ty_0, \frac{t}{2}) \]
\[\geq M(y_0, x_n, \frac{t}{2}) \cdot M(x_{n-1}, y_0, \frac{t}{2\alpha}), \]
\[N(y_0, Ty_0, t) \leq N(y_0, x_n, \frac{t}{2}) \circ N(x_n, Ty_0, \frac{t}{2}) \]
\[= N(y_0, x_n, \frac{t}{2}) \circ N(Sx_{n-1}, Ty_0, \frac{t}{2}) \]
\[\leq N(y_0, x_n, \frac{t}{2}) \circ N(x_{n-1}, y_0, \frac{t}{2\alpha}). \]

Taking limit as \(n \to \infty \), we get

\[M(y_0, Ty_0, t) \geq 1 \cdot 1 = 1, \quad N(y_0, Ty_0, t) \leq 0 \cdot 0 = 0. \]

Thus \(y_0 = Ty_0 \). We know that \(y_0 \) is a fixed point of \(T \). Therefore \(y_0 = x \). Hence \(T \) and \(S \) have a unique common fixed point in \(X \).
Corollary 3.6. ([7]) (Intuitionistic fuzzy Banach contraction theorem) Let X be a complete intuitionistic fuzzy metric space and $T : X \to X$ be a mapping satisfying

$$M(Tx, Ty, \alpha t) \geq M(x, y, t), \quad N(Tx, Ty, \alpha t) \leq N(x, y, t)$$

where $0 < \alpha < 1$, $x, y \in X$ and all $t > 0$. Then T has a unique fixed point in X.

Proof. We proved this corollary from Theorem 3.5 by putting $T = S$. Also, in this proof, we used another method with respect to [7].

4. Example

Example 4.1. Let (X, d) be a metric space in $X = [0, 1]$. Denote $x \ast y = \min\{x, y\}$, $x \circ y = \max\{x, y\}$ for all $x, y \in X$ and let M_d, N_d be fuzzy sets on $X^2 \times (0, \infty)$ as follows:

$$M_d(x, y, t) = \frac{t}{t + d(x, y)}, \quad N_d(x, y, t) = \frac{d(x, y)}{t + d(x, y)}$$

where for any $x, y \in X$, $t > 0$, $d(x, y) = |x - y|$.

Define maps $T, S : X \to X$ by $Tx = 1 - x$, $Sx = \frac{3}{4} - \frac{x}{2}$ for all $x \in X$. Then $(X, M_d, N_d, \ast, \circ)$ is an intuitionistic fuzzy metric space.

Also,

$$M_d(Sx, Sy, t) = \frac{t}{t + d(Sx, Sy)} = \frac{t}{t + \frac{3}{2}|y - x|} \geq \frac{t}{t + \frac{3}{2}|y - x|} = M_d(x, y, t)$$

$$N_d(Sx, Sy, t) = \frac{d(Sx, Sy)}{t + d(Sx, Sy)} = \frac{\frac{3}{2}|y - x|}{t + \frac{3}{2}|y - x|} \leq \frac{\frac{3}{2}|y - x|}{t + \frac{3}{2}|y - x|} = N_d(x, y, t)$$

Clearly, $T(\frac{1}{2}) = \frac{1}{2} = S(\frac{1}{2})$ and $\frac{1}{2}$ is the only fixed point of both T and S in X.

But since

$$M_d(Tx, Sy, t) = \frac{t}{t + |\frac{1}{2} - x + \frac{1}{2}|}$$

$$N_d(Tx, Sy, t) = \frac{1}{t + |\frac{1}{2} - x + \frac{1}{2}|}$$

If $x = \frac{3}{4}, y = \frac{1}{2}$, then

$$M_d(Tx, Sy, t) = \frac{t}{t + \frac{1}{2}}, \quad N_d(Tx, Sy, t) = \frac{\frac{3}{2}}{t + \frac{1}{2}} = N(x, y, t)$$

Hence we can know that Theorem 3.5 gives only some sufficient conditions for which T and S have a common unique fixed point in X.

References

163
Jong Seo Park
Professor of Chinju National University of Education
Research Area: Fuzzy mathematics, Fuzzy analysis, Fuzzy differential equation
E-mail: parkjs@cue.ac.kr

Seon Yu Kim
Professor of Chinju National University of Education
Research Area: Fuzzy mathematics, Fuzzy differential equation
E-mail: sykim@cue.ac.kr