On Fuzzy α-Weakly r-Continuous Mappings

Won Keun Min

Department of Mathematics, Kangwon National University, Chuncheon, 200-701, Korea

Abstract

In this paper, we introduce the concept of fuzzy α-weakly r-continuous mapping on a fuzzy topological space and investigate some properties of such a mapping and the relationships among fuzzy α-weakly r-continuity, fuzzy r-continuity and fuzzy weakly r-continuity.

Key words: fuzzy α-weakly r-continuous, fuzzy weakly r-semicontinuous, fuzzy S-weakly r-continuous, fuzzy weakly r-continuous

1. Introduction

The concept of fuzzy set was introduced by Zadeh [9]. Chang [1] defined a fuzzy topological space using fuzzy sets. In [3, 4], Chattopadhyay, Hazra and Samanta introduced the concept of smooth fuzzy topological space which is a generalization of the fuzzy topological space. Lee and Lee [8] introduced the concepts of fuzzy strongly r-semiopen and fuzzy strongly r-semicontinuous mappings in fuzzy topological spaces defined by Chattopadhyay. These concepts are generalizations of fuzzy strongly r-preopen sets. In this paper, we introduce the concept of fuzzy α-weakly r-continuous mapping as a generalization of the fuzzy strongly r-semicontinuous mapping and study some properties of the mapping and the relationships among fuzzy α-weakly r-continuity, fuzzy r-continuity and fuzzy weakly r-continuity.

2. Preliminaries

Let I be the unit interval $[0, 1]$ of the real line. A member μ of I^X is called a fuzzy set of X. By 0 and 1 we denote constant maps on X with value 0 and 1, respectively. For any $\mu \in I^X$, μ^c denotes the complement $1 - \mu$. All other notations are standard notations of fuzzy set theory.

An fuzzy point x_{α} in X is a fuzzy set x_{α} defined by

$$x_{\alpha}(y) = \begin{cases} \alpha, & \text{if } y = x, \\ 0, & \text{if } y \neq x. \end{cases}$$

A fuzzy point x_{α} is said to belong to an fuzzy set A in X, denoted by $x_{\alpha} \in A$, if $\alpha \leq A$ for $x \in X$.

A fuzzy set A in X is the union of all fuzzy points which belong to A.

Let $f : X \rightarrow Y$ be a mapping and $\alpha \in I^X$ and $\beta \in I^Y$.

Then $f(\alpha)$ is a fuzzy set in Y, defined by

$$f(\alpha)(y) = \begin{cases} \sup_{z \in f^{-1}(y)} \alpha(z), & \text{if } f^{-1}(y) \neq \emptyset, \\ 0, & \text{otherwise}, \end{cases}$$

for $y \in Y$.

$f^{-1}(\beta)$ is a fuzzy set in X, defined by $f^{-1}(\beta)(x) = \beta(f(x))$, $x \in X$.

A fuzzy topology [3, 4] on X is a map $T : I^X \rightarrow I$ which satisfies the following properties:

1. $T(\emptyset) = T(1) = 1$.
2. $T(\mu_1 \wedge \mu_2) \geq T(\mu_1) \wedge T(\mu_2)$ for $\mu_1, \mu_2 \in I^X$.
3. $T(\mu_1) \geq T(\mu_2)$ for $\mu_1 \in I^X$.

The pair (X, T) is called a fuzzy topological space. And $\mu \in I^X$ is said to be fuzzy r-open (resp., r-closed) if $T(\mu) \geq r$ (resp., $T(\mu^c) \geq r$).

Let A be a fuzzy set in an FTS (X, T) and $r \in (0, 1] = I_0$.

The r-closure of A, denoted by $cl(A, r)$, is defined as $cl(A, r) = \bigcap \{B \in I^X : A \subseteq B \text{ and } B \text{ is fuzzy } r\text{-closed}\}$.

The r-interior of A, denoted by $int(A, r)$, is defined as $int(A, r) = \cup \{B \in I^X : B \subseteq A \text{ and } B \text{ is fuzzy } r\text{-open}\}$.

Definition 2.1 ([5, 6, 7]). Let A be a fuzzy set in an FTS (X, T) and $r \in (0, 1] = I_0$. Then A is said to be

1. fuzzy r-semiopen if there is a fuzzy r-open set B in X such that $B \subseteq A \subseteq cl(B, r)$,
2. fuzzy r-preopen if $A \subseteq int(cl(A, r), r)$,
3. fuzzy r-regular open if $A = int(cl(A, r), r)$,
4. fuzzy r-strong semiopen if $A \subseteq int(cl(A, r), r), r)$.

Let A be a fuzzy set in an FTS (X, T) and $r \in I_0$.

The fuzzy r-strong semi-closure and the fuzzy r-strong semi-interior of A, denoted by $sscl(A, r)$ and $ssint(A, r)$, respectively, are defined as
3. Main Results

Definition 2.2 ([6, 7, 8]). Let \(f : X \to Y \) be a mapping from FTS’s \((X, T)\) and \((Y, U)\). Then \(f \) is said to be

1. fuzzy \(r \)-continuous if for each fuzzy \(r \)-open set \(B \) of \(Y \), \(f^{-1}(B) \) is a fuzzy \(r \)-open set in \(X \),
2. fuzzy almost \(r \)-continuous if for each fuzzy \(r \)-open set \(B \) of \(Y \), \(f^{-1}(B) \) is a fuzzy \(r \)-regular open set in \(X \),
3. fuzzy \(r \)-semicontinuous if for each fuzzy \(r \)-open set \(B \) of \(Y \), \(f^{-1}(B) \) is a fuzzy \(r \)-semiopen set in \(X \),
4. fuzzy strongly \(r \)-semiopen if for each fuzzy \(r \)-open set \(B \) of \(Y \), \(f^{-1}(B) \) is a fuzzy strongly \(r \)-semiopen set in \(X \),
5. fuzzy weakly \(r \)-continuous if for each fuzzy \(r \)-open set \(B \) of \(Y \), \(f^{-1}(B) \) is \(\text{int}(f^{-1}(cl(B,r)),r) \),

Remark 3.2. Every fuzzy strongly \(r \)-semiopen is fuzzy \(\alpha \)-weakly \(r \)-continuous but the converse is not always true.

Example 3.3. Let \(X = I \) and let \(\beta \) and \(\mu \) be fuzzy sets of \(X \) defined as

\[
\beta(x) = -\frac{1}{3}x + \frac{2}{3}, \text{ for } x \in I, \quad \mu(x) = \frac{1}{3}x, \text{ for } x \in I.
\]

Define a fuzzy topology \(T : I^X \to I \) by

\[
T(\sigma) = \begin{cases}
1, & \text{if } \sigma = 0, 1, \\
\frac{1}{2}, & \text{if } \sigma = \beta, \\
0, & \text{otherwise};
\end{cases}
\]

and a fuzzy topology \(U : I^X \to I \) by

\[
U(\sigma) = \begin{cases}
1, & \text{if } \sigma = 0, 1, \\
\frac{1}{2}, & \text{if } \sigma = \mu, \\
0, & \text{otherwise}.
\end{cases}
\]

Note that

\[
\text{int}(cl(int(f^{-1}(\mu),\frac{1}{2})),\frac{1}{2})) = 0;
\]

\[
\text{ssint}(f^{-1}(cl(\mu,\frac{1}{2})),\frac{1}{2}) = \mu^c.
\]

Hence the identity mapping \(f : (X, T) \to (X, U) \) is a fuzzy \(\alpha \)-weakly \(\frac{1}{2} \)-continuous mapping but it is not fuzzy strongly \(\frac{1}{2} \)-semicontinuous.

Theorem 3.4. Let \(f : (X, T) \to (Y, U) \) be a mapping on FTS’s \((X, T)\) and \((Y, U)\) \((r \in I_0)\). Then \(f \) is a fuzzy \(\alpha \)-weakly \(r \)-continuous mapping if and only if for every fuzzy point \(x_0 \) and each fuzzy \(r \)-open set \(V \) containing \(f(x_0) \), there exists a fuzzy \(r \)-strong semiopen set \(U \) containing \(x_0 \) such that \(f(U) \subseteq cl(V,r) \).

Proof. Suppose \(f \) is a fuzzy \(\alpha \)-weakly \(r \)-continuous mapping. Let \(x_0 \) be a fuzzy point in \(X \) and \(V \) a fuzzy \(r \)-strong semiopen set containing \(f(x_0) \). Then there exists a fuzzy \(r \)-open set \(B \) such that \(f(x_0) \in B \subseteq V \). Since \(f \) is a fuzzy \(\alpha \)-weakly \(r \)-continuous mapping,

\[
f^{-1}(B) \subseteq \text{ssint}(f^{-1}(cl(B,r)),r) \subseteq \text{ssint}(f^{-1}(cl(V,r)),r).
\]

Set \(U = \text{ssint}(f^{-1}(cl(V,r)),r) \). Then \(U \) is a fuzzy \(r \)-strong semiopen set such that \(f^{-1}(B) \subseteq U \). So \(f(U) \subseteq cl(V,r) \).

For the converse, let \(V \) be a fuzzy \(r \)-open set in \(Y \). For each \(x_0 \in f^{-1}(V) \), by hypothesis, there exists a fuzzy \(r \)-strong semiopen set \(U_{x_0} \) containing \(x_0 \) such that \(f(U_{x_0}) \subseteq cl(V,r) \). Now we can say for each \(x_0 \in f^{-1}(V) \), \(x_0 \in U_{x_0} \subseteq f^{-1}(cl(V,r)) \).

Thus \(\cup \{U_{x_0} : x_0 \in f^{-1}(V)\} \subseteq f^{-1}(cl(V,r)) \). Since \(\cup \{U_{x_0} : x_0 \in f^{-1}(V)\} \) is fuzzy \(r \)-strong semiopen, we have \(f^{-1}(V) \subseteq \text{ssint}(f^{-1}(cl(V,r)),r) \).

Theorem 3.5. Let \(f : (X, T) \to (Y, U) \) be a mapping on FTS’s \((X, T)\) and \((Y, U)\) \((r \in I_0)\). Then the following statements are equivalent:

1. \(f \) is fuzzy \(\alpha \)-weakly \(r \)-continuous.
2. \(\text{sscl}(f^{-1}(\text{int}(F,r)),r) \subseteq f^{-1}(F) \) for each fuzzy \(r \)-closed set \(F \) in \(Y \).
3. \(\text{sscl}(f^{-1}(\text{int}(cl(B,r)),r)) \subseteq f^{-1}(cl(B,r)) \) for each fuzzy set \(B \) in \(Y \).
4. \(f^{-1}(\text{int}(B,r)) \subseteq \text{ssint}(f^{-1}(\text{int}(cl(B,r)),r),r) \) for each fuzzy set \(B \) in \(Y \).
5. \(\text{sscl}(f^{-1}(V,r)) \subseteq f^{-1}(cl(V,r)) \) for a fuzzy \(r \)-open set \(V \) in \(Y \).

Proof. (1) \(\Rightarrow\) (2) Let \(F \) be any fuzzy \(r \)-closed set of \(Y \). Then since \(\tilde{I} - F \) is a fuzzy \(r \)-open set in \(Y \), from (1), it follows

\[
f^{-1}(\tilde{I} - F) \subseteq \text{ssint}(f^{-1}(cl(\tilde{I} - int(F,r)),r),r) = \text{ssint}(f^{-1}(\tilde{I} - int(F,r)),r) = \text{ssint}(\tilde{I} - f^{-1}(int(F,r)),r) = \tilde{I} - \text{sscl}(f^{-1}(int(F,r)),r).
\]
Hence we have $sscl(f^{-1}(int(F,r)),r) \subseteq f^{-1}(F)$.

(2) \Rightarrow (3) Let $B \in I^r$. Since $cl(B,r)$ is a fuzzy r-closed set in Y, by (2), $sscl(f^{-1}(int(cl(B,r),r)) \subseteq f^{-1}(cl(B,r))$.

(3) \Rightarrow (4) For $B \in I^r$, from (3), it follows

\[
f^{-1}(int(B,r)) = \overline{1} - f^{-1}(cl(\overline{1} - B,r))
\subseteq \overline{1} - sscl(f^{-1}(int(\overline{1} - B,r),r),r)
= ssint(f^{-1}(cl(int(B,r),r),r)).
\]

Hence we have

\[
f^{-1}(int(B,r)) \subseteq sscl(f^{-1}(cl(int(B,r),r),r)).
\]

(4) \Rightarrow (5) Let V be any fuzzy r-open set of Y. Then from (4) and $(V,r) \subseteq int(cl(V,r),r)$, it follows

\[
\begin{aligned}
&\overline{1} - f^{-1}(cl(V,r))
= f^{-1}(\overline{1} - cl(V,r))
\subseteq sscl(f^{-1}(cl(int(\overline{1} - V,r),r),r)
= ssint(\overline{1} - f^{-1}(cl(int(V,r),r),r))
\subseteq \overline{1} - sscl(f^{-1}(cl(V,r),r)).
\end{aligned}
\]

Hence $sscl(f^{-1}(V),r) \subseteq f^{-1}(cl(V,r))$.

(5) \Rightarrow (1) Let V be a fuzzy r-open set in Y. From $(V,r) \subseteq int(cl(V,r))$ and (5), we have

\[
\begin{aligned}
f^{-1}(V) &\subseteq f^{-1}(int(cl(V,r),r))
= \overline{1} - f^{-1}(cl(\overline{1} - cl(V,r),r))
\subseteq sscl(f^{-1}(cl(V,r),r),r)
= ssint(f^{-1}(cl(V,r),r)).
\end{aligned}
\]

Hence f is a fuzzy α-weakly r-continuous mapping.

\[\square\]

\textbf{Theorem 3.6.} Let $f : (X,T) \rightarrow (Y,U)$ be a mapping on FTS's (X,T) and (Y,U) ($r \in I_0$). Then f is fuzzy α-weakly r-continuous if and only if $sscl(f^{-1}(int(cl(V,r),r)),r) \subseteq f^{-1}(cl(V,r))$ for each fuzzy r-preopen set V.

\textit{Proof.} Assume f is fuzzy α-weakly r-continuous. Let V be a fuzzy r-preopen of Y. Then $V \subseteq int(cl(V,r),r)$. Set $A = int(cl(V,r),r)$. Since A is a fuzzy r-open set, by Theorem 3.5 (5), we have

\[
sscl(f^{-1}(int(cl(A,r),r),r),s) \subseteq f^{-1}(cl(A,r)).
\]

From $cl(A,r) = cl(V,r)$, it follows

\[
sscl(f^{-1}(int(cl(V,r),r)),r) \subseteq f^{-1}(cl(V,r)).
\]

For the converse, let G be a fuzzy r-open set of Y. Then since G is a fuzzy r-preopen set, we have

\[
sscl(f^{-1}(G),r) \subseteq sscl(f^{-1}(int(cl(G,r),r)),r) \subseteq f^{-1}(cl(G,r)).
\]

Hence, by Theorem 3.5 (5), f is a fuzzy α-weakly r-continuous mapping.

\[\square\]

\textbf{Theorem 3.7.} Let $f : (X,T) \rightarrow (Y,U)$ be a mapping on FTS's (X,T) and (Y,U) ($r \in I_0$). Then f is fuzzy α-weakly r-continuous if and only if $sscl(f^{-1}(int(cl(G,r),r)),r) \subseteq f^{-1}(cl(G,r))$ for each fuzzy r-semiopen set G in Y.

\textit{Proof.} Assume f is fuzzy α-weakly r-continuous. Let V be a fuzzy r-semiopen in Y. Then $V \subseteq cl(int(V,r),r)$. Set $F = cl(int(V,r),r)$. Since F is a fuzzy r-closed set, by Theorem 3.5 (2), we have

\[
sscl(f^{-1}(int(F,r),r)) \subseteq f^{-1}(F).
\]

From $cl(V,r) = cl(int(V,r),r) = F$, it follows

\[
sscl(f^{-1}(int(cl(F,r),r),r)) \subseteq f^{-1}(cl(F,r)).
\]

For the converse, let G be a fuzzy r-open set of Y. Then since G is a fuzzy r-semiopen set, by hypothesis and Theorem 3.5 (5), f is a fuzzy α-weakly r-continuous mapping.

\[\square\]

\textbf{Theorem 3.8} ([8]). Let $f : (X,T) \rightarrow (Y,U)$ be a mapping on FTS's (X,T) and (Y,U) ($r \in I_0$). Then f is fuzzy strongly r-semicontinuous if and only if $cl(int(f^{-1}(cl(G,r)),r),r),r) \subseteq f^{-1}(cl(F,r))$ for each fuzzy set G in Y.

\textbf{Theorem 3.9.} Let $f : (X,T) \rightarrow (Y,U)$ be a mapping on FTS's (X,T) and (Y,U) ($r \in I_0$). Then if f is fuzzy strongly r-semicontinuous, then it is fuzzy weakly r-continuous.

\textit{Proof.} Let B be fuzzy r-open in Y. Since f is fuzzy strongly r-semicontinuous, $f^{-1}(B)$ is fuzzy strongly r-semiopen and $f^{-1}(cl(B,r))$ is fuzzy strongly r-semiclosed in X. Thus from Theorem 3.8, it follows

\[
f^{-1}(B) \subseteq int(cl(f^{-1}(B),r),r)
\subseteq cl(int(cl(f^{-1}(cl(B),r),r),r),r)
\subseteq f^{-1}(cl(B,r)).
\]

This implies $f^{-1}(B) \subseteq int(f^{-1}(cl(B,r),r))$. Hence f is fuzzy weakly r-continuous.

\[\square\]

\textbf{Example 3.10.} Let $X = I$ and let A and B be fuzzy sets defined as follows

\[
A(x) = \frac{1}{4}x + \frac{3}{4}, \text{ for all } x \in I;
\]

\[
B(x) = \frac{1}{4}x + \frac{1}{4}, \text{ for all } x \in I.
\]

Define fuzzy topologies T_1 and T_2 on X as follows.
On Fuzzy α–Weakly r–Continuous Mappings

Finally we get the following implications:

fuzzy r–continuous \Rightarrow fuzzy strongly r–semicontinuous \Rightarrow fuzzy weakly r–continuous \Rightarrow fuzzy α-weakly r–continuous

References

Won Keun Min
Professor of Kangwon National University
Research Area: Fuzzy topology, General topology
E-mail: wkmin@kangwon.ac.kr