The Properties of Implications and Conjunctions

Yong Chan Kim1 and Sun Young Kim2

1 Department of Mathematics, Kangnung National University, Gangneung, 201-702, Korea
2 Department of Applied Mathematics, Pai Chai University, Dae Jeon, 302-735, Korea

Abstract

We investigate the properties of (forcing)-implications, conjunctions and adjointness in a sense Morsi et.al [1,5].

Key words: (forcing)-implications, conjunctions, adjointness

1. Introduction and Preliminaries

Recently, Morsi et.al [1,5] introduced the theory of implications and conjunctions (generalized by t-norm) related by adjointness in many valued logics.

In this paper, we introduce characterizations of (forcing)-implications, conjunctions and adjointness. We investigate the relations of them. In particular, we study the (forcing)-implications, conjunctions and adjointness induced by functions. Let L be a completely distributive lattice with a top 1 and a bottom 0.

Definition 1.1. ([1,5]) A binary operation $A : L \times L \rightarrow L$ is called an implication if it satisfies:

(A1) if $x \leq y$, then $A(x, z) \leq A(y, z)$.

(A2) if $y \leq z$, then $A(x, y) \leq A(x, z)$.

(A3) $A(1, z) = z$.

A binary operation $A : L \times L \rightarrow L$ is called a forcing-implication if it satisfies (A1), (A2) and (H) $y \leq z$ iff $H(y, z) = 1$.

Definition 1.2. ([1,5]) A binary operation $K : L \times L \rightarrow L$ is called a conjunction if it satisfies:

(K1) if $x \leq y$, then $K(x, z) \leq K(y, z)$.

(K2) if $y \leq z$, then $K(x, y) \leq K(x, z)$.

(K3) $K(1, z) = z$.

Definition 1.3. ([1,5]) (1) A binary operation K is called a left adjoint of A, denoted by $K \vdash A$, if it satisfies: for all $x, y, z \in L$,

(adjointness) $K(x, y) \leq z$ iff $y \leq A(x, z)$.

(2) A binary operation H is called a left adjoint of A, denoted by $H \vdash \text{op} A$, if it satisfies: for all $x, y, z \in L$,

(adjointness) $H(y, z) \leq \text{op} x$ iff $y \leq A(x, z)$

where $\leq \text{op} = \geq$.

Definition 1.4. ([1,5]) A function $N : L \rightarrow L$ is called a negation if it satisfies:

(N1) $N(0) = 1$ and $N(1) = 0$.

(N2) if $x \leq y$, then $N(x) \geq N(y)$.

(N3) $N(N(x)) = x$.

2. Implications and Conjunctions

Theorem 2.1. Let $f : L \rightarrow L$ be an order-isomorphic function (f is bijective and $x \leq y$ iff $f(x) \leq f(y)$) with $f(1) = 1$. Define a binary operation $A : L \rightarrow L$ by

$A(x, y) = f^{-1}(N(f(x)) \lor f(y))$.

Then A is an implication. Moreover, if L is a Boolean algebra, then A is an implication and a forcing-implication.

Proof. It is easily proved

$A(1, z) = f^{-1}(N(f(1)) \lor f(z)) = f^{-1}(f(z)) = z$.

If L is a Boolean algebra, then $1 = N(a) \lor b$ iff $a \leq b$. Thus

$1 = A(x, y) = f^{-1}(N(f(x)) \lor f(y))$

iff $1 = N(f(x)) \lor f(y)$

iff $f(x) \leq f(y)$ iff $x \leq y$.

Hence A is a forcing-implication.

Example 2.2. Let $(P(U), \subseteq, \emptyset, U)$ be a completely distributive lattice.

(1) We define an operator $A : P(U) \rightarrow P(U)$ as follows:

$A(X, Y) = Y$.

Then A is an implication operator.

(2) We define an operator $H : P(U) \rightarrow P(U)$ as follows:

$H(X, Y) = \begin{cases} U & \text{if } X \subseteq Y, \\ \emptyset & \text{if } X \nsubseteq Y. \end{cases}$
Then H is a forcing-implication.

(3) We define an operator $A : P(U) \to P(U)$ as follows

$$A(X, Y) = X^c \cup Y.$$

Then A is an implication and forcing implication operator.

Theorem 2.3. Let $f : [0, 1] \to [f(0), 1]$ be a bijective strictly-increasing function and $p > 0$. Define binary operations $A_1, A_2 : [0, 1] \times [0, 1] \to [0, 1]$ by

$$A_1(x, y) = f^{-1}\left(\frac{f(y)}{f(x)^p} \wedge 1\right), \quad f(0) \neq 0$$

$$A_2(x, y) = f^{-1}\left(1 - f(x)^p + f(y)\right) \wedge 1), \quad f(0) = 0$$

Then we have the following properties:

(1) A_1 and A_2 are implications.

(2) If $p = 1$, then A_1 and A_2 are implications and forcing-implications.

Proof. (1) Since $f(1) = 1$, we have:

$$A_1(1, y) = f^{-1}\left(\frac{f(y)}{f(1)^p} \wedge 1\right) = y,$$

$$A_2(1, y) = f^{-1}\left(1 - f(1)^p + f(y)\right) \wedge 1) = y.$$

(2) If $p = 1$, then

$$A_1(x, y) = f^{-1}\left(\frac{f(y)}{f(x)} \wedge 1\right) = 1$$

$\iff \frac{f(y)}{f(x)} \geq 1 \iff x \leq y$

$$A_2(x, y) = f^{-1}\left(1 - f(x) + f(y)\right) \wedge 1) = 1$$

$\iff 1 - f(x) + f(y) \geq 1 \iff x \leq y.$

\[\square\]

Example 2.4. (1) Let $f : [0, 1] \to [f(0), 1]$ be a bijective strictly-increasing function as $f(x) = \frac{1}{2}x^2 + \frac{1}{2}$. From Theorem 2.3(1), we define an operator

$$A_1(x, y) = f^{-1}\left(\frac{f(y)}{f(x)} \wedge 1\right)$$

$$= \sqrt{2 - \frac{y^2}{x^2 + 1}} \wedge 1.$$

If $p = 1$, then A_1 is an implication and forcing-implication.

(2) Let $f : [0, 1] \to [0, 1]$ be a bijective strictly-increasing function as $f(x) = x^2$. From Theorem 2.3(1), we define an operator

$$A_2(x, y) = f^{-1}\left(1 - f(x)^p + f(y)\right) \wedge 1)$$

$$= \sqrt{1 - x^{2p} + y^2} \wedge 1.$$

If $p = 1$, then A_2 is implications and forcing-implications.

Theorem 2.5. Let $f : L \to L$ be an order-isomorphic function with $f(1) = 1$. Define a binary operation $K : L \to L$ by

$$K(x, y) = f^{-1}(f(x) \wedge f(y)).$$

Then K is a conjunction.

Proof. It is easily proved from

$$K(1, y) = f^{-1}(f(1) \wedge f(y)) = y.$$

\[\square\]

Example 2.6. Let $(P(U), \subset, \emptyset, U)$ be a completely distributive lattice. We define an operator $K : P(U) \to P(U)$ as follows:

$$K(X, Y) = X \cap Y.$$

Then K is a conjunction.

Theorem 2.7. Let $f : [0, 1] \to [f(0), 1]$ be a bijective strictly-increasing function and $p > 0$. Define binary operations $K_1, K_2 : [0, 1] \times [0, 1] \to [0, 1]$ by

$$K_1(x, y) = f^{-1}\left(f(x)^p f(y) \vee f(0)\right), \quad f(0) \neq 0$$

$$K_2(x, y) = f^{-1}\left(f(x)^p + f(y) - 1\right) \vee 0), \quad f(0) = 0.$$

Then K_1 and K_2 are conjunctions.

Proof. Since $f(1) = 1$, we have:

$$K_1(1, y) = f^{-1}(f(1)^p f(y) \vee f(0)) = y,$$

$$K_2(1, y) = f^{-1}\left((f(1)^p + f(y) - 1) \vee 0\right) = y.$$

\[\square\]

Example 2.8. (1) Let $f : [0, 1] \to [f(0), 1]$ be a bijective strictly-increasing function as $f(x) = \frac{1}{2}x^2 + \frac{1}{2}$. From Theorem 2.7, we define an operator

$$K_1(x, y) = f^{-1}\left(f(x)^p f(y) \vee f(0)\right)$$

$$= \sqrt{2 - \frac{y^2}{x^2 + 1}} \wedge 1.$$

(2) Let $f : [0, 1] \to [0, 1]$ be a bijective strictly-increasing function as $f(x) = x^2$. From Theorem 2.7, we define an operator

$$K_2(x, y) = f^{-1}\left(f(x)^p + f(y) - 1\right) \vee 0)$$

$$= \sqrt{x^{2p} + y^2 - 1} \vee 0.$$

159
3. The Adjointness for Fuzzy Logics

Theorem 3.1. (1) A binary operation K is a left adjoint of A iff for all $x, y, z \in L$,
\[
y \leq A(x, K(x, y)), \quad K(x, A(x, z)) \leq z.
\]
(2) A binary operation H is a left adjoint of $A, H \uparrow_{\text{op}} A$ iff for all $x, y, z \in L$,
\[
y \leq A(H(y, z), z), \quad H(A(x, z), z) \geq x.
\]

Proof. (1) Since $K(x, y) \leq K(x, y)$ and $A(x, z) \leq A(x, z)$, by adjointness, we have
\[
y \leq A(x, K(x, y)), \quad K(x, A(x, z)) \leq z.
\]
Conversely, let $K(x, y) \leq z$. By (A2), we have
\[
A(x, z) \geq A(x, K(x, y)) \geq y.
\]
Let $A(x, z) \geq y$. By (K2), we have
\[
K(x, y) \leq K(x, A(x, z)) \leq z.
\]
(2) Since $H(x, y) \uparrow_{\text{op}} H(x, y)$ and $A(x, z) \leq A(x, z)$, by adjointness, we have
\[
y \leq A(H(y, z), y), \quad H(A(x, z), z) \geq x.
\]
Conversely, let $H(y, z) \leq x$. By (A1), we have
\[
A(x, z) \geq A(H(y, z), z) \geq y.
\]
Let $A(x, z) \geq y$. By (A1), we have
\[
H(y, z) \geq H(A(x, z), z) \geq x.
\]
Hence $H(y, z) \uparrow_{\text{op}} x$. □

Theorem 3.2. Let (L, \leq) be a distributive complete lattice.
(1) An implication A satisfies $A(x, \Lambda z_i) = \Lambda A(x, z_i)$ iff there exists a conjunction K with $K \vdash A$ defined by
\[
K(x, y) = \Lambda \{z \in L \mid y \leq A(x, z)\}.
\]
(2) A conjunction K satisfies $K(x, \Lambda z_i) = \Lambda K(x, z_i)$ iff there exists an implication A with $K \vdash A$ defined by
\[
A(x, y) = \Lambda \{z \in L \mid K(x, z) \leq y\}.
\]
(3) An implication A satisfies $A(\Lambda x_i, z) = \Lambda A(x_i, z)$ iff there exists a forcing-implication H with $H \uparrow_{\text{op}} A$ defined by
\[
H(x, y) = \Lambda \{z \in L \mid x \leq A(z, y)\}.
\]

Proof. (1) (\Rightarrow) (K1) If $x_1 \leq x_2$, then $A(x_1, z) \geq A(x_2, z) \geq y$ implies $K(x_1, y) \leq K(x_2, y)$.
(K2) If $y_1 \leq y_2$, then $y_1 \leq y_2 \leq A(x, z)$ implies $K(x, y_1) \leq K(x, y_2)$.
(K3) $K(1, y) = \Lambda \{z \in L \mid y \leq A(1, z) = z\} = y$.
Hence K is a conjunction. Let $y \leq A(x, z)$. Then $K(x, y) \leq z$. Let $K(x, y) \leq z$. Then $A(x, K(x, y)) \leq A(x, z)$ and
\[
A(x, K(x, y)) = A(x, \Lambda \{z \in L \mid y \leq A(x, z)\})
\]
\[
= \Lambda \{A(x, z) \mid y \leq A(x, z)\}
\]
\[
= y.
\]
So, $A(x, z) \geq y$. Hence $K \vdash A$.

(\Leftarrow) Enough to $\Lambda A(x, z_i) \leq A(x, \Lambda z_i)$. It follows from:
\[
K(x, \Lambda A(x, z_i)) \leq K(x, A(x, z_i)) \leq z_i
\]
\[
\Rightarrow K(x, \Lambda A(x, z_i)) \leq \Lambda z_i
\]
\[
\Rightarrow A(x, z_i) \leq A(x, \Lambda z_i).
\]
(2) (\Rightarrow) (A1) If $x_1 \leq x_2$, then $K(x_1, z) \leq K(x_2, z)$.
So, $A(x_1, y) \geq A(x_2, y)$.
(A2) If $y_1 \leq y_2$, then $K(x, z) \leq y_1 \leq y_2$ implies $A(x, y_1) \leq A(x, y_2)$.
(A3) $A(1, y) = \Lambda \{z \in L \mid K(1, z) = z \leq y\} = y$.
Hence A is an implication. Let $K(x, y) \leq z$. By the definition of $A, y \leq A(x, z)$. Let $z \leq A(x, y)$. Then $K(x, A(x, y)) \geq K(x, z)$ and
\[
K(x, A(x, y)) = K(x, \Lambda \{z \in L \mid K(x, z) \leq y\})
\]
\[
= \Lambda \{K(x, z) \mid K(x, z) \leq y\}
\]
\[
\leq y.
\]
So, $K(x, z) \leq y$. Hence $K \vdash A$.

(\Leftarrow) Enough to $\Lambda K(x, z_i) \geq K(x, \Lambda z_i)$. It follows from:
\[
A(x, \Lambda K(x, z_i)) \geq A(x, K(x, z_i)) \geq z_i
\]
\[
\Rightarrow A(x, \Lambda K(x, z_i)) \geq \Lambda z_i
\]
\[
\Rightarrow K(x, z_i) \geq K(x, \Lambda z_i).
\]
(3) (\Rightarrow) Let $H(y, z) = 1$ be given. Then $y \leq z$ from:
\[
z = A(1, z) = A(H(y, z), z)
\]
\[
= A(\Lambda \{x_i \mid y \leq A(x_i, z)\}, z)
\]
\[
\geq \Lambda \{A(x_i, z) \mid y \leq A(x_i, z)\}
\]
\[
\geq y.
\]
Let $y \leq z$. Since $y \leq z = A(1, z)$, we have
\[
H(y, z) = \Lambda \{x_i \mid y \leq A(x_i, z)\} = 1.
\]
Hence H is a forcing-implication. Let $y \leq A(x, z)$. By the definition of $H, x \leq H(y, z)$. Let $x \leq H(y, z)$. Then $A(H(y, z), z) \leq A(x, z)$ and
\[
A(H(y, z), z) = A(\Lambda \{x_i \in L \mid y \leq A(x_i, z)\}, z)
\]
\[
= \Lambda \{A(x_i, z) \mid y \leq A(x_i, z)\}
\]
\[
\geq y.
\]
So, \(A(x, z) \geq y \). Hence \(H \supseteq A \).

(\(\iff \)) Enough to \(A(\bigwedge x_i, z) \leq A(\bigvee x_i, z) \). It follows from:

\[
H\left(\bigwedge A(x_i, z) \right) \geq H(\bigvee (A(x_i, z))) \geq x_i \\
\Rightarrow H\left(\bigwedge A(x_i, z) \right) \geq \bigvee x_i \\
\Rightarrow A(x_i, z) \leq A(\bigvee x_i, z).
\]

\(\square \)

Theorem 3.3. Let \(f : [0, 1] \rightarrow [f(0), 1] \) be a bijective strictly-increasing continuous function. Define an implication \(A : [0, 1] \times [0, 1] \rightarrow [0, 1] \) by

\[
A(x, y) = f^{-1}\left(\frac{f(y)}{f(x)} \land 1 \right), \quad f(0) \neq 0.
\]

Then there exists a forcing-implication \(H \) such that \(A = H \) and conjunction \(K \) such that

\[
K(x, y) = f^{-1}\left(f(x)f(y) \lor f(0) \right).
\]

Proof. Since \(A \) satisfies \(A(\bigvee x_i, z) = \bigwedge A(x_i, z) \), by Theorem 3.2(3), there exists a forcing-implication \(H \) defined by

\[
H(x, y) = \bigvee \{ z \in L \mid x \leq A(z, y) \}.
\]

Since \(x \leq A(z, y) = f^{-1}\left(\frac{f(y)}{f(z)} \land 1 \right) \), we have \(z \leq f^{-1}\left(\frac{f(y)}{f(z)} \land 1 \right) \). Since \(A \) is continuous from pasting lemma, we have

\[
H(x, y) = f^{-1}\left(\frac{f(y)}{f(x)} \land 1 \right).
\]

Hence \(A = H \). Since \(A \) is continuous, we have \(A(x \land z_i) = \bigwedge A(x, z_i) \). By Theorem 3.2(1), there exists a conjunction \(K \) defined by \(K(x, y) = \bigwedge \{ z \in L \mid y \leq A(z, x) \} \). Since \(y \leq f^{-1}\left(\frac{f(y)}{f(x)} \land 1 \right) \), we have

\[
z \geq f^{-1}(f(x)f(y) \lor f(0)).
\]

Hence \(K(x, y) = f^{-1}(f(x)f(y) \lor f(0)) \). \(\square \)

Example 3.4. Let \(f : [0, 1] \rightarrow [f(0), 1] \) be a bijective strictly-increasing function as \(f(x) = \frac{1}{2}x + \frac{1}{2} \). From Theorem 3.3, we define an operator

\[
A(x, y) = f^{-1}\left(\frac{f(y)}{f(x)} \land 1 \right) = \left(\frac{2y-x+1}{x+1} \right) \land 1.
\]

Equivalently,

\[
A(x, y) = \begin{cases}
1 & \text{if } x \leq y, \\
\frac{2y-x+1}{x+1} & \text{if } x > y.
\end{cases}
\]

(1) \(A \) is an implication satisfying \(A(x \land z_i) = \bigwedge A(x, z_i) \). Hence we can obtain a conjunction \(K \) as follows

\[
K(x, y) = \bigwedge \{ z \in L \mid y \leq A(x, z) = \left(\frac{2z-x+1}{x+1} \right) \land 1 \} = (\frac{2z-x+1}{x+1}) \lor 0.
\]

Furthermore, \(A(x, K(x, y)) = y \lor \frac{1-x}{1+y} \) and \(K(x, A(x, z)) \leq z \) from:

Since \(x \geq K(x, y) \),

\[
A(x, K(x, y)) = \frac{2K(x, y) - x + 1}{x + 1} = y \lor \frac{1-x}{1+y}.
\]

If \(x > z \),

\[
K(x, A(x, z)) = \frac{zA(x, z)+x+1-A(x, z)-1}{x+1} \lor 0 = \frac{x+1}{x+1} = z.
\]

If \(x \leq z \), then \(K(x, A(x, z)) = x \leq z \).

(2) \(A \) is an implication satisfying \(A(\bigvee x_i, z) = \bigwedge A(x_i, z) \). Hence we can obtain a forcing implication \(H \) as follows

\[
H(x, y) = \bigvee \{ z \in L \mid x \leq A(z, y) = \left(\frac{2y-x+1}{x+1} \right) \land 1 \} = (\frac{2y-x+1}{x+1}) \land 1.
\]

Furthermore, \(A(H(y, z), z) = y \lor \frac{z(y+1)}{z+1} \land 1 \) and \(H(A(x, z), z) \geq x \).

Theorem 3.5. Let \(f : [0, 1] \rightarrow [0, 1] \) be a bijective strictly-increasing continuous function. Define an implication \(A : [0, 1] \times [0, 1] \rightarrow [0, 1] \) by

\[
A(x, y) = f^{-1}\left((1 - f(x) + f(y)) \land 1 \right).
\]

Then there exists a forcing-implication \(H \) such that \(A = H \) and conjunction \(K \) such that

\[
K(x, y) = f^{-1}\left((f(x) + f(y) - 1) \lor f(0) \right).
\]

Proof. Since \(A \) satisfies \(A(\bigvee x_i, z) = \bigwedge A(x_i, z) \), by Theorem 3.2(3), there exists a forcing-implication \(H \) defined by

\[
H(x, y) = \bigvee \{ z \in L \mid x \leq A(z, y) \}.
\]

Since \(x \leq A(z, y) = f^{-1}\left((1 - f(z) + f(y)) \land 1 \right) \), we have \(z \leq f^{-1}\left((1 - f(x) + f(y)) \land 1 \right) \). Since \(A \) is continuous from pasting lemma, we have

\[
H(x, y) = f^{-1}\left((1 - f(x) + f(y)) \land 1 \right).
\]

Hence \(A = H \). Since \(A \) is continuous, we have \(A(x \land z_i) = \bigwedge A(x, z_i) \). By Theorem 3.2(2), there exists a conjunction \(K \) defined by \(K(x, y) = \bigwedge \{ z \in L \mid y \leq A(x, z) \} \). Since \(y \leq f^{-1}\left((1 - f(x) + f(z)) \land 1 \right) \), we have

\[
z \geq f^{-1}\left((f(x) + f(y) - 1) \lor f(0) \right).
\]

Hence \(K(x, y) = f^{-1}\left((f(x) + f(y) - 1) \lor f(0) \right) \). \(\square \)

161
Example 3.6. Let $f : [0, 1] \to [0, 1]$ be a bijective strictly-increasing function as $f(x) = x^p (p > 0)$. From Theorem 3.5, we define an implication

$$A(x, y) = \left((1 - x^p + y^p) \land 1 \right)^{\frac{1}{p}}.$$

Since A is an implication satisfying $A(x, \land z_i) = \land A(x, z_i)$ and $A(\lor x_i, z) = \lor A(x_i, z)$, hence we can obtain a forcing implication $H = A$ and a conjunction K as follows

$$K(x, y) = \left((x^p + y^p - 1) \lor 0 \right)^{\frac{1}{p}}.$$

Theorem 3.7. Let $f : L \to L$ be an order-isomorphic function with $f(1) = 1$. Define a conjunction $K : L \times L \to L$ with $K(x, \lor z_i) = \lor K(x, z_i)$ and $K(x, y) = f^{-1}(f(x) \land f(y))$. Then there exists a forcing-implication H such that $A = H$ with $K \vdash A$ defined as

$$H(x, y) = \begin{cases} 1 & \text{if } x \leq y, \\ y & \text{if } x \geq y. \end{cases}$$

Proof. It is easily proved from Theorem 3.2. \qed

Example 3.8. Let $(P(U), \subseteq, \emptyset, U)$ be a completely distributive lattice. We define an operator $K : P(U) \to P(U)$ as follows:

$$K(X, Y) = X \cap Y.$$

Then K is a conjunction with $K(X, \cup Y) = \cup K(X, Y)$. We obtain an implication operator $A = H$ as follows:

$$A(X, Y) = \bigcup \{ Z \in P(U) \mid X \cap Z \subseteq Y \}$$

$$= \bigcup \{ Z \in P(U) \mid Z \subseteq X^c \cup Y \}$$

$$= X^c \cup Y.$$

Furthermore, $X \cap Z \subseteq Y$ iff $Z \subseteq X^c \cup Y$.

Example 3.9. We define an operator $A : [0, 1] \times [0, 1] \to [0, 1]$ as follows:

$$A(x, y) = \begin{cases} 1 & \text{if } y > 2x - 1, \\ (1 - x) \lor y & \text{if } y \leq 2x - 1. \end{cases}$$

Then A is an implication operator which does not satisfy $A(x, \land z_i) \neq \land A(x, z_i)$ and $A(\lor x_i, z) \neq \lor A(x_i, z)$ because

$$1 = \land_{n \in N} A\left(\frac{3}{4}, \frac{1}{n+1}, \frac{1}{2}\right)$$

$$\neq A(\lor \frac{3}{4}, \frac{1}{n+1}, \frac{1}{2}) = A(\frac{3}{4}, \frac{1}{2}) = \frac{1}{2}$$

$$1 = \land_{n \in N} A\left(\frac{3}{4}, \frac{1}{2} + \frac{1}{n+1}\right)$$

$$\neq A(\frac{3}{4}, \frac{1}{2} + \frac{1}{n+1}, \frac{1}{2}) = A(\frac{3}{4}, \frac{1}{2} + \frac{1}{2}) = \frac{1}{2}.$$

References

Yong Chan Kim

He received the M.S and Ph.D. degrees in Department of Mathematics from Yonsei University, in 1984 and 1991, respectively. From 1991 to present, he is a professor in Department of Mathematics, Kangnun University. His research interests are fuzzy logic and fuzzy topology.

Young Sun Kim

He received the M.S and Ph.D. degrees in Department of Mathematics from Yonsei University, in 1985 and 1991, respectively. From 1988 to present, he is a professor in Department of Applied Mathematics, Pai Chai University. His research interests are fuzzy logic and fuzzy topology.