

2차 퍼지수에 대한 정규 퍼지 확률

Normal Fuzzy Probability for Quadratic Fuzzy Number

윤용식*, 송재충*, 박진원**

Yong Sik Yun*, Jae Choong Song*, Jin Won Park**

•Department of Mathematics and Information, Cheju National University,
 Jeju 690–756, Korea

••Department of Mathematics Education, Cheju National University,
 Jeju 690–756, Korea

요 약

2차 퍼지수에 의해 정의되는 두 개의 2차 퍼지수의 연산에 대하여 연구하였다. 그리고 그 연산들에 의하여 생성되는 퍼지수들에 대한 정규 퍼지 확률을 계산하였다.

Abstract

We study some operations of two quadratic fuzzy numbers defined by quadratic curves. And we calculate the normal fuzzy probability for fuzzy numbers generated by the operations.

Key words: normal fuzzy probability, quadratic fuzzy number

1. 서 론

The operations of two fuzzy numbers \((A, \mu_A)\) and \((B, \mu_B)\) are based on the Zadeh’s extension principle[4]). We consider four operations addition \(A(+)B\), subtraction \(A(-)B\), multiplication \(A(\cdot)B\) and division \(A(/)B\) defined in Definition 3.2.

Let \((\Omega, \mathcal{T}, P)\) be a probability space, where \(\Omega\) denotes the sample space, \(\mathcal{T}\) the \(\sigma\)-algebra on \(\Omega\), and \(P\) a probability measure. A fuzzy set \(A\) on \(\Omega\) is called a fuzzy event. Let \(\mu_A(\cdot)\) be the membership function of the fuzzy event \(A\). Then the probability of the fuzzy event \(A\) is defined by Zadeh([1,3]) as

\[
P(A) = \int_{\Omega} \mu_A(\omega) dP(\omega), \quad \mu_A(\cdot) : \Omega \rightarrow [0, 1]
\]

In this paper, we define the normal fuzzy probability using the normal distribution, and we derive the explicit formula for the normal fuzzy probability for a quadratic fuzzy number and give some examples.

2. Normal fuzzy probability

Let \((\Omega, \mathcal{T}, P)\) be a probability space, and \(X\) be a random variable defined on it. Let \(g\) be a real-valued Borel-measurable function on \(\mathbb{R}\). Then \(g(X)\) is also a random variable.

Definition 2.1. We say that the mathematical expectation of \(g(X)\) exists if \(E[g(X)]\) of the random variable \(g(X)\) defined by

\[
E[g(X)] = \int_{\Omega} g(X(\omega)) dP(\omega) = \int_{\mathbb{R}} g(x) dP_X
\]

is finite.

We note that a random variable \(X\) defined on \((\Omega, \mathcal{T}, P)\) induces a measure \(P_X\) on a Borel set \(B \in \mathcal{B}\) defined by the relation \(P_X(B) = P(X^{-1}(B))\). Then \(P_X\) becomes a probability measure on \(\mathcal{B}\) and is called the probability distribution of \(X\). It is known that if \(E[g(X)]\) exists, then \(g\) is also integrable over \(\mathbb{R}\) with respect to \(P_X\). Moreover, the relation

\[
\int_{\mathbb{R}} g(x) dP = \int_{\mathbb{R}} g(x) dP_X = \int_{\mathbb{R}} g(x) dP_X(0)
\]

holds. We note that the integral on the right-hand side of (2.1) is the Lebesgue–Stieltjes integral of \(g\) with respect to \(P_X\). In particular, if \(g\) is continuous on \(\mathbb{R}\) and \(E[g(X)]\) exists, we can rewrite (2.1) as follows

\[
\int_{\mathbb{R}} g(x) dP = \int_{\mathbb{R}} g(x) dP_X = \int_{-\infty}^{\infty} g(x) dP_X(x)
\]

277
where F is the distribution function corresponding to P_X, and the last integral is a Riemann-Stieltjes integral.

Let F be absolutely continuous on \mathbb{R} with probability density function $f(x) = F'(x)$. Then $E[g(X)]$ exists if and only if the integral $\int_{-\infty}^{\infty} |g(x)| f(x) \, dx$ is finite and in that case we have

$$E[g(X)] = \int_{-\infty}^{\infty} g(x) f(x) \, dx.$$ \hspace{1cm} (2.21)

Example 2.2. Let the random variable X (denoted $X \sim N(m, \sigma^2)$) have the normal distribution with the probability density function

$$f(x) = \frac{1}{\sqrt{2\pi \sigma}} e^{-\frac{(x-m)^2}{2\sigma^2}}, \quad x \in \mathbb{R}$$

where $\sigma > 0$ and $m \in \mathbb{R}$. Then $E|X| < \infty$ for every $\gamma > 0$, and we have

$$EX = m \quad \text{and} \quad E(X - m)^2 = \sigma^2.$$ \hspace{1cm} (2.21)

The induced measure P_X is called the normal distribution.

A fuzzy set A on Ω is called a fuzzy event. Let $\mu_A(\cdot)$ be the membership function of the fuzzy event A. Then the probability of the fuzzy event A is defined by Zadeh([13]) as

$$\mathcal{P}(A) = \int_B \mu_A(\omega) \, dP(\omega), \quad \mu_A(\cdot) : \Omega \to [0, 1].$$ \hspace{1cm} (2.22)

Definition 2.3. The normal fuzzy probability $\mathcal{P}(A)$ of a fuzzy set A on \mathbb{R} is defined by

$$\mathcal{P}(A) = \int_{\mathbb{R}} \mu_A(x) \, dP_X,$$

where P_X is the normal distribution of X.

For a triangular fuzzy number $A = (a_1, a_2, a_3)$ having membership function

$$\mu_A(x) = \begin{cases} 0, & x \notin [a_1, a_2, a_3], \\ a_2 - a_1, & a_1 \leq x < a_2, \\ \frac{x - a_2}{a_3 - a_2}, & a_2 \leq x < a_3, \\ 0, & a_3 \leq x, \end{cases}$$

the normal fuzzy probability $\mathcal{P}(A)$ is

$$\mathcal{P}(A) = \int_{\mathbb{R}} \mu_A(x) \, dP_X = \frac{m - a_1}{a_2 - a_1} \left[F_X \left(\frac{a_2 - m}{\sigma} \right) - F_X \left(\frac{a_1 - m}{\sigma} \right) \right]$$

$$+ \frac{\sqrt{2\pi} \sigma (a_2 - a_1)}{\sqrt{2\pi} \sigma} \left(e^{-\frac{(a_2 - m)^2}{2\sigma^2}} - e^{-\frac{(a_1 - m)^2}{2\sigma^2}} \right)$$

$$+ \frac{m - a_3}{a_2 - a_3} \left[F_X \left(\frac{a_3 - m}{\sigma} \right) - F_X \left(\frac{a_2 - m}{\sigma} \right) \right]$$

$$+ \frac{\sqrt{2\pi} \sigma (a_2 - a_3)}{\sqrt{2\pi} \sigma} \left(e^{-\frac{(a_3 - m)^2}{2\sigma^2}} - e^{-\frac{(a_2 - m)^2}{2\sigma^2}} \right).$$ \hspace{1cm} (2.25)

where $F_X(x)$ is the standard normal distribution, that is,

$$F_X(x) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{x} e^{-\frac{t^2}{2}} \, dt.$$ \hspace{1cm} (2.26)

3. Quadratic fuzzy number

Similar to triangular fuzzy number, the quadratic fuzzy number is defined by quadratic curve.

Definition 3.1. A quadratic fuzzy number is a fuzzy number A having membership function

$$\mu_A(x) = \begin{cases} 0, & (x - b)^2 + 1, \quad a \leq x < \beta, \\ \alpha, & \beta \leq x, \end{cases}$$

where $\alpha < 0$.

The above quadratic fuzzy number is denoted by $A = [a, k, \beta]$.

Definition 3.2. The addition, subtraction, multiplication, and division of two fuzzy sets are defined as, for all $x \in \mathbb{R}$ and $y \in \mathbb{R}$,

1. Addition $(+)(A)$:
 $$\mu_A(+)(x) = \sup_{x' \in \Omega} \min\{\mu_A(x'), \mu_B(x')\}.$$

2. Subtraction $(-)(A)$:
 $$\mu_A(-)(x) = \sup_{x' \in \Omega} \min\{\mu_A(x'), \mu_B(x')\}.$$

3. Multiplication $(\cdot)(A)$:
 $$\mu_A(\cdot)(x) = \sup_{x' \in \Omega} \min\{\mu_A(x'), \mu_B(x')\}.$$

4. Division $(/)(A)$:
 $$\mu_A(/)(x) = \sup_{x' \in \Omega} \min\{\mu_A(x'), \mu_B(x')\}.$$

In this section, we study the above four operations for two quadratic fuzzy numbers.

Theorem 3.3. For two quadratic fuzzy number $A = [x_1, k, x_3]$ and $B = [x_2, m, x_4]$, we have

1. $A(+)B = [x_1 + x_2 + k + m, x_3 + x_4 + k + m]$.

2. $A(-)B = [x_1 - x_2 - k - m, x_3 - x_4 - k - m]$.

3. $\mu_A(\cdot)(B)(x) = 0$ on the interval $[x_1 \cdot x_2, x_3 \cdot x_4]$ and $\mu_A(\cdot)(B)(x) = 1$ at $x = km$. Note that $A(\cdot)B$ may not be a quadratic fuzzy number.

4. $\mu_A(/)(B)(x) = 0$ on the interval $[\frac{x_1}{x_2}, \frac{x_3}{x_4}]$ and $\mu_A(/)(B)(x) = 1$ at $x = \frac{k}{m}$. Note that $A(/)B$ may not be a quadratic fuzzy number.

Proof. Note that

$$\mu_A(x) = \begin{cases} 0, & x \leq x_1, \\ \alpha (x - k)^2 + 1, & a \leq x < \beta, \\ \alpha, & \beta \leq x, \end{cases}$$

for $x_i \leq x \leq x_j$. The above quadratic fuzzy number is denoted by $A = [a, k, \beta]$.
and
\[\mu_{B}(x) = \begin{cases} 0, & x < x_3, \\ \frac{b(x - m)^2 + 1}{m - \sqrt{1-a}}, & x \leq x_4, \\ 0, & x_4 < x. \end{cases} \]

We calculate four operations using \(a \)-cuts. Let \(A = [a_1, a_2] \) and \(B = [b_1, b_2] \) be the \(a \)-cuts of \(A \) and \(B \), respectively. Since \(a = a_2 - k^2 \) and \(a = -a_2 + 1 \), we have \(A = [a_1, a_2] = \left[k - \sqrt{1-a}, k + \sqrt{1-a}\right] \). Similarly, \(B = [b_1, b_2] = \left[m - \sqrt{1-a}, m + \sqrt{1-a}\right] \).

1. Addition : By the above facts, \(\mu_{A+B}(x) = \left[k - \sqrt{1-a \cdot m - \sqrt{1-a}} \right] \) on the interval \(\left[x_1 + x_2, x_3 + x_4\right] \) and \(\mu_{A+B}(x) = 1 \) at \(x = k + m \). Therefore
\[\mu_{A+B}(x) = \begin{cases} 0, & x < x_3, \\ \frac{x(x - k - m)^2 + 1}{x - x_3}, & x \leq x_4, \\ 0, & x_4 < x. \end{cases} \]

i.e., \(A+B = [x_1 + x_3, k + m + x_2 + x_4] \).

2. Subtraction :
Since \(A_3(+)B_3 = [a_1 - b_2, a_2 - b_2] \)
\[= \left[k - \sqrt{1-a}, \frac{1}{a} \right] \]
we have \(\mu_{A_3(+)B_3}(x) = 0 \) on the interval \(\left[x_3 - x_1, x_2 - x_4\right] \) and \(\mu_{A_3(+)B_3}(x) = 1 \) at \(x = k - m \). Therefore
\[\mu_{A_3(+)B_3}(x) = \begin{cases} 0, & x < x_3, \\ \frac{a(x - k - m)^2 + 1}{a(x - x_3)}, & x \leq x_4, \\ 0, & x_4 < x. \end{cases} \]

3. Multiplication :
Since \(A_3(-)B_3 = [a_1 b_1, a_2 b_2] \)
\[= \left[k - \sqrt{1-a}, \frac{1}{b_1} \right] \]
we have \(\mu_{A_3(-)B_3}(x) = 0 \) on the interval \(\left[x_3 - x_1, x_2 - x_4\right] \) and \(\mu_{A_3(-)B_3}(x) = 1 \) at \(x = k m \). Therefore
\[\mu_{A_3(-)B_3}(x) = \begin{cases} 0, & x < x_3, \\ \frac{a(x - k - m)^2 + 1}{a(x - x_3)}, & x \leq x_4, \\ 0, & x_4 < x. \end{cases} \]

4. Division :
Since \(A_3(+)B_3 = \left[\frac{a_1}{b_2}, \frac{a_2}{b_1}\right] \)
\[= \left[k + \frac{1-a}{a}, \frac{1-a}{b} \right] \]
and \(\mu_{A_3(+)B_3}(x) = 0 \) on the interval \(\left[\frac{\sqrt{1-a}}{\sqrt{a (m + 1)}}, \frac{\sqrt{1-a \cdot m + 1}}{\sqrt{a m + 1}}\right] \) and \(\mu_{A_3(+)B_3}(x) = 1 \) at \(x = \frac{k m}{2} \).

\[\mu_{A_3(+)B_3}(x) = \begin{cases} 0, & x < x_3, \\ \frac{1}{\sqrt{(k m)^2 - a}} \left[1 - (x - k m)^2 \right], & x \leq x_4, \\ 0, & x_4 < x. \end{cases} \]

Example 3.4. For two quadratic fuzzy numbers \(A = [1, 2, 3] \) and \(B = [2, 5, 8] \), we calculate exactly the above four operations using \(a \)-cuts.

Note that
\[\mu_{A}(x) = \begin{cases} 0, & x < 1, \\ 1 - (x - 2)^2 + 1, & 1 \leq x < 3, \\ 0, & 3 \leq x. \end{cases} \]
and
\[\mu_{B}(x) = \begin{cases} 0, & x < 2, \\ 1 - (x - 5)^2 + 1, & 2 \leq x < 8, \\ 0, & 8 \leq x. \end{cases} \]

Put \(A = [a_1, a_2] \) and \(B = [b_1, b_2] \). Since \(a = -(a_2 - 2)^2 + 1 \) and \(a = -(a_2 - 2)^2 + 1 \), we have \(A_3 = [a_1, a_2] = [2 - \sqrt{1-a}, 2 + \sqrt{1-a}] \).

1. Addition : By the above facts, \(A_3(+)B_3 = [a_1 + b_1, a_2 + b_2] \)
\[= [7 - 4\sqrt{1-a}, 7 + 4\sqrt{1-a}] \]
and \(\mu_{A_3(+)B_3}(x) = 0 \) on the interval \([3, 11]\) and \(\mu_{A_3(+)B_3}(x) = 1 \) at \(x = 7 \).

\[\mu_{A_3(+)B_3}(x) = \begin{cases} 0, & x < 3, \\ \frac{1}{16} (x - 7)^2 + 1, & 3 \leq x < 11, \\ 0, & 11 \leq x. \end{cases} \]

2. Subtraction : Since \(A_3(-)B_3 = [a_1 - b_1, a_2 - b_2] \)
\[= [-3 - 4\sqrt{1-a}, -3 + 4\sqrt{1-a}] \]
we have $\mu_{A(-1)}(x) = 0$ on the interval $[-7, 1]$ and $\mu_{A(-1)}(x) = 1$ at $x = -3$. Therefore

\[
\mu_{A(-1)}(x) = \begin{cases}
0, & x < -7, \\
-\frac{1}{10}(x + 3)^2 + 1, & -7 \leq x < 1, \\
1, & 1 \leq x,
\end{cases}
\]
i.e., $\mu_{A(-1)}(x) = \{-7, -3, 1\}$.

3. Multiplication: Since

\[
A_x(\cdot)B_y = A_1A_2A_3B_4 = \begin{bmatrix} a_1 & a_2 & a_3 & a_4 \\
b_1 & b_2 & b_3 & b_4 \end{bmatrix}
= [13 - 3a - 11\sqrt{1 - a}, 13 - 3a + 11\sqrt{1 - a}],
\]

$\mu_{A(-1)}(x) = 0$ on the interval $[2, 24]$ and $\mu_{A(-1)}(y) = 1$ at $x = 10$. Therefore

\[
\mu_{A(-1)}(y) = \begin{cases}
0, & x < 2, \\
\frac{1}{10}(6x + 43 - 11\sqrt{12x + 1}), & 2 \leq x < 24, \\
0, & 24 \leq x.
\end{cases}
\]

Note that $A(\cdot)B$ is not a quadratic fuzzy number.

4. Division: Since

\[
A_x(\cdot)B_y = A_1A_2A_3B_4 = \begin{bmatrix} a_1 & a_2 & a_3 & a_4 \\
b_1 & b_2 & b_3 & b_4 \end{bmatrix}
= [\frac{2 - \sqrt{1 - a}}{2 + \sqrt{1 - a}}, \frac{2 + \sqrt{1 - a}}{5 + 3\sqrt{1 - a}}, \frac{5 - 3\sqrt{1 - a}}{2} - 1, 2x - 3].
\]

$\mu_{A(-1)}(x) = 0$ on the interval $[\frac{1}{2}, 1]$ and

$\mu_{A(-1)}(y) = 1$ at $x = 10$. Therefore

\[
\mu_{A(-1)}(x) = \begin{cases}
0, & x < \frac{1}{2}, \\
-\frac{1}{2}(x + 1)(2x - 3), & \frac{1}{2} \leq x < \frac{3}{2}, \\
\frac{2}{3}, & \frac{3}{2} \leq x,
\end{cases}
\]

Note that $A(\cdot)/B$ is not a quadratic fuzzy number.

4. Main results

In this section, we derive the explicit formula for the normal fuzzy probability for a quadratic fuzzy number and give some examples.

Theorem 4.1. Let $X \sim N(m, \sigma)$ and $A = [a, k, b]$ be a quadratic fuzzy number. Then the normal fuzzy probability is

\[
P(A) = \frac{\sigma}{\sqrt{2\pi}} \int_{a}^{b} \left(e^{-\frac{(x-m)^2}{2\sigma^2}} - e^{-\frac{(x-m)^2}{2\sigma^2}} \right) + (a-k+b+c)\left[F_N(\frac{\beta-m}{\sigma}) - F_N(\frac{\alpha-m}{\sigma})\right].
\]

Proof. Note that

\[
\mu_X(x) = \begin{cases}
0, & x < a, \\
ax^2 + bx + c, & a \leq x \leq b, \\
0, & b < x,
\end{cases}
\]

Putting $\frac{x-m}{\sigma} = t$.

Remark If the quadratic fuzzy number $A = [a, k, b]$ is represented by

\[
\mu_A(x) = \begin{cases}
0, & x < a, \\
\frac{x-a}{b-a}, & a \leq x \leq \beta, \\
0, & \beta < x,
\end{cases}
\]

then

\[
P(A) = \frac{\sigma}{\sqrt{2\pi}} \left(e^{-\frac{(a+m-2b)^2}{2\sigma^2}} - e^{-\frac{(a+m-2b)^2}{2\sigma^2}} \right)
+ (a(\alpha + m^2 + b + c) - (\alpha + m^2 + b + c)) \left[F_N(\frac{\beta-m}{\sigma}) - F_N(\frac{\alpha-m}{\sigma})\right].
\]

4.2. In the case of the quadratic number $A = [1, 2, 3]$, the normal fuzzy probability is 0.2304.

Since the results of two operations (addition, subtraction) of two quadratic fuzzy numbers are quadratic fuzzy numbers, the normal fuzzy probability can be calculated by Theorem 4.1. But multiplication and division of two quadratic fuzzy numbers may be not quadratic fuzzy numbers, so we have to calculate by the definition.

Example 4.3. Let $X \sim N(5.2\sigma)$ and consider the fuzzy numbers in Example 3.4.

1. Multiplication
2차 퍼지수에 대한 정규 퍼지 확률

저자 소개

윤용식 (Yong Sik Yun)
2001 - 현재 제주대학교 정보수학과
부교수

 관심분야: fuzzy probability, probability theory

email: yunys@cheju.ac.kr

송재중 (Jae Choong Song)
2002 - 현재 제주대학교 정보수학과
박사과정

 관심분야: fuzzy probability, probability theory

email: sjc0101@hanmail.net

박진완 (Jin Won Park)
2001 - 현재 제주대학교 수학교육과
부교수

 관심분야: fuzzy topology, general topology.

email: jinwon@cheju.ac.kr

References

