PCA을 이용한 얼굴 표정의 감정 인식 방법

Emotion Recognition Method of Facial Image using PCA

김호택 - 양현창 - 박정현 - 심귀보
Ho-Duck Kim, Hyun-Chang Yang, Chang-Hyun Park, and Kwee-Bo Sim
중앙대학교 전자전기공학부

요 약

얼굴 표정인식에 관한 연구는 대부분 얼굴의 정면 화상을 가지고 연구를 한다. 얼굴 표정인식에 큰 영향을 미치는 대표적인 분야는 눈, 눈썹, 입을 중심으로 표정 인식이나 표상 연구를 해왔다. 그러니 일상생활에서 카메라 앞에서는 대부분의 사람들은 동물들의 짝짓기 연차가 어렵다. 또한 많은 사람들이 안경을 쓰고 있다. 그래서 본 연구에서는 눈이 가려진 경우의 표정 인식을 Principal Component Analysis (PCA)를 이용하여 시도하였 다.

Abstract

A research about facial image recognition is studied in the most of images in a full face. A representative part, effecting a facial image recognition, is eyes and a mouth. So, facial image recognition researchers have studied under the central eyes, eyebrows, and mouths on the facial images. But most people in front of a camera in everyday life are difficult to recognize a fast change of pupils. And people wear glasses. So, in this paper, we try usingPrincipal Component Analysis (PCA) for facial image recognition in blindfold case.

Key Words : Emotion Recognition, Template Matching, Facial image, PCA

1. 서 론

가장 큰 변화를 보이는 눈의 표정만으로 감정인식을 하였다. 그리고 감정인식 방법에 있어서도 PCA를 이용하여 감정인식 하였다.

본 논문의 구성은 다음과 같다. 먼저 2장에서는 표정인식에 관한 서론을 다루었다. 3장에서는 눈이 가려진 경우 사람의 인식 실험 및 결과를 보여주고 4장에서는 눈이 가려진 경우의 PCA를 이용한 표정 인식 실험 및 결과를 보여준다. 5장에서는 결론으로 마무리 짓는다.

2. 얼굴 표정 인식

2.1 표정인식 소개

의사소통에는 음성, 얼굴 표정, 몸짓 등을 이용한 방법들 을 사용한다. 표정인식 연구는 크게 두 가지로 나눌 수 있는데, 첫째는 정적 얼굴 영상에 대한 인식으로서 패턴매칭 (Template Matching) 및 특성(Feature). 3D 얼굴 모델을 이용한 방법이 있다. 정적 얼굴 영상은 동영상에 비해 처리량은 적지만, 얼굴의 비강점적 변화가 더 크게 매칭이나 정합에 의한 인식이 훨씬, 얼굴 표정영상을 자동으로 자동하기에 어려운 단점이 있다. 동영상에서는 사용자의 얼굴 변화를 분석하여 표정을 인식하는 연구로, 표정의 변화를 연속적으로 처리할 수 있어 실시간 음성세포에 유용하게 사용될 수 있다. 주로 사용되는 알고리즘으로는 신경망을 이용한 학습에 의한 인식, 얼굴 전체의 움직임 패턴에 주목하여 생생한 모션 필드의 데이터베이스와 인식자가 모션 필드에 부합되는 3차원 모델과의 상관관계에 의해 인식하는 방법 등이 있다.

또한 영역의 범위를 기준으로 분류했을 때에는 국부적인
PCA를 이용한 얼굴 표정의 감정 인식 방법

2.2 템플릿 정합 기법

템플릿 정합 기법은 기하학적 특징에 기반한 수순 얼굴 영역 검출 기법에 의해 최적화된 비정형을 보상한 얼굴 영역을 산출 할 수 있으므로 간단한 템플릿 정합으로도 높은 정확도를 보장할 수 있는 얼굴 인식 기법을 구현할 수 있다. 얼굴 표정의 다양성을 고려하여 템플릿 영상의 자동 생성 기법을 다음과 같이 제안한다. 그리고 k번째 클러스터에 속한 학습영상의 집합을 \(F^k = \{ f_1^k, f_2^k, \ldots, f_m^k \} \) 로 표기한다.

이 기법은 다음의 과정으로 진행된다.

1. Step 1: \(m=1 \) (템플릿의 개수)
2. Step 2: 모든 해소의 좌표 \((x, y)\)에 대해 해소관계 \((f_1(x,y), f_2(x,y), f_3(x,y))\)들의 median 값을 산출하여 m 번째 템플릿 영상 \(T_m \)을 생성한다.
3. Step 3: \(T_m \)과 각 영상 \(f^k \)의 거리를 다음과 같이 계산한다.

\[
d_\delta = \frac{1}{N_\delta} \sum_{(x,y)} |T_m(x,y) - f^k(x,y) + \delta| \]

여기서 \(N_\delta \)는 \(T_m \)과 \(f^k \) 영상에서의 중첩된 영역에 속한 좌표들을 의미한다.

4. Step 4: 템플릿 영상의 생성에 참여한 모든 영상의 \(\delta \) 값이 \(Q \)보다 작다면 템플릿 생성과정을 마친다.

5. Step 5: 일부 영상의 \(\delta \) 값이 \(Q \)보다 작다면, 이들 영상의 다음 단계의 템플릿 생성과정에서 \(m \)을 증가시키고 Step 2의 과정을 반복한다.

6. Step 6: \(\delta \) 값이 \(Q \)보다 작은 영상이 존재하지 않을 경우, \(\delta \) 값을 가장 큰 영상으로 \(T_m \)을 대체한다. \(m \)을 증가시키고 Step 2와의 과정을 반복한다.

 얼굴영상의 표정 변화에 따른 템플릿의 자동생성에 의해 Step 2에서는 median을 사용하였다. 이는 수직 좌표 축의 변화량을 고려하여 \(\delta \)의 계산과정에서 수직축으로 일정 구간만큼 이동시키면서 최소의 \(\delta \)값을 계산한다. 또한, \(Q \)값이 작은 수록 템플릿의 개수가 증가한다. 적절한 \(Q \)값은 전체 얼굴영상의 표정 변화와 유사도에 의해 결정되므로 이론적인 최적치를 설정하기 매우 어렵다.

감정별 대표적인 얼굴 표현 사진

![Fig. 1. Representative facial representation image on emotion classification](https://example.com/image.png)

3.1 실험 개요

눈이 가려진 경우의 표정 인식 실험

3.3 실험 결과

앞에서 설명한 방법대로 30개의 사진으로 이루어진 실험 자료를 분석하고서, 다음과 같은 결과를 얻게 되었다.
4. 눈이 가려진 경우의 PCA를 이용한 표정 인식 실험

4.1 실험 개요
표정 인식은 얼굴 전체의 영역을 대상으로 하는 것이 일반적이다. 특히, 표정 정보를 많이 포함한 부위는 눈, 입, 이 부분에 대한 연구를 주로 한다. 대부분의 연구자들이 얼굴 전체에서 주요 부위에 대한 연구를 진행하는 반면, 일부에서는 얼굴의 일부분이 가려졌을 경우에 대한 연구를 진행해 왔다[7]. 이는 실질적으로 기계가 사람의 얼굴을 인식하는 시장에서 기존에 연구되어진 상황과 같이 얼굴이 고정된 위치에 고정된 조명등의 이상적인 상황 하에서만 있으리라는 보장이 없기 때문이다. 이에 Buciu 등의 연구자들은 눈을 가려거나 입을 가리는 경우에 대해 maximum correlation classifier와 similarity measure approaches를 이용하여 표정 인식 실험을 하였다. 이때는 2명의 표정을 대상으로 하며 80~90%의 인식률을 보였으나, 실험에 사용한 사

4.2 실험 환경 및 결과
본 실험을 위해 사용된 사진의 사이즈는 768 x 1024 이고, 학습용 사진으로는 5가지 감정을 위해 그림 4와 같은 5가지 사진을 사용하였다.

그림 2. 감정별 사람들의 인식률
Fig. 2. Recognition rate of peoples on different emotion

그림 2에서 보이는 바와 같이, 웃음과 무표정에 대한 사람들의 인식률은 거의 70%정도로 정상한 반면, 슬픔과 놀람은 30%도 안 되는 매우 저조한 인식률을 보인다. 이는 슬픔과 놀람의 경우 눈의 포양을 통한 인식의존도가 매우 높음을 역설하는 것이다. 화나는 표정의 경우는 약53%의 인식률을 보였는데 이 또한 높은 인식률이라고 할 수는 없다.

그림 3. 표정에 대한 인식률
Fig. 3. Recognition rate on facial image

그림 3의 그래프는 전체 사진들에 대해서 설문에 대한 답이 온건 개수와 특성 감정으로 답했으나 의도한 감정과 다른 개수, 그리고 예상이던 답된 개수를 나타내었다. 그 결과로 전체의 인식률은 약49%이고 오답의 확률은 약10%, 약50%는 예상한 답으로 답을 하였다. 예상한 속한 사진들은 대부분 화, 슬픔, 놀람의 감정을 얻은 것들은져, 앞의 결과와 마찬 가지로 3가지 표정들의 경우 눈이 가려졌을 때 인식에서의 어려움이 있다는 것을 보여준다.

그림 4. 학습을 위한 얼굴영상 집합
Fig. 4. Set of facial image for learning

그림 4와 같은 사진이 입력된 768 x 1024의 행렬을 768x32 x 1의 행렬로 인식후로 양쪽 벡터 집합을 구성한다. 그 후 별과 레이어와의 비교에 의해 발생하는 예측이 이루어지며 이는 입력된 평균과 분산을 기준으로 모든 이미지를 정규화 하여 그림 5와 같다.
그림 5. 정규화된 학습 얼굴영상 집합
Fig. 5. Normalized facial image set for learning

그리고 인식후보 얼굴 벡터 집합으로부터 평균 얼굴 벡터를 계산하면 그림 6과 같다.

그림 6. 평균 얼굴
Fig 6. Mean face

다음은 각 인식후보 얼굴 벡터와 평균 얼굴 벡터의 차를 계산 한 뒤 그 차 벡터의 평균을 계산하고 그로부터 고유 값을 계산한다. 이때의 고유 값은 평균 얼굴 영상에 대한 분산의 정도를 나타내는 것이며, 이를 고유 얼굴이라고 한다. 학습단계를 마치고, 새로운 얼굴에 대해 인식을 수행하게 되는데, 새로운 얼굴이 입력되면 고유 얼굴에 대한 사항을 취하여 성분 값을 구한다. 이 성분 값을 루프에 곱수에서의 사인과 코사인 같은 성분의 가중함으로 주기신호가 표현 가능한 루프에 개수를 구하는 방식과 같다. 이 값이 구해지면, 후보 얼굴영상들의 고유 얼굴영상에서의 가중치와 유효리디언 거리와 비교하여 그 거리가 최소가 되는 표정이 입력과 가장 유사한 표정이므로 이 후보를 인식 결과로 결정하는 것이다. 아래의 그림은 Matlab에서 인식한 얼굴 표정 파악을 입력시키고 그에 따른 결과가 나온 그림이다.

그림 7. 테스트용으로 사용된 입력 영상
Fig. 7. Input image used for test

입력된 영상은 늘리는 표정인데, 학습된 영상들과 비교하여 유울리디언 거리가 제일 작은 것을 찾아보았으나 5번 영상임을 나타낸다. 학습시 사용된 5번 영상 역시 늘 AudioManager으로 이 경우는 올바른 인식을 한 것이다. 이와 같은 방식으로 학습용 영상을 바꾸면서 5번 실험을 하였는데, 그 결과는 그림 8의 그래프와 같다.

그림 9. 실험 결과 그래프
Fig. 9. Experiment result graph

5. 결 과

많은 연구자들은 얼굴의 감정인식을 위해서 얼굴 전체부분을 가지고 감정인식에 사용하였다. 얼굴 전체부분을 사용함에 따라 많은 양의 데이터를 인식처리를 해야 한다. 그때 본 논문은 기존의 얼굴 전체 데이터를 가지고 감정인식한 것보다 더 작은 데이터를 인식하기 위해서 눈을 가리고 경유의 PCA를 이용한 감정인식을 시도하였다. 눈이 가리면 사람의 얼굴 표정 사정을 사람에 인식하는 인식실험과 PCA를 이용하여 얼굴표정에서의 감정 인식하는 실험을 하였다. 그리고 두 실험을 서로 비교하였다. 실험 결과에 PCA를 이용해서 얼굴표정에서의 감정인식이 최고로 높을 때의 인식률은 51%로써 경계적인 수치로는 그다지 좋은 인식률은 아니지만, 사람의 인식률도 40%주위에 안 되었던 것을 감안한다면.
그리나 봐 성능을 보이는 것의 가능성을 알 수 있다. 앞으로 업
로드 뿐만 아니라 콜과 업로드의 고통의 마세한 움직임도
인식해 상인의 높이와 감정 인식의 해부에 있어서 높은
다른 많은 유전 알고리즘으로 인식을 높이는 연구가
행해질 것이다. 또한 감정인식에 있어서 데이터 처리량을
최소화하여 이동로봇의 수행에 적용하는 연구도 같이 진행
될 것이다.

참고 문헌

감정인식 시스템,” 한국커뮤니케이션학회 논문

analysis under partial conclusion,” Proc. of

[3] Maja Pantic and Leon Rothkrantz “Case-Based
Reasoning for User-Profiled Recognition of
Emotions from Face Images,” IEEE International

[4] Vo Dinh Minh Nhat and Sung Young Lee,
“Two-dimensional Weighted PCA algorithm for
Face Recognition,” Proc. of 2005 IEEE
International Symposium on Computational
Intelligence in Robotics and Automation, 2005.

[5] M. Anouar Mellah, Dijana Petrovska-Delacretaz,
Bernadette Dorizzi “Using Signal/Residual Information
of Eigenfaces for PCA Face Space Dimensionality
Characteristics,” The 18th International Conference on
Pattern Recognition, 2006.

[6] Liyanage C. DESILVA, Tsutomu MIYASATO, and
Ryohei NAKATSU, “Facial Emotion Recognition
Using Multi-modal Information,” International
Conference on Information, Communications and

Space and its Application in Face Recognition,”
Proc. of the Fourth International Conference on

Modified PCA Algorithm for Face Recognition,”

Facial Expression Recognition using Active
Appearance Model and Multilayer Perceptron,