Control and Synchronization of New Hyperchaotic System using Active Backstepping Design

Sung-Hun Yu*, Chang-Ho Hyun**, and Mignon Park***

* School of Electrical and Electronic Engineering, Yonsei University
** Division of Electrical Electronic and Control Engineering, Kongju National University

Abstract
In this paper, an active backstepping design is proposed to achieve control and synchronization of a new hyperchaotic system. The proposed method is a systematic design approach and exists in a recursive procedure that interlaces the choice of a Lyapunov function with the design of the active control. The proposed controller enables stabilization of chaotic motion to the origin as well as synchronization of the two identical new hyperchaotic systems. Numerical simulations illustrate the validity of the proposed control technique.

Key Words: hyperchaotic system, chaos control, chaos synchronization, active control, backstepping control.

1. Introduction
Since the pioneering work by Ott, Grebogi and Yorke (OGY) [1] and Pecora and Carroll [2], chaos control and synchronization, as an important topic in the nonlinear science, has been widely investigated in a variety of fields, such as engineering, physics, mathematics, life sciences, biomedical communities, heart beat regulations, etc.

It is well known that for regular chaotic systems, there is just one positive Lyapunov exponent. Messages masked by regular chaotic systems are not always safe [3]. It was suggested that this problem can be overcome by using higher-dimensional hyperchaotic systems, which have increased randomness and unpredictability [4]. The hyperchaotic attractor is characterized as a chaotic attractor with more than one positive Lyapunov exponent, and indicates that the dynamics of the system are expanded in more than one direction. Due to its higher unpredictability than regular chaotic systems, hyperchaos may be more useful in some relevant applications. Therefore, how to realize control and synchronization of hyperchaotic systems is an interesting and challenging work.

Until now, enormous progresses have been made in understanding various methods [5–17] to achieve control and synchronization of chaotic systems. Fortunately, the existing method to control and synchronize chaotic systems can be generalized to control and synchronize hyperchaotic systems [18–20]. Among the aforementioned methods, the active control [9–13] and the backstepping design [14–17] have been widely recognized as two powerful design methods for control and synchronization of chaotic systems. Chaos synchronization using the active control was proposed by Bai and Lonngren for the Lorenz system [9]. The Active control technique can be used widely to control various nonlinear systems including chaotic systems since it has the flexibility to design a control law. The backstepping design method can guarantee the global stability, and the tracking and transient performance for a broad class of strict-feedback nonlinear systems [21]. The technique is a systematic design approach and consists in a recursive procedure that skillfully interlaces the choice of a Lyapunov function with the control. Consequently, the main aim of this paper is in an attempt to use the combination of the two control approaches, i.e., active backstepping method, to control and synchronize hyperchaotic system.

In this paper, the active backstepping control scheme is proposed to control and synchronize a new hyperchaotic system that is recently presented by Qi et al. [22]. The new hyperchaotic system has two large positive and one small negative Lyapunov exponents over the large range of parameters. Spectral analysis shows that the system in the hyperchaotic mode has an extremely broad frequency bandwidth of high magnitudes, verifying its unusual random nature and indicating its great potential for some pertinent engineering applications [23–24].

The rest of the paper is organized as follow. In Section 2, a brief description of the new hyperchaotic system is introduced. We present the control scheme of hyperchaotic system in Section 3. Section 4 deals with the synchronization behavior of two identical new hyperchaotic systems and finally some concluding remarks are made in Section 5.

2. System Description
The new 4D hyperchaotic system was performed by Qi et al. [22]. This chaotic system, named as Qi system in this paper, is described by the following nonlinear differential equations.
\[
\begin{align*}
\dot{x}_1 &= a(x_2 - x_1) + x_2 x_3 \\
\dot{x}_2 &= b(x_1 + x_2) - x_1 x_3 + u_1 \\
\dot{x}_3 &= -c x_3 - g x_4 + x_1 x_2 + u_2 \\
\dot{x}_4 &= -f x_4 + h x_3 + x_1 x_2
\end{align*}
\] (1)

where \(x_1, x_2, x_3\) and \(x_4\) are state variables and \(a, b, c, f, g\) and \(h\) are all positive real constant parameters. When \(a = 50, b = 24, c = 13, f = 8, g = 33\) and \(h = 30\), the system (1) is hyperchaotic, and the hyperchaotic attractors are shown in Fig. 1.

\[
\begin{align*}
\begin{array}{ll}
(a) & x_1 - x_2 - x_3 \\
(b) & x_1 - x_2 - x_4 \\
(c) & x_1 - x_3 - x_4 \\
(d) & x_2 - x_3 - x_4
\end{array}
\end{align*}
\]

Fig. 1. 3-D Phase portrait of the hyperchaotic system (1)

3. Control of the New Hyperchaotic System

3.1. Active Backstepping Control

In the following, we will use the backstepping design method to design an active controller for the hyperchaotic system presented by the equation (1) to the origin. According to the active control theory, the controlled hyperchaotic system can be written in the following form

\[
\begin{align*}
\dot{x}_1 &= a(x_2 - x_1) + x_2 x_3 + u_1 \\
\dot{x}_2 &= b(x_1 + x_2) - x_1 x_3 + u_2 \\
\dot{x}_3 &= -c x_3 - g x_4 + x_1 x_2 + u_3 \\
\dot{x}_4 &= -f x_4 + h x_3 + x_1 x_2 + u_4
\end{align*}
\] (2)

where \(u = [u_1, u_2, u_3, u_4]'\) is the active control function.

In practical applications, the controller to be designed must be simple, efficient and easy to implement. Thus, let \(u_1 = 0\) and \(u_4 = 0\), then the controlled dynamics can be written as

\[
\begin{align*}
\dot{x}_1 &= a(x_2 - x_1) + x_2 x_3 + u_1 \\
\dot{x}_2 &= b(x_1 + x_2) - x_1 x_3 + u_2 \\
\dot{x}_3 &= -c x_3 - g x_4 + x_1 x_2 + u_3 \\
\dot{x}_4 &= -f x_4 + h x_3 + x_1 x_2 + u_4
\end{align*}
\] (3)

Now our objective is to find \(u_1\) and \(u_3\) that make the state vectors \(x_i = [x_1, x_2, x_3, x_4]'\) converge to zero as time \(t\) goes to infinity. In order to achieve such goal, the backstepping design method is adopted.

The backstepping design procedure is recursive. At the \(i\)-th step, the \(i\)-th order subsystem is stabilized with respect to a Lyapunov function \(V_i\) by the design of a virtual control \(\alpha_i\) and the control input function \(u_i\). Now we begin to design the active controller based on the backstepping design method as follows.

Step 1. Let \(z_i = x_1\), then we can obtain its derivative as follows

\[
\dot{z}_i = \dot{x}_i = ax_2 - ax_1 + x_2 x_3 + u_1
\] (4)

where \(x_i = \alpha_i(z_i)\) is regarded as a virtual control input.

For the design of \(\alpha_i\) to stabilize \(z_i\)-subsystem (4), we choose Lyapunov function \(V_1\) as

\[
V_1 = \frac{z_i^2}{2}
\] (5)

The derivative of \(V_1\) is obtained as

\[
\dot{V}_1 = \dot{z}_1 z_i = -az_1^2 + (a + x_1)z_i
\] (6)

If we choose \(\alpha_1 = 0\), then \(\dot{V}_1\) is negative definite. This implies that the \(z_i\)-subsystem (4) is asymptotically stable.

Since the virtual control function \(\alpha_1\) is estimative, the error between \(x_1\) and \(\alpha_1\) is

\[
z_i = x_1 - \alpha_1
\] (7)

Then, we can obtain the following \((z_i, z_2)\)-subsystem

\[
\begin{align*}
\dot{z}_i &= -az_1 + az_2 + z_1 x_3 \\
\dot{z}_2 &= h z_1 - h z_2 - z_1 x_1 + u_2
\end{align*}
\] (8)

where \(x_1 = \alpha_i(z_i, z_2)\) is regarded as a virtual controller.

Step 2. In this step, we stabilize the \((z_i, z_2)\)-subsystem (8). We can choose a Lyapunov function \(V_2\) as follows

\[
V_2 = V_1 + \frac{z_i^2}{2}
\] (9)

Its derivative is given by

\[
\dot{V}_2 = \dot{V}_1 + z_1 \dot{z}_2 = -az_1^2 + z_1(a + b)z_1 + (a + b)z_2 + u_2
\] (10)

If we choose \(\alpha_2 = 0\) and \(u_2 = -(a + b)z_1 - 2bz_2\), then \(\dot{V}_2 = -az_1^2 - bz_1^2 < 0\) makes \((z_i, z_2)\)-subsystem (8) asymptotically stable. Similarly, assume that \(z_i = x_1 - \alpha_i\), then we can derive the following \((z_i, z_2, z_3)\)-subsystem

\[
\dot{z}_1 = \dot{z}_2 = \dot{z}_3 = \ldots
\]
\[
\begin{align*}
\dot{z}_1 &= -az_1^2 + az_2 + z_3, \\
\dot{z}_2 &= -az_2^2 - bz_2 - z_3, \\
\dot{z}_3 &= -cz_3 - gx_4 + z_1 z_2 + u_3.
\end{align*}
\] (11)

Step 3. In order to stabilize the \((z_1, z_2, z_3)\)-subsystem (11), we can choose a Lyapunov function \(V_3\) as follows:

\[
V_3 = V'_3 + \frac{z_3^2}{2}.
\] (12)

Its derivative of \(V_3\) is

\[
\dot{V}_3 = \dot{V}'_3 + z_3 \dot{z}_3
= -az_1^2 - bz_2^2 + z_1(-cz_3 - gx_4 + z_1 z_2 + u_3)
\] (13)

If we choose \(u_3 = gx_4 - z_1 z_2\),

then \(\dot{V}_3 = -az_1^2 - bz_2^2 - c^2 < 0\) makes the \((z_1, z_2, z_3)\)-subsystem (11) asymptotically stable.

Since \(\dot{V}_3\) is negative definite, it follows that the equilibrium \((0,0,0)\) of the subsystem (11) is global asymptotically stable.

Furthermore, since \(z_1 = x_1\), \(z_2 = x_2 - \alpha_2 = x_2\) and \(z_3 = x_3 - \alpha_3 = x_3\), \(x_1, x_2,\) and \(x_3\) go to zeros asymptotically as well. According to \(x_1 \rightarrow 0, x_2 \rightarrow 0, x_3 \rightarrow 0\) and the fourth equation of system (3), we get that \((x_1, x_2, x_3, x_4)\) in the controlled system (3) tend to \((0,0,0,0)\) as \(t \rightarrow \infty\). In other words, the controlled system (3) is asymptotically stable with the proposed control inputs.

3.2. Numerical Results

For the purpose of numerical simulation, we set \(a = 50\), \(b = 24\), \(c = 13\), \(f = 8\), \(g = 33\) and \(h = 30\), as in Fig. 1, to ensure hyperchaotic behaviors. The initial conditions for the hyperchaotic system (3) set to be \(x_1(0) = 0.1, x_2(0) = 0.2, x_3(0) = 0.3, x_4(0) = 0.4\). Fig. 2 shows the time response of states with the proposed control functions. The controller is added to the hyperchaotic system (3) at \(t = 20\). As expected, it shows that the hyperchaotic system can be stabilized to the origin point \((0,0,0,0)\).

4. Synchronization of New Hyperchaotic System

4.1. Active Backstepping Synchronization

In this section, we will use the backstepping method to design an active controller to synchronize two identical Qi hyperchaotic systems.

In order to observe the synchronization behavior in the Qi hyperchaotic system, we assume the drive system as

\[
\begin{align*}
\dot{x}_1 &= a(x_2 - x_1) + x_2 x_3 \\
\dot{x}_2 &= b(x_1 + x_2) - x_1 x_2 \\
\dot{x}_3 &= -c x_3 - g x_4 + x_1 x_2 \\
\dot{x}_4 &= -f x_4 + h x_3 + x_3 x_2
\end{align*}
\] (14)

![Fig. 2. The time response of states for the system (3) with the proposed controller.](image-url)
and the response system is

\[
\begin{align*}
\dot{y}_1 &= a(y_2 - y_1) + y_2y_3 + u_1 \\
\dot{y}_2 &= b(y_1 + y_2) - y_1y_3 + u_2 \\
\dot{y}_3 &= -c_1y_1 - g_1y_3 + y_2y_4 + u_3 \\
\dot{y}_4 &= -f_1y_3 + hy_3 + y_1y_2 + u_4
\end{align*}
\]

(15)

where \(u = [u_1, u_2, u_3, u_4] \) is the active control function. Likewise in section 2, let \(u_1 = 0 \) and \(u_3 = 0 \), then the response system dynamics can be written as

\[
\begin{align*}
\dot{y}_1 &= a(y_2 - y_1) + y_2y_3 \\
\dot{y}_2 &= b(y_1 + y_2) - y_1y_3 + u_2 \\
\dot{y}_3 &= -c_1y_1 - g_1y_3 + y_2y_4 + u_3 \\
\dot{y}_4 &= -f_1y_3 + hy_3 + y_1y_2 + u_4
\end{align*}
\]

(16)

Here, we aim at determining the controllers \(u_2 \) and \(u_4 \) which are required for the controlled response system (16) to synchronize with the drive system (14). For this purpose, let the error states between the state variables of the response system (16) and the drive system (14) be

\[
e_1 = y_1 - x_1, e_2 = y_2 - x_2, e_3 = y_3 - x_3, e_4 = y_4 - x_4
\]

(17)

Subtracting (14) from (16), we obtain the following error dynamics

\[
\begin{align*}
\dot{e}_1 &= a(e_2 - e_1) + e_2e_3 + x_2e_4 + x_2e_3 \\
\dot{e}_2 &= b(e_1 + e_2) - e_1e_3 - x_1e_1 + x_1e_3 + u_2 \\
\dot{e}_3 &= -c_1e_1 - ge_3 + e_2e_3 + x_1e_1 + x_1e_2 + e_1 + u_3 \\
\dot{e}_4 &= -f_1e_3 + he_3 + e_2e_4 + x_1e_1 + x_1e_2
\end{align*}
\]

(18)

The next step is to find \(u_2 \) and \(u_4 \) that make the error vectors \(e = [e_1, e_2, e_3, e_4] \) converge to zero as time \(t \) goes to infinity. This implies that the trajectory of the response system (16) asymptotically approaches the trajectory of the drive system (14).

Again, we design the active controller based on the backstepping method outlined in subsection 3.1

Step 1. Let \(z_1 = e_1 \), then we can obtain its derivative

\[
\dot{z}_1 = \dot{e}_1 = a(e_2 - e_1) + e_2e_3 + x_1e_3 + x_2e_3
\]

where \(e_2 = \alpha(z_1) \) is regarded as a virtual control input.

For the design of \(\alpha \) to stabilize \(z_1 \)-subsystem (19), we choose Lyapunov function \(V_1 \) as

\[
V_1 = \frac{z_1^2}{2}
\]

(20)

The derivative of \(V_1 \) is as following

\[
\dot{V}_1 = z_1\dot{z}_1
\]

(21)

If we choose \(\alpha_1 = 0 \), then \(\dot{V}_1 = -az_1^2 - x_1z_1e_3 \). The second term \(x_1z_1e_3 \) in \(\dot{V}_1 \) will be cancelled at the next step.

Since the virtual control input \(\alpha_1 \) is estimative the error between \(e_1 \) and \(\alpha_1 \) is

\[
z_1 = e_1 - \alpha_1.
\]

(22)

Then, we can obtain the following \((z_1, z_2) \)-subsystem;

\[
\begin{align*}
\dot{z}_2 &= -az_2^2 + (a + x_1)z_2 + x_2e_1 + z_2e_3 \\
\dot{z}_1 &= (b - x_1)z_1 + bz_2 - (x_1 + z_1)e_1 + u_2
\end{align*}
\]

(23)

where \(e_1 = \alpha(z_1, z_2) \) is regarded as a virtual controller.

Step 2. In this step, we will stabilize the \((z_1, z_2) \)-subsystem (23). We can choose a Lyapunov function \(V_2 \) as follows

\[
V_2 = V_2 + \frac{z_2^2}{2}
\]

(24)

Its derivative is given by

\[
\dot{V}_2 = \dot{V}_2 + z_2\dot{z}_2
\]

\[
\begin{align*}
&= -az_2^2 + (a + x_1 + \alpha_2)z_2^2 + x_2e_1 + z_2e_3 \\
&= z_2[(b - x_1)z_1 + bz_2 - (x_1 + z_1)e_1 + u_2]
\end{align*}
\]

(25)

\[
\begin{align*}
&= -az_2^2 + (x_2z_1 - x_1z_2)\alpha_2 \\
&= z_2\{(a + b)z_1 + bz_2 + u_2}
\end{align*}
\]

If we choose \(\alpha_2 = 0 \) and \(u_2 = -(a + b)z_1 - 2bz_2 \), then \(\dot{V}_2 = -az_2^2 - bz_2^2 < 0 \) makes \((z_1, z_2) \)-subsystem (23) asymptotically stable. Similarly, assume that \(z_2 = e_2 - \alpha_2 \), then we can derive the following \((z_1, z_2, z_3) \)-subsystem

\[
\begin{align*}
\dot{z}_3 &= -az_3^2 + (a + x_1)z_3 + x_2z_1 + z_2z_3 \\
\dot{z}_2 &= -(a + x_1)z_2 - bz_2 - x_1z_3 - z_3z_1 \\
\dot{z}_1 &= x_2z_1 + x_1z_3 - cz_3 - ge_3 + z_2z_1 + u_4
\end{align*}
\]

(26)

Step 3. In order to stabilize the \((z_1, z_2, z_3) \)-subsystem (26), we can choose a Lyapunov function \(V_3 \) as follows

\[
V_3 = V_3 + \frac{z_3^2}{2}
\]

(27)

Its derivative of \(V_3 \) is

\[
\dot{V}_3 = \dot{V}_3 + z_3\dot{z}_3
\]

\[
\begin{align*}
&= -az_3^2 - bz_2^2 \\
&= z_3\{(2x_1z_1 - cz_3 - ge_3 + z_2z_1 + u_3)
\end{align*}
\]

(28)

If we choose \(u_3 = -2x_1z_1 + ge_3 - z_2z_1 \), then \(\dot{V}_3 = -az_3^2 - bz_2^2 < 0 \) makes the \((z_1, z_2, z_3) \)-subsystem (26) asymptotically stable.

Likewise, since \(\dot{V}_3 \) is negative definite, it follows that in the \((z_1, z_2, z_3) \) coordinates the equilibrium \((0,0,0)\) of the
subsystem (26) is global asymptotically stable. In view of
\[z_1 = e_1, \quad z_2 = e_3 - \alpha_2 = e_3 \quad \text{and} \quad z_3 = e_4 - \alpha_4 = e_4, \]
this implies that \(e_1, e_2 \) and \(e_3 \) go to zero asymptotically. According to
\[e_1 \to 0, e_2 \to 0, e_3 \to 0 \quad \text{and} \quad \text{the fourth equation of system (18),} \]
we get that \((e_1, e_2, e_3, e_4) \) of the controlled system (18) go to
\[(0,0,0,0) \quad \text{as} \quad t \to \infty. \]
In other words, the trajectory of the
controlled response system (16) asymptotically approaches the
trajectory of the drive system (14) with the proposed control inputs.

4.2. Numerical Results

Similarly, we set \(a = 50, \quad b = 24, \quad c = 13, \quad f = 8, \quad g = 33 \]
and \(h = 30 \) to ensure hyperchaotic behavior. The initial
conditions for the drive hyperchaotic system (14) and the
response hyperchaotic system (16) are
\[x_1(0) = 0.1, \quad x_2(0) = 0.2, \quad x_3(0) = 0.3, \quad x_4(0) = 0.4 \quad \text{and} \]
\[y_1(0) = 1.0, \quad y_2(0) = 2.0, \quad y_3(0) = 3.0, \quad y_4(0) = 4.0. \]
Thus, the initial values of the error states are
\[e_1(0) = 0.9, \quad e_2(0) = 1.8, \quad e_3(0) = 2.7, \quad e_4(0) = 3.6. \]

Fig. 3 shows the time response of states determined by
the drive system and the response system with the proposed control
function. The trajectories of synchronization errors for the drive
system and the response system are shown in Fig. 4. The
controller turns on at \(t = 3 \). As expected, it shows that all state
variables are synchronized and the synchronization errors
converge to zero.

5. Conclusions

This paper has examined control and synchronization of the
new hyperchaotic systems performed by Qi et al. [22] using the
active backstepping control method. The proposed scheme is
a systematic design approach and consists in a recursive procedure
that interlaces the choice of a Lyapunov function with the design
of active control. The proposed control approach is able to
stabilize the chaotic motion to the origin. In addition, it
synchronizes the two identical Qi hyperchaotic systems with the systematic way. Numerical simulations were also carried out to illustrate the effectiveness of the approach. We verified that the proposed method has following advantages. First, it does not need to calculate the Lyapunov exponents and eigenvalues of the Jacobian matrix. Hence, it is simple and convenient. Second, This approach is applicable to control high dimensional hyperchaotic systems by adopting the active control technique, which has the flexibility to design a control law.

References

Chang-Ho Hyun received the B.S. and the M.S degrees in electronic engineering from Yonsei University, Seoul, Korea, in 2005 and 2007. He is currently a Ph. D. candidate of Dept. of electrical and electronic engineering in Yonsei University. His current research interests include intelligent control, robust control, adaptive control, chaos system and robot manipulate.

Sung-Hoon Yu received the B.S. and the M.S degrees in electronic engineering from Yonsei University, Seoul, Korea, in 2005 and 2007. He is currently a Ph. D. candidate of Dept. of electrical and electronic engineering in Yonsei University. His current research interests include intelligent control, robust control, adaptive control, chaos system and robot manipulate.
2008. From 2008 to 2009, he was a senior engineering in Samsung Electronics. Since 2009, he has joined the faculties of the School of Electrical, Electronic and Control Engineering at Kongju National University, where he is currently a full-time lecturer. His current research interests include intelligent control and application, nonlinear control, robotics, mobile robots.

E-mail : hyunch@kongju.ac.kr

Mignon Park received a B.S. and an M.S. in electronics from Yonsei University, Seoul, Korea, in 1973 and 1977, and a Ph.D. from the University of Tokyo, Tokyo, Japan, in 1982. He was a researcher in the Institute of Biomedical Engineering, University of Tokyo, from 1972 to 1982, as well as at the Massachusetts Institute of Technology, Cambridge, and the University of California Berkeley, in 1982. He was a visiting researcher in the Robotics Division, Mechanical Engineering Laboratory Ministry of International Trade and Industry, Tsukuba, Japan, from 1986 to 1987. He has been a Professor in the Department of Electrical and Electronic Engineering, Yonsei University, since 1982. His research interests include fuzzy control and applications, robotics, and fuzzy biomedical systems.

E-mail : mignpark@yonsei.ac.kr