Evolvable Neural Networks for Time Series Prediction with Adaptive Learning Interval

Sang-Wook Seo, Dong-Wook Lee and Kwee-Bo Sim*

School of Electrical and Electronic Engineering, Chung-Ang University
221, Heukseok-Dong, Dongjak-Gu, Seoul, 156-756, Korea

Abstract

This paper presents adaptive learning data of evolvable neural networks (ENN) for time series prediction of nonlinear dynamic systems. ENNs are a special class of neural networks that adopt the concept of biological evolution as a mechanism of adaptation or learning. ENNs can adapt to an environment as well as changes in the environment. ENNs used in this paper are L-system and DNA coding based ENNs. The ENNs adopt the evolution of simultaneous network architecture and weights using indirect encoding. In general, just previous data are used for training the predictor that predicts future data. However, the characteristics of data and appropriate size of learning data are usually unknown. Therefore, we propose adaptive change of learning data size to predict the future data effectively. In order to verify the effectiveness of our scheme, we apply it to chaotic time series predictions of Mackey-Glass data.

Key words: Evolvable neural networks, Time series prediction, Adaptive learning interval, L-system, DNA coding.

1. Introduction

Time series prediction estimates the future behavior of a dynamical system based on the understanding and characterization of the system. There are two basic approaches to prediction: model-based approach and model-free approach. Model-based approach assumes that sufficient prior information is available. But model-free approach does not need to know prior information. Model-free method can construct self-structure only using observed current and past data. Evolvable neural networks (ENN) are a sort of model-free approach. As a universal approximator, evolvable neural network is widely used in complex time series prediction 0-0.

ENN adopts the concept of biological evolution as an adaptation mechanism 0. ENNs with direct encoding of architecture 0-0 use one-to-one mapping of genotype and phenotype. ENNs with direct encoding may not be practical except for small size neural networks due to high computational cost. The networks lack scalability as the size of the genetic description of a neural network grows as the network size increases 0. Indirect encoding 0-0 can construct ENNs with complex network structures having repeated substructures in compact genotypes by recursive application of developmental rules. Development refers to an organization process in biological organisms, an indirect genotype-to-phenotype mapping.

This paper presents an emergent neural network model that evolves from simple structure to a network with higher connection complexity according to the developmental rules represented by the L-system 0 and the DNA coding 0. The neural network model is a linear array of neurons. The network consists of a set of homogeneous neurons and associated connection weights with lateral connections. Neural networks are developed using the production rules of the L-system which is represented by the DNA coding. A chromosome in DNA coding represented an individual network. The chromosomes are mapped the set of production rules of the L-system.

Section 2 introduces the DNA coding and L-system for the development of neural networks. In Section 3, design method of ENNs is discussed. There are two steps in the design procedure: DNA encoding of L-system and the production rules for developing neural networks. The ENN developed by the L-system are tested using prediction of chaotic time series. In Section 4, to prevent the overfitting to the given data, we propose adaptive change method of the data set for learning.

2. Developmental Model for Neural Network Evolution

2.1 DNA coding

Motivated by biological DNA, DNA coding uses four symbols A (Adenine), G (Guanine), T (Tymine), and C (Cytocine) that denote nucleotide bases, not a binary representation as in the GA. A chromosome is represented by three successive symbols called a codon. A DNA code that begins from a START codon (ATA or ATG) and ends at a STOP
codon (TAA, TAG, TGA, or TGG) is translated into a meaningful code. This representation of chromosome can have multiple interpretations since the interpretations of START and STOP codons allow overlaps as shown in Fig. 1. The length of chromosomes varies. DNA coding has floating representations without fixed crossover points. Wu and Lindsay 0 proved that floating representation is effective for the representation of long chromosomes by schema analysis in GAs. The diversity of population is high since the DNA coding has a good parallel search and recombination ability. The DNA coding method can encode developmental rules without limitation of the number and the length of rule. DNA coding requires a translation table to decode codons. A codon is translated into an amino acid according to a translation table in Table 1. For example, a codon AGG is translated into an amino acid AA15. START codons ATA and ATG are translated into AA3 within the chromosome.

\[
\begin{align*}
\text{Gene 1} & \quad \text{start} \quad \text{AA15} \quad \text{AA15} \quad \text{AA14} \quad \text{AA15} \quad \text{AA6} \quad \text{STOP} \\
\text{CGATGCCGGAATGCACCACT\ldots} \\
\text{Gene 2} & \quad \text{start} \quad \text{AA6} \quad \text{AA8} \quad \text{AA2} \quad \text{AA7} \quad \text{STOP} \\
\end{align*}
\]

Fig. 1. Gene translation of a DNA sequence.

<table>
<thead>
<tr>
<th>Codon</th>
<th>Amino acid</th>
<th>Codon</th>
<th>Amino acid</th>
<th>Codon</th>
<th>Amino acid</th>
<th>Codon</th>
<th>Amino acid</th>
</tr>
</thead>
<tbody>
<tr>
<td>TTT</td>
<td>TTTC</td>
<td>TTC</td>
<td>TCT</td>
<td>TAT</td>
<td>AA9</td>
<td>TGT</td>
<td>AA14</td>
</tr>
<tr>
<td>TTC</td>
<td>TCTC</td>
<td>TCC</td>
<td>CAT</td>
<td>CA9</td>
<td>AA9</td>
<td>TGG</td>
<td>STOP</td>
</tr>
<tr>
<td>TGA</td>
<td>TACT</td>
<td>CC8</td>
<td>CCA</td>
<td>CA8</td>
<td>AA8</td>
<td>TCG</td>
<td>ACA</td>
</tr>
<tr>
<td>AGC</td>
<td>ACTC</td>
<td>CCC</td>
<td>CCA</td>
<td>CAA</td>
<td>AA10</td>
<td>CGA</td>
<td>AA15</td>
</tr>
<tr>
<td>ATT</td>
<td>ACCA</td>
<td>ACC</td>
<td>CAA</td>
<td>AAC</td>
<td>AA11</td>
<td>GAT</td>
<td>AA16</td>
</tr>
<tr>
<td>ATC</td>
<td>ACCA</td>
<td>AAG</td>
<td>AA9</td>
<td>AAG</td>
<td>AA12</td>
<td>GGC</td>
<td>AA15</td>
</tr>
<tr>
<td>ATA</td>
<td>AAC/START</td>
<td>ACA</td>
<td>GGT</td>
<td>GAT</td>
<td>AA13</td>
<td>GCT</td>
<td>AA17</td>
</tr>
<tr>
<td>ATG</td>
<td>ACG</td>
<td>ACG</td>
<td>GCC</td>
<td>GAC</td>
<td>AA13</td>
<td>GGC</td>
<td>AA15</td>
</tr>
<tr>
<td>GTA</td>
<td>ACG</td>
<td>GCA</td>
<td>GCA</td>
<td>GAA</td>
<td>AA13</td>
<td>GGG</td>
<td>AA17</td>
</tr>
<tr>
<td>GTG</td>
<td>ACG</td>
<td>GGG</td>
<td>GGC</td>
<td>GAG</td>
<td>AA13</td>
<td>GGG</td>
<td>AA17</td>
</tr>
</tbody>
</table>

Table 1. DNA code translation table

Fig. 1 shows an example of how to translate a DNA sequence. Two different translations are possible since any three symbols are grouped to a codon starting from different positions. Gene 1 is obtained from a START codon (ATG) to a STOP codon (TGA). Gene 2 appears from ATG to another STOP codon (TA4). The two genes overlap. Gene 1 results in a sequence of amino acids (protein) AA15- AA13- AA14- AA15- AA6, while Gene 2 gives AA6- AA8- AA2- AA7.

2.2 L-system

For inquiring out mental condition of human, researchers approach a dimension model and a foundation emotion model. Wundt classifies three dimensions that are pleasant/unpleasant feeling, excitement/calminess and tension/relaxation. Russell combines the existing researches and divides two dimensions that are pleasant/unpleasant feeling and awakening/sleeping[8]. Fig. 2 show various emotions classification by dimension model. In contrast, Ekman who leads the foundation emotion theory asserts six foundation emotions which are happy, surprise, fear, anger, disgust and sad[9].

This paper selects feeling emotions when people drive. They are happy, angry, normal and sleepiness. Sleepiness is the important recognition part specially and is similar to tired condition. We cause emotion through stimulus of pictures and films in experiment. And we use both EEG equipment and action recognition equipment for measuring bio-potential signals. A testing ground is set up driving simulation in small laboratory.

A simple L-system can be defined as a grammar of string writing in the form G = {V, P, ω}, where V = {A1, A2, ..., An} is a finite set of alphabets A, $P = \{p1, p2, ..., pn\}$ denotes a set of production rules $p_i = p(A_i)$. ω is an initial string (combination of alphabets), commonly referred to an axiom. A production rule $p: V \rightarrow V'$ maps alphabets to a set V' of finite strings. Let S_k denote a string in the k-th rewriting step. The rewriting procedure can be described as

\[S_k = p^k(S_0) = p \circ p \circ \ldots \circ p(S_0) \]

where \circ denotes a composite operator of the rewriting operation p. The first rewriting step gives $S_1 = p(S_0)$ with $S_0 = \omega$, and $S_2 = p(S_1) = p(p(S_0)) = (p \circ p)(S_0) = p^2(S_0)$. For example, consider a simple L-system with three alphabets $V = \{A, B, C\}$. Suppose the growth model $G = \{V, P, \omega\}$ have a set of developmental rules $P = \{p(A), p(B), p(C)\}$ with $p(A) = BA, p(B) = CB$, and $p(C) = AC$. Applying the production rules to the axiom $\omega = ABC$ result in the strings:

\[S_1 = p(S_0) = p(ABC) = p(A)p(B)p(C) = BACBAC \]

\[S_2 = p(S_1) = p(BACBAC) \\
= p(B)p(A)p(C)p(B)p(A)p(C) = CBBAACCBBAAC \]

3. Design of evolvable neural networks

3.1 Structure of evolvable neural networks

The proposed evolvable neural network model consists of an array of neurons whose structure grows according to the developmental rules. A string of N symbols $n_1, n_2, ..., n_N$, generated from a set of production rules, finds a neural network with N nodes, n_i, $i = 1, 2, ..., N$. Fig. 2 shows the structure of the
Evolvable Neural Networks for Time Series Prediction with Adaptive Learning Interval

evolvable neural network based on a developmental model. There are L input nodes and M output nodes.

Fig. 2. Structure of the evolvable neural network with developmental models.

Nodes are connected with the connection range of the form (x, y). A pair of integers x and y ($1 \leq x \leq y$) configures the connection between the neighboring nodes. The parameter x denotes the index of the first node to be connected from a base node. The parameter y indicates the last node to be connected. Fig. 3 illustrates the connection of the neurons. A node at l-th location is connected to all the neurons between $(l+x)$-th and $(l+y)$-th locations. Input nodes are not connected with each other. Therefore, the indices of the first and last nodes become $(l+m+x)$ and $(l+m+y)$ since connection begins after skipping input neurons.

Fig. 3. Connection of nodes with a connection range (x, y).

An evolutionary neural network is constructed from a string according to the following procedures.
1. Determine the numbers of input (L) and output (M).
2. Set the first L and the last M characters in a string to input and output neurons. All the others are set to hidden neurons. If the total characters in a string are fewer than $L+M$, then stop the construction.
3. Add M neurons as output nodes next to output neurons.
4. Connect all neurons according to connection range and the weights.

Input and output neurons are not connected with the neurons of the same type. Input neurons use linear activation functions while hidden and output neurons use bipolar sigmoid functions.

3.2 DNA coding for production rules

A DNA chromosome is translated into an amino acid and then into a production rule of L-system. The L-system for a mobile robot control uses four alphabets $V = \{A, B, C, D\}$. The maximum connection range is set to 4. Table 2 converts an amino acid to a node name and connection range.

| Table 2. Translation table of amino acids (codons) |
|-----------------|-----------------|-----------------|
| **Amino acid** | **Node name** | **Connection range** | **Amino acid** | **Node name** | **Connection range** |
| AA1 | A | (1,2) | AA10 | C | (2,3) |
| AA2 | A | (1,3) | AA11 | C | (1,4) |
| AA3 | A | (1,4) | AA12 | C | (2,4) |
| AA4 | A | (1,1) | AA13 | C | (3,3) |
| AA5 | B | (1,2) | AA14 | D | (3,4) |
| AA6 | B | (2,3) | AA15 | D | (2,4) |
| AA7 | B | (1,4) | AA16 | D | (4,4) |
| AA8 | B | (2,2) | AA17 | D | (4,3) |
| AA9 | C | (3,4) | | | |

A production rule of L-system consists of alphabets, which are interpreted as nodes. The predecessor has only node but the alphabet of the successor has node name with connection range, bias, and weights. Fig. 5 shows a production rule of the form $p(A) = B$ with connection range (x, y). A production rule is composed of nine codons corresponding a predecessor node, a successor node, a connection range, a bias, five connection weights. Five weights are needed since the maximum connection range is set to 5. A single predecessor node can have multiple successor nodes as in the rule $p(A) = BC$.

<table>
<thead>
<tr>
<th>Node(P)</th>
<th>Node(S)</th>
<th>Connection</th>
<th>Bias</th>
<th>Weights</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Range</td>
<td>γ_0</td>
<td>w_1, w_2, w_3, w_4, w_5</td>
</tr>
<tr>
<td>A</td>
<td>B</td>
<td>(x, y)</td>
<td>γ_0</td>
<td>w_1, w_2, w_3, w_4, w_5</td>
</tr>
</tbody>
</table>

Fig. 4. DNA coding of a production rule.

Bias and weights are real values calculated by Eq. (4). The bias and weights have values of bound from -3.2 to 3.1 at 0.1 intervals.

$$w = \frac{(b_2 \cdot 4^2 + b_1 \cdot 4^1 + b_0 \cdot 4^0) - 32}{10}$$

where $b_0, b_1,$ and b_2 are the three DNA symbols of the codon (e.g. ACG). The values of each DNA symbol are $T = 0, C = 1, A = 2,$ and $G = 3$.

Fig. 5 shows an example of translating a DNA code into a production rule. Two production rules can be created since two START codons (ATG) exist in the chromosome. The codon TAC followed by ATG is translated to AA9 (Node C) according to Table 2. The next codon CGG is translated to AA15 (Node D). The next codon (CGT) is also translated to AA15, which corresponds to the connection range (2,4). The following codon (GAA) denotes a bias of the value 2.6 ($= (3 \times 4^2 + 2 \times 4^1 + 2 \times 4^0) / 10$). The next five codons determine weight values. This procedure is repeated for the next production rule until the STOP codon is met. The first rule is represented by $p(C) =$
D(2,4)A(4,4). The second rule \(p(B) = D(3,4) \) is obtained from the different reading frame. Not-used codons are denoted by ‘NU.’ If multiple rules have the same predecessor but different successors as in \(p(A) = B \) and \(p(A) = CB \), only the first rule \(p(A) = B \) is used, and the others are eliminated. If no rule is found for a predecessor \(A_n \), a rule \(p(A_n) = A_1 \) is used.

Fig. 5. Interpretation of production rules from a DNA code.

4. Time Series Prediction Experiment

4.1 Time series prediction

Generally, the problem of time series prediction is to find a function that predicts a future value \(x(t+1) \) from the current and the past values \(x(t), x(t-D), \ldots, x(t-qD) \) where \(t \) is time index, \(I (I > 0) \) is the time step to be predicted, \(q \) is the order of the model or the embedding dimension, and \(D (D \geq 1) \) is time delay. Then the time series prediction is represented by a form of function:

\[
\hat{x}(t+1) = F(x(t), x(t-D), x(t-2D), \ldots, x(t-qD))
\]

To validate our method, we use well investigated time series data, namely Mackey-Glass chaotic data. The equation of Mackey-Glass time series is as follows:

\[
\frac{dx(t)}{dt} = \frac{a x(t-r)}{1 + x(t-r)^{10}} - bx(t)
\]

where the variables are chosen to be \(a = 0.2, b = 0.1, c = 10 \) and \(r \) equal to 30 in this paper. The data is generated by fourth order Runge-Kutta method of (6).

The inputs to the proposed ENN are the time series in lagged space \(x(t), x(t-D), x(t-2D), \) and \(x(t-3D) \). The output is the predictive value of \(x(t+1) \), with \(I = D = 5 \). So minimum 4 input neurons and 1 output neuron are needed for evaluating an ENN. Therefore the ENN that has less than 5 neurons is not evaluated and the fitness becomes 0.

Generally, as the error decreases, the fitness must increase. So we use the fitness function for ENN as

\[
\text{Fitness} = e^{-\lambda E(t)}
\]

where \(\lambda \) is the parameter that determines the slope of the curves, \(E(t) \) is normalized mean square error (NMSE) at time \(t \). In experiment, \(\lambda \) is set as 5 because NMSE is less than 0.5 in most cases.

The performance of the evolutionary neural network is evaluated by estimating the NMSE which is defined as

\[
E(t) = \frac{1}{N-1} \sum_{k=1}^{N-1} (x(t-k) - \hat{x}(t-k))^2
\]

where \(N \) is the number of previous data to be tested in current evaluation, \(x(t) \) is the ideal or observed time series, \(\hat{x}(t) \) is the predicted times series. Because the NMSE include the variance of the data, we can compare the performance of our model with the performance of previous works regardless of the training set size.

4.2 Adaptive learning interval

To prevent ENN from overfitting to the given data, we propose adaptive change method of the data set for evaluation. In general optimal size of training data is not given and is hard to predict. But it is very important factor to obtain a good performance. So in this paper adaptive increment method of training data is presented. The problem of time series prediction is to predict next unknown data using given data. However using all data for training cause very slow learning and sometimes impossible to continue training. So we start to train using small sized data and increase the data size gradually by introducing test data. Test data is used to determine whether the training data increase or not. So we pick up test data from the back of known data set. It is shown at Fig. 6.

Brief algorithm is as follows. In each generation, the data set used is \(P_i \) samples for training and \(Q_i \) samples for testing where \(i \) is the index of data, \(P_i \) and \(Q_i \) is positive variable. All individuals in each generation are evaluated using same training data. After the evaluation of all individuals, the best individual is evaluated using test data. If the performance to the test data is worse than that to the training data then we increase the training data in the next generation. In this case we use decision function as (9) to decide whether we generate new data or not.

\[
E_{test} > (1 + \delta) \cdot E_{train}
\]

where \(E_{test} \) and \(E_{train} \) are the NMSE of the best individual to the test and the training data. \(\delta \) is a positive parameter that represents a tolerance

We introduce acceptable maximum size of training data, \(P_{max} \). If the size of training data reaches \(P_{max} \) then the size of training data does not increase and only change the range that covered. Algorithm 1 shows the detailed explanation for adapting the data size.
Evolvable Neural Networks for Time Series Prediction with Adaptive Learning Interval

Fig. 6. Adaptive increment of data set for evolving neural networks.

Algorithm 1: Adaptive Learning Interval Algorithm

1. Index \(i \leftarrow 0 \), and set the parameters \(P_0 (a = 0, b_0 = P_0 - 1) \), \(Q_0 (c_0 = T \cdot Q_0, d = T - 1) \), \(P_{\text{max}} \), and \(\delta , E_{\text{obj}} \), where \(P_0 + Q_0 \ll T, T \) is number of given data. In this case, \(P_0 \) and \(Q_0 \) are set as acceptable minimal number of data by designer, \(P_{\text{max}} \) is set as acceptable maximum number of training data, and \(E_{\text{obj}} \) is objective MMSE value for termination.

2. Perform evolutionary algorithm for \(G \geq 1 \) generations. After \(G \) generations, calculate \(E_{\text{ini},i} \) and \(E_{\text{test},i} \). If \(E_{\text{ini},i} \leq E_{\text{obj}} \), then go to step 6.

3. \(\text{if } E_{\text{ini},i} > (1+\delta)E_{\text{ini},i} \) then increase the training data size and maintain the test data size, i.e. \(P_{i+1} = P_i + \Delta, Q_{i+1} = Q_i \).

 In this case, \(b_{i+1} = b_i + \Delta, c_{i+1} = c_i \). But after the renewal of \(b_i \) and \(c_i \), when \(c_{i+1} \leq b_{i+1} \leq c_0 \), then \(a_{i+1} = b_{i+1} \). Else if \(b_{i+1} > c_0 \) then \(b_{i+1} = c_0 \).

 If \(P_{i+1} > P_{\text{max}} \), then \(a_{i+1} = b_{i+1} \cdot P_{\text{max}} \) else \(a_{i+1} = a_i \).

4. \(\text{if } E_{\text{ini},i} \leq (1+\delta)E_{\text{ini},i} \), then maintain the training data size and increase the test data size, i.e. \(P_{i+1} = P_i, Q_{i+1} = Q_i + \Delta \).

 In this case, \(a_{i+1} = a_i, b_{i+1} = b_i, c_{i+1} = c_i - \Delta \). But after the renewal of \(b_i \) and \(c_i \), when \(c_{i+1} \leq b_{i+1} \), then \(c_{i+1} = b_{i+1} \).

5. \(i = i + 1 \) and return to step 2.

6. Stop the evolution and get the best individual as predictor to given time series.

In Algorithm 1, \(E_{\text{ini},i} \) and \(E_{\text{test},i} \) are the NMSE of the best individual of current generation to the test and the training data, \(E_{\text{obj}} \) is the objective performance, \(P_i \) and \(Q_i \) is the size of training and test data in \(i \)th index, \(\Delta \) is the increasing or decreasing data size, \(\delta \) is a positive parameter that represents a tolerance, and \(\delta \geq 1, T \) is the size of known data.

Fig. 6 shows the adaptive increment of training and test data by Algorithm 1. In case that \(E_{\text{test}} \) is worse than \((1+\delta)E_{\text{ini}}\) training data are insufficient to cover the test data. Therefore we increase the size of training data. In case that \(E_{\text{test}} \) is better than \((1+\delta)E_{\text{ini}}\) we maintain the training data and increase the size of test data. In earlier phase, we can expect that the size of both training and test data will increase. In latter phase, after sufficient training data are obtained, only the size of test data will increase. As the training data increase, calculation cost also increases. However, the increase of test data does not increase the calculation cost because all individuals are evaluated by training data and only the best one is evaluated by both training and test data.

To evaluate the effectiveness of Algorithm 1, we compare the results using Algorithm 1 and without Algorithm 1. By experiment, the MMSE of evolved neural network without Algorithm 1 was \(2.70 \times 10^{-3} \) and the MMSE of evolved neural network with Algorithm 1 was \(2.35 \times 10^{-3} \). The performance of prediction is improved by using Algorithm 1.

Evolved L-system is \(G = \{ V, P, \omega \} \) with \(V = \{ A, B, C, D \} \), and \(\omega = A \), where the generated rules by DNA code are each \(p_i \): \(p(A) = AABAB, p(B) = BC, p(C) = C, \) and \(p(D) = D \). Growth sequence of neural network is follows. The rule \(p_4 \) is not used in this case because the successor of from \(p_1 \) to \(p_1 \) does not have symbol \(D \).

\(S_1: AAB \)

\(S_2: AAABAAABAAABBC \)

\(S_3: AAAAAAAABCAABAAABAAABBCAABB \)

\(AAABAAABBC \)

Fig. 7 shows the architecture of evolved neural network, which is visualization of \(S_1 \). Input to the ENN is the values of time series \(x(t), x(t-5), x(t-10), x(t-15) \) and the output is \(\hat{x}(t + 5) \).

Fig. 7. Evolved neural network architecture for Mackey-Glass time series prediction.

6. Conclusion

In this paper, we proposed a new method of constructing neural networks and an adaptive learning interval algorithm in time series prediction. Proposed neural networks are based on the concept of development and evolution. To make evolvable neural networks, we utilize DNA coding method, L-system and evolutionary algorithm. Evolutionary neural networks are constructed from the string that is generated by production rules of L-system. DNA coding has no limitation in expressing the production rules of L-system. Therefore evolutionary neural network are effectively designed by L-system and DNA coding method. Proposed ENN is applied to time series prediction problem. By adaptive learning interval algorithm, the performance of prediction is improved.
Reference

Sang-Wook Seo

He received his B.S degree in the Department of Electrical and Electronics Engineering from Chung-Ang University, Seoul, Korea, in 2007. He is currently Master course in the School of Electrical and Electronics Engineering from Chung-Ang University. His research interests include machine learning, multi agent robotic system, Evolutionary Computation, Evolutionary Robot, etc.

Dong-Wook Lee

He received the B.S., M.S., and Ph. D. degrees in the Department of Control and Instrumentation Engineering from Chung-Ang University in 1996, 1998, and 2000, respectively. Since 2005, he has been with the Division for Applied Robot Technology at Korea Institute of Industrial Technology (KITECH), where he is currently a Senior Researcher. His areas of include artificial life, android, emotion model, learning algorithm, and distributed autonomous robot systems.

Kwee-Bo Sim

He received his B.S. and M.S. degrees in the Department of Electronic Engineering from Chung-Ang University, Korea, in 1984 and 1986 respectively, and Ph.D. degree in the Department of Electronics Engineering from The University of Tokyo, Japan, in 1990. Since 1991, he is currently a Professor. His research interests include artificial life, emotion recognition, ubiquitous intelligent robot, intelligent system, computational intelligence, intelligent home and home network, ubiquitous computing and Sense Network, adaptation and machine learning algorithms, neural network, fuzzy system, evolutionary computation, multi-agent and distributed autonomous robotic system, artificial immune system, evolvable hardware and embedded system etc. He is a member of IEEE, SICE, RSJ, KITE, KIEE, KIIS, and ICROS Fellow.