Fuzzy Separability and Axioms of Countability in Fuzzy Hyperspaces

B.S.Baik∗, K.Hur∗∗ and J.H. Ryou∗∗

Dept. of Mathematics Education Woosuk University∗
Division of Mathematics and Informational Statistics∗∗

ABSTRACT

We study some relations between separability in fuzzy topological spaces and one in fuzzy hyperspaces. And we investigate some properties of axiom of countability in fuzzy hyperspaces.

Key words : fuzzy separability, axioms of countability, compactly Cb, fuzzy hyperspace.

1. Introduction and preliminaries

In 2000, K.Hur, J.R.Moon and J.H.Ryou[5] introduced the concept of a fuzzy hyperspace and studied some of its properties. In this paper, we study some relations between separability in fuzzy topological space and we in fuzzy hyperspaces. And we investigate some properties of axioms of countability in fuzzy hyperspaces.

We will list some concepts and properties needed in the later section.

Let $I_1 = [0, 1]$ and let $I_2 = (0, 1]$. For a set X, let I^X be the collection of all the mappings from X into I. Then each member of I^X, $A: X \rightarrow I$, is called a fuzzy set in X(cf. [2,10,13]). In particular, \emptyset and X can be considered as fuzzy sets in X defined by $\phi(x) = 0$ and $X(x) = 1$ for each $x \in X$, respectively.

The concept of a fuzzy point and its properties refer to [8,10,12]. And we will denote the set of all fuzzy points in a set X as $F(X)$.

Definition 1.1[1]. Let X be a nonempty set. Then a fuzzy set A in X is called :

(1) an upper fuzzy set if $A(x) > 1/2$ whenever $A(x) \neq 0$

for each $x \in X$.

(2) a lower fuzzy set if $A(x) < 1/2$ whenever $A(x) \neq 1$

for each $x \in X$.

It is clear that the only fuzzy sets in X which are both upper and lower fuzzy sets are \emptyset and X.

Throughout this paper, we use the fuzzy topological space defined by Chang[2]. For a fts X, we will denote the family of all F-open sets and F-closed sets in X as $FO(X)$ and $FC(X)$, respectively.

Definition 1.2[3]. A fts X is said to be fuzzy T_1(in short, FT_1) if for any two fuzzy points x_i and y_i in X : $x \neq y$

(case 1) When $x = y$ and $\lambda \notin \mu$(say), there exists a $U \subseteq FO(X)$ such that $y_i \notin U$ and $x_i \notin \overline{U}$.

(case 2) When $x = y$, there exists a $U \subseteq FO(X)$ such that $y_i \notin U$ and $x_i \notin \overline{U}$.

Definition 1.3[4]. A fuzzy set A in a fts X is said to be fuzzy compact(in short, F-compact) in X if for each F-filter base β such that for any finite subcollection $(B_i : i = 1, \cdots, n)$ of β, $\bigcap_{i=1}^{n} B_i \cap A \neq \emptyset$.

Definition 1.4. Let X be a fts.

(1) $\mathcal{Q} \subseteq F(X)$ is said to be dense(resp. Q-dense) in X [11] if for each $\emptyset \neq U \subseteq FO(X)$, there exists $x_i \in \mathcal{Q}$ such that $x_i \in U$(resp. $x_i \notin \overline{U}$).

(2) $A \subseteq X$ is said to be fuzzy dense(in short, F-dense) in X[9] if $\overline{A} = X$.

It is clear that the concept of being dense and that of being Q-dense do not imply each other.

Definition 1.5.

(1) Separable(i)(resp. Q-separable) [11] if there exists a sequence $(x_{n, i})_{n \in N}$ of fuzzy points in X such that $(x_{n, i})_{n \in N}$ is dense(resp. Q-dense) in X.

(2) Separable(ii)[12] if there exists a sequence $(x_{n, i})_{n \in N}$ of fuzzy points in X such that for each $\emptyset \neq U \subseteq FO(X)$, there exists an $x_{n, i}$ such that $x_{n, i} \in U$.
Fuzzy Separability and Axioms of Countability in Fuzzy Hyperspaces

It is clear that X is separable(i) if and only if it is separable(ii).

Although the concept of being dense and that of being Q-dense do not imply each other, but we have the following.

Result 1.A[11, Proposition 5.11]. A fts X is separable (i) if and only if it is Q-separable.

In the light of Result 1.A, from now on, we shall make no difference between separable(i)(F-separable) spaces and Q-separable spaces. For convenience, they are both called fuzzy separable(F-separable) spaces.

Definition 1.6. A fts X is said to:

1. satisfy the first axiom of countability or be $C_1[12]$ if every fuzzy point in X has a countable local base.
2. satisfy the Q-first axiom of countability or be $Q-C_1[10]$ if every fuzzy point in X has a countable Q-local base.

Result 1.B[10, Proposition 3.1]. If X is a C_1-space, then it is a $Q-C_1$-space.

Definition 1.7[12]. A fts (X, T) is said to satisfy the second axiom of countability or to be C_0 if there exists a countable base B for T.

2. Separability and axioms of countability in fuzzy hyperspaces

Notations 2.1. For a fts X, let $I^X = \{ E \in I^X : E \text{ is a nonempty F-closed set in } X \}$, $L^X = \{ E \in I^X : E \subset A \}$, where $A \in I^X$, $K(X) = \{ E \in I^X : E \text{ is F-compact in } X \}$, $F_\ast(X) = \{ E \in I^X : E \text{ has at most } n \text{ elements } \}$, $F(X) = \{ E \in I^X : E \text{ is finite } \}$.

Definition 2.2[5]. Let X be a fts, Then the fuzzy Vietoris topology T_\ast on I^X is the generated by the collection of the forms $\langle U_1, \ldots, U_n \rangle$ with $U_i \in FO(X)$ for each $i = 1, \ldots, n$. The pair (I^X, T_\ast) is called a fuzzy hyperspace with fuzzy Vietoris topology (in short, fuzzy hyperspace).

It is clear that $K(X)$, $F_\ast(X)$ and $F(X)$ are subspaces of I^X.

Result 2.A[6, Theorem 3.7]. Let X be a FT_1-space and let $U_i, V_i \in I^X$ upper fuzzy sets in X for each $i = 1, \ldots, n$ and each $j = 1, \ldots, m$. Then $\langle U_1, \ldots, U_n \rangle \subset \langle V_1, \ldots, V_m \rangle$ if and only if $\bigcup_{i=1}^n U_i \subset \bigcup_{j=1}^m V_j$ and for each V_j there exists U_i such that $U_i \subset V_j$.

Result 2.B[5, Theorem 3.7]. Let X be a FT_1-space. $F(X)$ is dense in I^X.

Definition 2.3[7]. A fts X is said to be finitely F-compact if each finite fuzzy set in X is F-compact in X.

Theorem 2.4. If X is a finitely F-compact FT_1-space, then $K(X)$ is dense in I^X.

Proof. Let $E \in I^X$ and let $U = \langle U_1, \ldots, U_n \rangle \cap K(X) \cap K(X)$ such that $E \in U$, where $\langle U_1, \ldots, U_n \rangle$ is a base member for T. Then $E \subset \bigcup_{i=1}^n U_i$ and $E \cup U_i$ for each $i = 1, \ldots, n$. Let $x_{i, j} \in U_i$ for each $j = 1, \ldots, n$. Let $F = \{ x_{i, j} \}$. Since X is FT_1, $F \in I^X$.

Moreover, $E \subset \bigcup_{i=1}^n U_i$ and $F \cup U_i$ for each $i = 1, \ldots, n$. Then $E \subset \langle U_1, \ldots, U_n \rangle$. Since F is finite, by the hypothesis, $F \in K(X)$. Then $E \subset \langle U_1, \ldots, U_n \rangle \cap (\bigcup_{i=1}^n U_i)$. Thus $E \in cl K(X)$, i.e., $I^X \subset cl K(X)$. So $cl K(X) = I^X$. Hence $K(X)$ is dense in I^X.

Definition 2.5[6]. A fts X is called a (q, ε)-fuzzy topological space (in short, (q, ε)-fts) if for each $U \in FO(X)$, U is a (q, ε)-fuzzy set in X, i.e., there exists $\varepsilon F_\ast(X)$ such that $\varepsilon F_\ast U$ if and only if $\varepsilon U = U$.

Theorem 2.6. Let X be a (q, ε)-space. Then X is F-separable if and only if I^X is separable.

Proof. (\Rightarrow): Suppose X is F-separable. Then, by Result 1.A, X is Q-separable. By Definition 1.5, there exists a sequence $D = \{ x_{i, j} \} \subset X$ of fuzzy points in X such that D is Q-dense in X. Let B be the collection of finite subsets of D. Then B is countable. Let $\langle U_1, \ldots, U_n \rangle$ be a base element for T_\ast. Since D is Q-dense in X and $\varnothing \neq U_i \subset FO(X)$ for each $i = 1, \ldots, m$ there exists $n \in N$ such that $x_{i, n} \in D$ and $x_{i, n} \in U_i$ for each $i = 1, \ldots, m$. Since X is a (q, ε)-fts, $x_{i, n} \in U_i$ for each $i = 1, \ldots, m$. Let $E = \{ x_{i, n} \} \subset X$. Since X is FT_1, $E \in I^X$. Moreover, $E \cup U_i$ for each $i = 1, \ldots, n$ and $E \subset \bigcup_{i=1}^n U_i$. Then $E \subset B \cap \langle U_1, \ldots, U_n \rangle$. Thus B is countable dense in I^X. Hence
I_β^N is separable.

(⇐): Suppose I_β^N is separable. Let $\beta = \{A_n\}_{n \in \mathbb{N}}$ be a countable dense subset of I_β^N. For each $n \in \mathbb{N}$, choose a fuzzy point $a_{n,i} \in A_n$. Let $D = \{a_{n,i}\}_{n \in \mathbb{N}}$. Now let $U \in FO(X)$. Then clearly $\langle U \rangle$ is open in I_β^N. Since β is dense in I_β^N, $\beta \cap \langle U \rangle \neq \emptyset$. Let $A_n \in \beta \cap \langle U \rangle$.

Then $A_n \in \langle U \rangle$. Thus $A_n \cup U$. Let $a_{n,i} \in A_n$ such that $a_{n,i} \cup U$. Then $a_{n,i} \in D$ such that $a_{n,i} \cup U$. Thus D is Q-dense in X. So D is countable Q-dense in X. Hence, by Result 1.D, X is F-separable.

Theorem 2.7. Let X be a (q, ∞)-FT_1-space. Then X is F-separable if and only if $F(X)$ is separable.

Proof. (⇐): Suppose X is F-separable. Then, by Result 1.A, X is Q-separable. Let $D = \{x_{n,i}\}_{n \in \mathbb{N}}$ be a sequence of fuzzy points in X such that D is Q-dense in X. Let β be the collection of finite subset of D. Then clearly β is countable. Let $U = \bigcup_{i=1}^m U_i \in F(X)$, where $\langle U_1, \ldots, U_m \rangle$ is a base member for T_β. Since D is Q-dense in X and $\emptyset \neq U \in FO(X)$ for each $i = 1, \ldots, m$, there exists $n_i \in \mathbb{N}$ such that $x_{n_i,i} \in D$ and $x_{n_i,i} \cup U_i$ for each $i = 1, \ldots, m$. Let $E = \{x_{n_i,i}, \ldots, x_{n_i,i}\}$. Since X is FT_1, $E \in I_\beta^N$. Since X is a (q, ∞)-fuzzy, $x_{n_i,i} \in U_i$ for each $i = 1, \ldots, m$. Then $E \subseteq \bigcup_{i=1}^m U_i$ and $E \cup U_i$ for each $i = 1, \ldots, m$. Thus $E \in \langle U_1, \ldots, U_m \rangle$. So $E \in \beta \cap \langle U \rangle$. Hence, $F(X)$ is separable.

(⇒): Suppose $F(X)$ is separable. Let $\beta = \{A_n\}_{n \in \mathbb{N}}$ be a countable dense subset of $F(X)$. For each $n \in \mathbb{N}$, choose $a_{n,i} \in A_n$. Let $D = \{a_{n,i}\}_{n \in \mathbb{N}}$. Now let $U \in FO(X)$. Then $\langle U \rangle \cap F(X)$ is open in $F(X)$. Since β is dense in $F(X)$, $\beta \cap (\langle U \rangle \cap F(X)) \neq \emptyset$. Let $A_n \in \beta \cap (\langle U \rangle \cap F(X))$. Then $A_n \in \langle U \rangle$. Thus $A_n \cup U$. Let $a_{n,i} \in A_n$ such that $a_{n,i} \cup U$. Then $a_{n,i} \in D$ such that $a_{n,i} \cup U$. Thus D is Q-dense in X. So D is countable Q-dense in X. Hence, by Result 1.A, X is F-separable.

Theorem 2.8. Let X be a finitely F-compact (q, ∞)-FT_1-space. Then X is F-separable if and only if $K(X)$ is separable.

Proof. (⇐): Suppose X is F-separable. Then, by Result 1.A, X is Q-separable. Let $D = \{x_{n,i}\}_{n \in \mathbb{N}}$ be a sequence of fuzzy points in X such that D is Q-dense in X. Let β be the collection of finite subsets of D. Let $U = \langle U_1, \ldots, U_m \rangle \cap K(X)$, where $\langle U_1, \ldots, U_m \rangle$ is a base member for T_β. Since D is Q-dense in X and $\emptyset \neq U \in FO(X)$ for each $i = 1, \ldots, m$, there exists $n_i \in \mathbb{N}$ such that $x_{n_i,i} \in D$ and $x_{n_i,i} \cup U_i$ for each $i = 1, \ldots, m$. Let $E = \{x_{n_i,i}, \ldots, x_{n_i,i}\}$. Since X is T_{∞}, $E \in I_\beta^N$. Since X is a (q, ∞)-fuzzy, $x_{n_i,i} \in U_i$ for each $i = 1, \ldots, m$. Then $E \subseteq \bigcup_{i=1}^m U_i$ and $E \cup U_i$ for each $i = 1, \ldots, m$. Thus $E \in \langle U_1, \ldots, U_m \rangle$. Since each finite subset in X is F-compact in X, $E \in K(X)$. Then $E \in \beta \cap (\langle U_1, \ldots, U_m \rangle \cap K(X)) \neq \emptyset$. Hence $K(X)$ is separable.

(⇒): Suppose $K(X)$ is separable. Let $\beta = \{A_n\}_{n \in \mathbb{N}}$ be a countable dense subset of $K(X)$. For each $n \in \mathbb{N}$, choose $a_{n,i} \in A_n$. Let $D = \{a_{n,i}\}_{n \in \mathbb{N}}$. Let $\emptyset \neq U \in FO(X)$. Then $\langle U \rangle \cap K(X)$ is open in $K(X)$. Since β is dense in $K(X)$, $\langle U \rangle \cap K(X) \neq \emptyset$. Let $A_n \in \beta \cap (\langle U \rangle \cap K(X))$. Then $A_n \cup U$. Let $a_{n,i} \cup U$. Thus D is Q-dense in X. So D is countable Q-dense in X. Hence, by Result 1.A, X is F-separable.

Theorem 2.9. Let X be a FT_1-space. If $D = \{x_{n,i}\}_{n \in \mathbb{N}}$ is Q-dense (resp. dense) in X, then $D^* = D \cup \cdots \cup D (n \text{ factors})$ is Q-dense (resp. dense) in $X^* = X \times \cdots \times X$.

Proof. Let U be a nonempty F-open set in X^*, where $U = U_1 \times U_2 \times \cdots \times U_n$ and $U_i \in FO(X)$ for each $i = 1, \ldots, n$. Since $U \neq \emptyset$, $U_i \neq \emptyset$ for each $i = 1, \ldots, n$. Since D is Q-dense (resp. dense) in X, there exists $m_i \in \mathbb{N}$ such that $x_{m_i,i} \cup D$. Let $A_n \in \beta \cap (U \cap K(X))$. Then $A_n \in \langle U \rangle$. Thus $A_n \cup U$. Let $a_{n,i} \in A_n$ such that $a_{n,i} \cup U$. Then $a_{n,i} \in D$ such that $a_{n,i} \cup U$. Thus D is Q-dense in X. So D is countable Q-dense in X. Hence, by Result 1.A, X is F-separable.

Theorem 2.10. Let X and Y be fts's and let $f : X \to Y$ a F-continuous surjection. If $D = \{x_{n,i}\}_{n \in \mathbb{N}}$ is Q-dense (resp. dense) in X, then $f(D)$ is Q-dense (resp. dense) in Y.

Proof. It is obvious.

Theorem 2.11. Let X be a FT_1-space. If $F_n(X)$ is separable, then X is F-separable.

Proof. Suppose $F_n(X)$ is separable. Let $\beta = \{A_n\}_{n \in \mathbb{N}}$ be a countable dense subset of $F_n(X)$. For each $n \in \mathbb{N}$, choose $a_{n,i} \in A_n$. Let $D = \{a_{n,i}\}_{n \in \mathbb{N}}$. Then D is countable. Let $\emptyset \neq U \in FO(X)$. Then $U = \langle U \rangle \cap F_n(X)$ is open in $F_n(X)$. B is dense in $F_n(X)$, $\beta \cap U \neq \emptyset$. Let $A_n \in \beta \cap U$. Then $A_n \in U$. Thus
$A_\varepsilon q U$. Let $a_{\varepsilon}, q U$ be such that $a_{\varepsilon}, q U$. Then $a_{\varepsilon}, q U \in D$ such that $\lambda_{\varepsilon}, q U$. Thus D is q-dense in X. So X is q-separable. Hence, by Result 1.1, X is q-separable.

Theorem 2.12. Let X be a finitely F-compact space. If $K(X)$ is first countable, then X is C_1.

Proof. Let $x_\varepsilon \in F_\varepsilon(X)$. Since each finite fuzzy set is F-compact in X, $(x_\varepsilon) \subseteq K(X)$. Since $K(X)$ is first countable, there exists a countable local base U at (x_ε). Without loss of generality, let $U = \{U_a\}_{a \in N}$ be a countable local base at (x_ε). Then clearly $\{U_a\}_{a \in N}$ is a countable local base at x_ε. Hence X is C_1.

From Theorem 2.12 and Result 1.1, we can easily obtain the following.

Corollary 2.12. Let X be a finitely F-compact space. If $K(X)$ is finite, then X is q-separable.

Theorem 2.13. If I_0^X is first countable, then each one of the subspaces of I_0^X is first countable.

Theorem 2.14. Let X be a (q, ε)-FT$_t$ space. If X is q-separable, then $F(X)$ is first countable.

Proof. Suppose X is q-separable and let $x_\varepsilon \in x_\varepsilon \subseteq F(X)$, where $x_{i, \varepsilon} \subseteq F(X)$ for each $i = 1, \ldots, n$. Since X is q-separable, for each $i = 1, \ldots, n$, there exists a countable q-local base $B_i(x_{i, \varepsilon})$ at $x_{i, \varepsilon}$. Let B be the collection of all open sets of the form $\langle V_1, \ldots, V_n \rangle \subseteq F(X)$, where $V_i \subseteq B(x_{i, \varepsilon})$ for each $i = 1, \ldots, n$. Then clearly B is countable. We show that B is a local base at x_ε. Let $x_\varepsilon \subseteq B$. Then $B = \langle V_1, \ldots, V_n \rangle \subseteq F(X)$, where $V_i \subseteq B_i(x_{i, \varepsilon})$. Since $B_i(x_{i, \varepsilon})$ is a q-local base at $x_{i, \varepsilon}$, for each $i = 1, \ldots, n$, $E \subseteq \bigcup_{j=1}^n V_j$. Hence, $E \subseteq B$. Now let $U = \cup_{i=1}^n U_i \subseteq F(X)$ such that $E \subseteq U$. Then $E \subseteq \bigcup_{i=1}^n U_i$ and $E \subseteq F(X)$, for each $i = 1, \ldots, n$. Thus, for each $i = 1, \ldots, n$, there exists $j \subseteq \{1, \ldots, m\}$ such that $x_{i, \varepsilon} \subseteq q U$. Let $U = \bigcap_{i=1}^n (U_i \setminus x_{i, \varepsilon} \setminus q U)$. Then clearly, $x_{i, \varepsilon} \subseteq Q U$ and $x_{i, \varepsilon} \subseteq F(X)$. Since $B_i(x_{i, \varepsilon})$ is a q-local base at $x_{i, \varepsilon}$, for each $i = 1, \ldots, n$, there exists $B_i(x_{i, \varepsilon})$ such that $x_{i, \varepsilon} \subseteq B_i(x_{i, \varepsilon}) \subseteq U$. Since X is a (q, ε)-fins, $x_{i, \varepsilon} \subseteq B_i$, $x_{i, \varepsilon} \subseteq U$ and $x_{i, \varepsilon} \subseteq U_i$, for each $i = 1, \ldots, n$. Then $\bigcup_{i=1}^n B_i \subseteq \bigcup_{i=1}^n U_i$, and for each U_i, there exists a B_i, such that $B_i \subseteq U_i$. Thus, by Result 2.1, $\langle B_1, \ldots, B_n \rangle \subseteq F(X) \subseteq \langle U_1, \ldots, U_n \rangle \subseteq F(X)$. Moreover, $E \subseteq \bigcup_{i=1}^n B_i$. Thus, $E \subseteq \langle B_1, \ldots, B_n \rangle$. So E is a countable local base at E. Hence $F(X)$ is first countable.

From Result 1.1 and Theorem 2.14, we can easily obtain the following.

Corollary 2.14-1. Let X be a (q, ε)-FT$_t$ space. If X is C_1, then $F(X)$ is first countable.

From Theorem 2.14 and Theorem 2.13, we can easily obtain the following.

Corollary 2.14-2. Let X be a (q, ε)-FT$_t$ space. If X is q-separable, then $F(X)$ is first countable.

From Theorem 2.14 and Result 1.1, we can easily obtain the following.

Corollary 2.14-3. Let X be a (q, ε)-FT$_t$ space. If X is C_1, then $F(X)$ is first countable.

Theorem 2.15. Let X be a FT$_t$ space. If X is C_2, then $K(X)$ is second countable.

Proof. Suppose X is C_2. Let $\beta = \{U_a\}_{a \subseteq X}$ be a countable base for X. Let $\beta = \{U_a, \ldots, U_{a}\}$ be a countable base for $K(X)$. Hence $K(X)$ is second countable.

Definition 2.16. Let X be a fts and let $A \subseteq I^X$.

1. A subcollection U of I^X is called a proper cover of A if
 (i) U is a cover of A.
 (ii) For each $U \subseteq U$, $\cup U = A$.
2. X is said to be compactly C_6 if for each F-compact set K in X there exists a countable collection β of F-open sets in X such that if $U \subseteq U$, $\cup U$ is a proper cover of K then there exists a proper cover $\{V_1, \ldots, V_m\} \subseteq \beta$ of K such that $\langle V_1, \ldots, V_m \rangle \subseteq \langle U_1, \ldots, U_m \rangle$.

Theorem 2.17. Let X be a fts. Then X is compactly C_6 if and only if $K(X)$ is first countable.

Proof. (\Rightarrow) Suppose X is compactly C_6 and let $K \subseteq K(X)$. Let β be the countable collection of F-open sets in X satisfying Definition 2.16. Let $B(K)$ be the collection of open sets in $K(X)$ which are constructed
from the finite proper covers of K contained in β. Then clearly $B(K)$ is countable. We shall show that $B(K)$ is a local base at K. Let $K \in \{U_1, \ldots, U_n\} \cap K(X)$, where $\{U_1, \ldots, U_n\}$ is a base member for T_x. Then clearly $\{U_1, \ldots, U_n\}$ is a proper cover of K. By Definition 2.16, there exists a proper cover $\{V_1, \ldots, V_m\}$ of K such that $\{V_1, \ldots, V_m\} \cap K(X) \subset \{U_1, \ldots, U_n\} \cap K(X)$. Hence $K(X)$ is first countable.

\implies Suppose $K(X)$ is first countable and let $K \in K(X)$. Then there exists a countable local base $B(K)$ at K. We may assume that each member B_i of $B(K)$ is of the form $B_i = \{U_1^i, \ldots, U_n^i\} \cap K(X)$. Let $\beta = \{U_i^i: k \geq 1 \text{ and } 1 \leq i \leq n\}$. If $\{U_1, \ldots, U_n\}$ is a proper cover of K, then $K \subseteq \bigcup U_i$ and $K \subseteq U_i$ for each $i = 1, \ldots, n$. Thus $K \in \{U_1, \ldots, U_n\} \cap K(X)$. So there exists $B_i \in B(K)$ such that $B_i \subseteq \{U_1, \ldots, U_n\} \cap K(X)$ and (U_1^i, \ldots, U_n^i) is a desired proper cover in β. Hence X is compactly C_0.

References

저 자 소개

Bong Shin Baik

He received the B.S. degree in mathematics from Wonkwang University, Jeonbuk, Korea in 1977, and the M.S. degree in mathematics from Konkuk University, Seoul, Korea in 1979. He received the Ph.D. degree in mathematics from Wonkwang University, Jeonbuk, Korea in 1985. Since 1981, he has been a professor in the department of Mathematics Education, Woosuk University, Jeonbuk, Korea. His current research interests are in hyperspaces, Fuzzy Hyperspaces, and mathematics education.

Phone: +82-63-290-1605
Fax: +82-63-290-1602
E-mail: baik@woosuk.ac.kr

Kul Hur

He received the B.S. degree in mathematics from Yonsei University, Seoul, Korea, and the M.S. degree in mathematics from Chungbuk University, Jeonbuk, Korea. He received the Ph.D. degrees in mathematics from Yonsei University, Seoul, Korea. Since 1981, he has been a professor in the division of Mathematics and Informational Statistics, Wonkwang University, Jeonbuk, Korea. His current research interests are in hyperspaces and Fuzzy Hyperspaces.

Phone: +82-63-850-6190
Fax: +82-63-852-5139
E-mail: kulhur@wonkwang.ac.kr

J.H. Ryou

He received the B.S. degree in mathematics from Daejeon University, Taejon, Korea in 1994, and the M.S. and Ph.D. degrees in mathematics from Wonkwang University, Jeonbuk, Korea in 2002. His current research interests are in Fuzzy theory and Fuzzy Hyperspaces.

Phone: +82-63-850-6190
Fax: +82-63-852-5139
E-mail: donggrh@hanmail.net