센서모듈을 이용한 유비쿼터스 환경의 제어

Control of Ubiquitous Environment using Sensors Module

정태민, 최우경, 김성주, 전홍태
Tae-Min Jung, Woo-Kyung Choi, Seong-Joo Kim, Hong-Tae Jeon
중앙대학교 전자전기공학부

요 약
유비쿼터스 시대가 다가오면서 앞으로 가정 및 회사 등 인간이 거주하며 생활하는 공간에서의 좀 더 편리하고 효율적인 다양한 정보를 인지시켜 줄 수 있는 환경이 구축되어야 한다. 이를 기반으로 유비쿼터스 시대의 장치들의 네트워크는 인간에게 많은 정보와 권리성이增多 더 효율적으로 이루어져야 할 것이다. 이를 위해 본 논문에서는 센서모듈에서 출력되는 데이터를 신경망과 피지 알고리즘을 사용해 동작권리의 패턴을 분류하여 인간행동의 사고를 파악한다. 이러한 패턴의 분류를 통해 홈 네트워크 시스템과의 경계모듈의 통신패턴이 가능하게 된다. 이를 바탕으로 패턴 분류를 행동들의 명령으로 이를 가정기기리듬지 홈 네트워크 시스템의 제어방식을 더욱 간편히 제어하여, 인간의 건강상태를 파악함으로써 인간행동상태에 따른 유비쿼터스 환경의 제어가 이루어 질 수 있는 시스템을 제안한다.

키워드 : 유비쿼터스, 전자전기, 행동권리, 홈 네트워크, 소프트 컴퓨팅

Abstract
As Ubiquitous era comes, it became necessary to construct environment which can provide more useful information to human in the spaces where people live like homes or offices. On this account, network of the peripheral devices of Ubiquitous should constitute efficiently. For it, this paper researched human pattern by classified motion recognition using sensors module data. (This data processing by Neural network and fuzzy algorithm.) This pattern classification can help control home network system communication. I suggest the system which can control home network system more easily through patterned movement, and control Ubiquitous environment by grasp human’s movement and condition.

Key Words : Ubiquitous, Gyro Sensor, Gesture recognition, Home network, Soft-Computing

1. 서 론

21세기 미래 정보화 사회의 패러다임의 전환은 그 변화가 매우 빠르다. 기존의 벽으로죄지 컴퓨터는 여러 해가 넘어야 가며 공용화된 시대에서 개인적인 독자적인 컴퓨터를 소유하고 사용하는 31인 IPC 시대가 거쳐서 개인 환경을 위해서 사용되는 컴퓨터가 사용되는 유비쿼터스 컴퓨팅(Ubiquitous Computing) 시대가 멀지 않아 도래될 것으로 보인다.

비서제의 컴퓨터는 인간이 컴퓨터를 의식하지 않고도 자연스럽게 컴퓨터 기술을 이용할 수 있는 환경이 가능할 것으로 예상하고 있다. 이러한 유비쿼터스 환경은 실제의 각종 물품들과 환경 원반에 걸쳐 컴퓨터들이 존재하게 되며, 이들을 사용하는 사용자에게는 컴퓨터로서의 경도수준을 드러내지 않도록 환경 내에 효과적으로 통합하는 기술이, 즉. 사용자들이 컴퓨터라는 가부감을 느끼지 않고 실제로는 많은 컴퓨터들을 편리하게 이용 할 수 있게 하는 것이다.

유비쿼터스의 환경은 언제, 어디거나, 디바이스를 네트워크에 접속할 수 있다는 뜻으로 우리가 살고 있는 주변 환경 과 물체만의 컴퓨터네트워크장치를 포함시켜 사물과 인간, 정보가 하나로 통합되어 효율적인 정보교환 및 활용을 가능하게 하는 기술 또는 모든 환경을 의미한다. 이러한 환경에서의 제어방식에 사용자가 패턴을 허용할 수 있는 컴퓨터, PDA, 휴대폰 등을 이용하여 홈 네트워크 서비스를 이용하게 된다. 이러한 제어장치들은 항상 패턴에 불편한 동시에 전문성을 가진 기기들로 복잡하면서 사용하기 위한 전문 지식이 복잡으로 필요하게 될수에 있어서 어디거나 사용조작이 필요할 때 유비쿼터스 환경에 의존되는 현실이다.

이 논문에서는 유비쿼터스 환경에 적합한 제어시스템 개념을 개발하고 있으며 이를 구현하기위해 센서모듈의 축정된 데이터를 이용하여 집중 패턴을 분류해주는 소프트 컴퓨팅으로 구성되어 있다. 의료 같은 동작전환의 패턴 분류를 통해 홈 네트워크 시스템의 제어에 합리적으로 기존의 불편했던 휴대성과 누구나 사용하기 쉬운 인터페이스를 제공함으로써 더욱 유비쿼터스 환경에 적합한 제어시스템을 구현하는 데다. 이러한 제어시스템의 간편한 사용조작과 휴대성으로 인해 일반인은 물론 사용이 간편한 노약자나 장애인들이 기존의 집중 단말기의 복잡한 제어 장치를 대신해서 편리하게 사용되어 질 것으로 예상된다.
2. 시스템 구조

2.1 시스템 개요

본 논문에서는 사람의 행동인식을 위한 시스템구조는 <그림 1>과 같이 센서모듈, PC 알고리즘, 홈 네트워크의 구조로 유비쿼터스 환경에 구축된다.

![그림 1. 시스템 구조](Fig. 1. System Structure)

센서모듈에는 차이로센서 ENC-03M 모듈과 가속도센서 ADXL222E, 비 결측성 온도센서 MLX903247, 정밀입력센서 FOP01A, 가속센서 SS1108 등 총 6종류의 센서들로 구성되어 인간의 행동 및 상태를 파악할 수 있도록 설계되었으며, 센서모듈로부터 콘솔링 하여 플랫폼을 통해 무선으로 데이터를 전송하게 된다. PC에서는 센서모듈과 홈 네트워크간의 무선통신을 이용하여 데이터를 수신하게 되며, 알고리즘의 입력데이터로 사용하게 된다. 또한 PC에서는 MFC 프로그램으로 간의 상태를 표시하게 된다. 홈 네트워크 시스템에서는 가전기기 및 로봇 등을 모델링하여 구현하였으며 알고리즘 처리에 따른 원격제어가 가능해 응급상황을 대처할 수 있도록 설계되었다. 센서모듈에서의 인간의 행동을 콘솔링 하여 PC 프로그램에 수집된 데이터를 전달하게 되며 이러한 데이터는 신경망에 의해 행동패턴이 분석되게 되며, 인간의 건강상태를 파악하기로 무선으로 보낼 때에 현재 인간이 행동하고 있는 행동들의 신뢰성을 판단하여 분석된 행동인식은 홈 네트워크에서의 장치들의 지시 및 인간의 사고를 분석할 수 있는 기반을 구축함으로써 유비쿼터스 환경에 적합한 구조를 갖는다.

2.2 센서모듈

본 논문에서는 사람의 행동인식을 위한 센서모듈을 <그림 2>와 같이 손목에 부착시켜 동작하도록 설계하였다.

![그림 2. 센서모듈](Fig. 2. Sensors Module)

이 센서모듈은 3축 각도 및 3축 가속도 센서를 기본으로 한 모듈로 되어 있으며 온도, 가스, 압력 센서를 추가함으로써 인간의 건강상태를 파악할 수 있는 모듈을 제작하였다. 각도도 및 가속도 센서는 해당하는 전압값 0~1 사이의 신호로 최대표도 11을 대비하여 사용하였으며 이때 입력 데이터는 사용자가 센서모듈의 동작 범위를 '누워는' 시점부터 10ms 간격으로 측정되어 저장되는 형태이다. 동작이 끝난 시점에서 온도, 가스, 압력센서의 데이터가 추출되어 인간의 상태패턴이 되는 시점이 된다. 이 때 평균 알고리즘의 출력은 0~1까지의 사람인식의 상태를 파악하며 행동에 의한 신호를 측정할 수 있다. 또한 센서모듈의 자체 전면 공급과 플랫폼을 이용한 무선 네트워크의 상호 상호작용 간의 통신과 태이터 송수신이 무선으로 이루어져 인간의 행동에 있어 자율성을 확보하여 센서모듈을 활용한 상태에 대한 소통이 자연스럽도록 설계하였다. 이러한 무작위 센서모듈은 항상 휴대가 가능하며 누구든지 간편하게 조작되다는 점에서 큰 이점이 있다.

2.3 홈 네트워크 시스템

홈 네트워크는 가장 대형의 가정가전기기 및 전자기기로 연결한 기기, 시간, 장소에 구애받지 않고 서비스가 이용되는 미래 가정환경인 '디지털 홈'을 구현하는 것이다. 이러한 디지털 홈은 미세저항적인 가정의 원격제어, 화상, 자동화시스템, 제어능력, 로봇, 비관리성 등의 결합을 바탕으로 복합적이다. 이에 본 논문에서는 실제 가정의 모습을 활용한 모델을 구축하여 실험하였다. 유비쿼터스 환경으로 구성된 홈 네트워크 시스템 모델은 FALINUX 사용, 업데이트 능력 있는 시스템을 기본으로 되어있는 EZ-X5, EZ-PI 보드를 이용하였으며, EZ-X5는 PXA255 - 400MHz의 탑재된 보드로써 출력에 대치될 프로그램 코드, PS2 및 키보드 및 마우스, RTC 및 ATAPI 인터페이스가 구축되어 있는 홈 네트워크 시스템에서의 장착작업에 필요하다고 가정하였으며, 또한 EZ-PI는 모드는 EZ-X5 보드와 함께 사용하는 서브보드이며, USB-Host, AC97 오디오 코덱, PS2 및 키보드 및 마우스, RTC 및 ATAPI 인터페이스가 구축되어 있는 홈 네트워크 시스템에서의 장착작업에 필요하다고 가정하였다. 이러한 홈 네트워크 시스템은 모든 기기들이 일관된 통합화되어 제어할 수 있는 환경을 구축하여 가정기기 및 로봇, 비관리성 등을 인터페이스나 센서 모듈에서의 수집한 데이터를 제어가 가능하게 구성되어있다.
3. 알고리즘 (Algorithm)

3.1 신경회로망의 개요

신경회로망에 관한 연구는 인간의 두뇌와 신경세포 모델에 대한 연구에서 시작되었으며, 가장 기본적인 단위는 뉴런 (Neuron)이라는 세포이며, 상호 연결된 많은 수의 뉴런들을 이용하여 생물학적인 시스템의 계산 능력을 모방하는 소프트웨어나 하드웨어로 구현된 인공신경망을 말한다. 이러한 생물학적 뉴런 구조를 모방하여 신경회로망에서는 생물학적인 뉴런의 기능을 단순화시킨 인공 뉴런을 사용하게 된다. 이러한 모델링된 뉴런을 사이의 연결강도(weight)들로 이루어지며 반복과 훈련을 통해 각 뉴런 사이의 안정적인 연결강도를 찾아가며 학습과정을 수행하게 된다. 그림 4에서는 신경회로망에서의 단위 노드의 기본 구조를 보여준다.

3.2 역전파 알고리즘 구조

세서모드로부터 출력되는 다수의 연속적인 데이터를 가지고 정확한 페턴을 분류하기 위해서 역전파 알고리즘을 사용한다. 이는 최소자승 (least mean square) 알고리즘의 변형적인 확장으로 비슷한 반복규칙(chain-rule)을 여러 번 반복적으로 적용하여 확률 극대화 프레임워크와 관련정리를 유도해 낼 수 있다. 역전파 알고리즘의 기본형식은 <그림 5>과 같이 보이며 다음과 같다. 입력층의 각 노드에 입력값을 주면, 이 신호는 각 노드에서 연속되어 허수층에 전달되고 최후에 출력층에서 신호를 출력하게 된다. 이 출력값과 기댓값과 비교하여 차이를 줄여나가는 방향으로 연결강도를 조절하고, 허수층에 역전파하여 하위층에서는 이를 근거로 다시 자기층의 연결강도를 조정해나간다.

3.3 피저 시스템의 개요

피저 시스템 이론 (Fuzzy System Theory)는 피저 논리를 기초로 하는 이론이며 농축 논리를 확장한 개념이다. 농축 논리를 기본으로 하는 기존의 집합 이론에서는 특정한 집합이 주어진 집합 A의 원소로서 속하거나, 참, True = 1) 속하지 않거나, 거짓, False = 0) 중 하나가 된다. 그러나 피저 논리를 기반으로 하는 피저 집합 이론에서는 이 갑저가 구성 원소로서 특정 집합 A에 어느 정도로 속하는지가 하는것을 0 (집합 A에 전혀 속하지 않은)에서부터 1 (집합 A에 완전히 속함) 사이의 수치로써 나타내며 이를 소속도의 정도로 한다. 이것으로 인해 피저 논리는 인간의 불확실한 개념을 다룰 수 있도록 해주며, 물리적인 수학과 양에 대한 인간의 불확실한 논리적 개념을 정량화한 수학적 표현 형태로 나타낼 수 있다는 특징이 있다.

3.4 피저 알고리즘 구조

피저 제어 알고리즘은 <그림 6>과 같이 피저 엔코더 (Fuzzifier), 규칙기반 시스템 (Knowledge Base System), 피저 주문부 (Fuzzy Inference Engine), 피저 디코더
센서모듈을 이용한 유비쿼터스 환경의 제어

```
(Defuzzifier)로 4가지 구성요소로 되어있다.

그림 6. 피지 시스템의 구조
Fig. 6. Structure of Fuzzy System

4가지 구성요소를 간략히 설명하면, 피지 엔코더는 크리스
와 수치적 정보를 피지 집합으로 변환하는 연산자이다. 가존
의 센서로부터 추출한 불리량이거나 수치적 정보를 피지시스템
이 이해할 수 있는 피지량으로 바꾸는 것이다. 규칙기반
시스템은 피지계에 대하여 이법적으로 구성되어있으며,
"IF-THEN" 형태의 규칙으로 구성되어있다. 피지추론부는
피지규칙을 이용하여 피지 입력에 대한 피지 출력을 추론해 내
는 장치이다. 피지 디코더는 피지화기의 역기능을 갖는 장치
이다. 즉 피지검정으로 표시되는 표시장으로부터 보통의 수
치값을 인하는 변환장치이다.

3.5 알고리즘 적용

센서모듈에서 3축 각속도와 3축 가속도, 인간의 체온을 탐
지하는 온도센서, 심장박동을 측정하는 압력센서, 알코올 및
가스를 탐지하는 가스센서들로부터 데이터가 종목 및 생물학
파장을 거쳐 PC 프로그램에 전송된다.

그림 7. 알고리즘 구조
Fig. 7. Algorithm Structure

3축 각속도와 3축 가속도 센서 데이터는 신경망의 입력으
로 들어가 행동인식의 패턴분류로 되며, 알력, 가스, 온도센
서의 경우 피지 알고리즘을 이용하여 각각의 출력이 희석
주의 시스템의 확장변수로 들어가게 되어 사용자에 알맞은
최적의 환경을 구축하게 된다. 이때 신경망 알고리즘에는
 인간의 행동에 의한 4가지의 패턴이 구성되어 있으며, 피지 알고리
즘은 또한 인간의 건강상태를 4가지로 구분하게 된다. 이러한
한 결과를 기반으로 피지 알고리즘의 결과를 신경망 알고리
즘의 결과의 신뢰도를 측정하게 되어 최종 결과는 인간의 상
태와 행동에 따른 결과를 추론하게 된다.

신경망 알고리즘의 경우 피지 입력은 <그림 7>과 같이
입력층 6개의 노드, 히든층 6개의 노드, 출력층 2개의 노드로
설계하였으며, 학습률은 0.3, 허용오차는 0.05로 정함하였다.

그림 8. 입·출력 멤버십 함수
Fig. 8. I/O Membership Function

피지 알고리즘의 경우, 피지화기 방식은 Singleton이며,
피지추론방식은 Mamdani의 Min-max 방법, 형태는
"IF-THEN" 방식을 사용하였으며, 비비파지화기는 두계층설계법을 사용
하였다. <그림 8>에서는 저자의 실험 결과를 바탕으로 전
체의 구축기반으로 설계하였으며 가스, 알력, 체온의 진단부
입력변수에 대한 피지 집합의 언어변수들과 후진부 출력변
수, 즉 3가지 입력조건에 대한 후진부 출력변수를 나타냈다.

4. 시스템 실험 및 분석

본 논문에서는 센서모듈을 활용 후 4가지 행동들을 통해
<그림 9>과 같은 데이터를 추출하여 볼 수 있으며, 각각의 4
가지 행동들을 3변에 반복한 결과의 그래프이다.

그림 9. 센서모듈에서 추출된 행동 데이터
Fig. 9. Output of Gesture Data from Sensors Module

여기에 A와 B는 각각 각속도와 가속도의 x, y, z축을 나
타내며 <표 1>과 같은 인간의 움직임을 센서모듈로부터 데이터를 추출하여 50변의 반복행 약화 데이터를 만들게 된다.

```
이러한 데이터를 입력데이터에 학습을 하여 행동의 패턴을 구분하게 된다.

표 1. 행동패턴 분류

<table>
<thead>
<tr>
<th>Example</th>
<th>Gesture Patten</th>
</tr>
</thead>
<tbody>
<tr>
<td>Classification 1</td>
<td>크게 원을 육각형</td>
</tr>
<tr>
<td>Classification 2</td>
<td>가슴 좌우로 움직임</td>
</tr>
<tr>
<td>Classification 3</td>
<td>손을 위치 변경</td>
</tr>
<tr>
<td>Classification 4</td>
<td>좌-우로 회전</td>
</tr>
</tbody>
</table>

추출된 센서데이터를 소프트웨어를 적용시키기 위해 그림 10과 같은 프로그램을 구현하여 적용시켰다. 패턴 분류의 결과와 수신된 데이터, 즉 네트워크 자동화 시스템 상태를 학습하기 위한 훈련 시스템을 구축하여 실시간으로 현재의 맥락 상태를 파악할 수 있다.

그림 10.Ubiquitous Monitoring Program

프로그램의 구성은 홈 모니터, 데이터 생성률, 패턴분류, 포트플링, 가전기기 제어, 건강상태, 체 Antar상태로 구성되어 있다. 홈 모니터는 현재 구성된 모델화州의 구성과 동일한 화면으로 가진 가전기기의 on/off 상태나 기타 정보를 표현하여 현재의 집안의 상황을 파악할 수 있다. 데이터 생성률 메뉴는 센서모듈로부터 전달되는 각도 및 가속도의 x,y,z 축들의 데이터를 보이므로 현재의 상황에 따른 데이터를 파악할 수 있다. 이러한 데이터를 신경망 알고리즘의 학습을 통해 정의된 패턴을 구별하게 되어 패턴분류 메뉴에 표시된다. 포트플링 메뉴는 센서모듈과의 통신하기 위한 설정이며 가전기기 제어는 집안의 TV, Curtain, Fan, Door 등 가전기기를 직접 제어할 수 있도록 구현하였다. 마지막으로 건강상태의 표시창은 운동, 가사, 일련시에서 테이터를 처리 알고리즘을 이용하여 인간의 건강상태를 파악하게 되어 인간의 행동의 심리도를 나타낸다. 예제에서의 4가지 행동들을 100번 반복한 결과에 표시된 결과 [표 2]와 같은 평균 85.25%의 인식 성공률을 보였다. 각 행동에 대한 인식률은 데이터가 규칙적이며 변화가 큰 경우 인식률들이 좋은 환경을 보이고 있다. 즉 인간의 행동패턴의 인식률을 높이기 위해서 정의되는 학습데이터의 행동이 동작의 범위가 크며 가속도의 변화가 뚜렷하도록 유도하는 게 바람직하다.

표 2. 실험결과

<table>
<thead>
<tr>
<th>Example</th>
<th>실험횟수</th>
<th>성공횟수</th>
<th>인식률</th>
</tr>
</thead>
<tbody>
<tr>
<td>Classification 1</td>
<td>100</td>
<td>60</td>
<td>60%</td>
</tr>
<tr>
<td>Classification 2</td>
<td>100</td>
<td>95</td>
<td>95%</td>
</tr>
<tr>
<td>Classification 3</td>
<td>100</td>
<td>100</td>
<td>100%</td>
</tr>
<tr>
<td>Classification 4</td>
<td>100</td>
<td>75</td>
<td>75%</td>
</tr>
<tr>
<td>Total</td>
<td>400</td>
<td>341</td>
<td>85.25%</td>
</tr>
</tbody>
</table>

이러한 패턴에서 분류된 행동들은 바로 홈 네트워크 시스템의 가전기기, 로봇 등을 바로 제어함으로써 기존의 전통적인 알림을 이용할 때보다 기기의 제어를 빠르게 하며 동작상의 불일치가 감소하는 결과가 나온다.

5. 결론

현대 집단인식 기술은 이제 많은 응용장치의 입력장치로의 적용이 시도되고 있다. 자동차, 셀화로 접속한 휴대폰, 게임, 프로세서, 마우스 등과 같이 인간과 자연스러운 상호작용을 위한 동작인식 기술의 결과물들이다. 이러한 기술은 유비쿼터스 환경에서의 가장 중요한 컨텐츠로서의 더 넓은 인간과 장치간의 인터페이스를 기반의 한 수 있도록 해야 한다.

본 논문에서는 센서모듈에서 추출되는 데이터를 기반으로 행동패턴 및 인간의 인체특성을 파악하여 유비쿼터스 환경에서의 인터페이스를 구축하는 목적으로 연구하였다. 이러한 시스템은 센서모듈을 이용하여 인간의 행동과 전문가까지 추출한 데이터를 신경망 학습 알고리즘의 메인포트와 고도의 알고리즘을 이용하여 행동패턴을 분류하고 인간의 상태에 대한 피드백 기반으로 구성된 최적의 유비쿼터스 인터페이스를 구축하였다.

앞으로 프로세서 처리가 빠르고 인식률과 신뢰성 있는 수준이 이르도록 환경화하고 적합한 신경망 학습 알고리즘의 모델을 연구하여 대화도 더욱 높은 인식률과 향상된 성능을 갖는 행동패턴 알고리즘을 개발하도록 한다. 이러한 시스템의 보편성과 환경, 네트워크, PC 프로그램을 일체화 및 통합서비스의 구축을 통해 높은 성능을 도달하고, 유지보수나 유연하게 이동하는 유비쿼터스 환경을 구축하는데 핵심이 될 것이다.

참고 문헌


저자 소개

정태민(Tae-Min Jung)
2006년 : 공사장대학 전자정보공학부
공학사
2006년~현재 : 중앙대학교 대학원
전자전기공학부 석사과정

관심분야 : 소프트 컴퓨팅, 업무나체 시스템, Robotics, Ubiquitous Computing
Phone : 02-820-5297
Fax : 02-817-5508
E-mail : jtm@jungtaemin.com