Fuzzy \((r, s)\)-semi-preopen sets and fuzzy \((r, s)\)-semi-precontinuous maps

Seok Jong Lee and Jin Tae Kim

Department of Mathematics, Chungbuk National University, Cheongju 361-763, Korea

Abstract

In this paper, we introduce the concepts of fuzzy \((r, s)\)-semi-preopen sets and fuzzy \((r, s)\)-semi-precontinuous mappings on intuitionistic fuzzy topological spaces in Šostak’s sense. The relations among fuzzy \((r, s)\)-semitopological, fuzzy \((r, s)\)-precontinuous, and fuzzy \((r, s)\)-semi-precontinuous mappings are discussed. The concepts of fuzzy \((r, s)\)-semi-preinterior, fuzzy \((r, s)\)-semi-preclosure, fuzzy \((r, s)\)-semi-preneighborhood, and fuzzy \((r, s)\)-quasi-semi-preneighborhood are given. Using these concepts, the characterization for the fuzzy \((r, s)\)-semi-precontinuous mapping is obtained. Also, we introduce the notions of fuzzy \((r, s)\)-semi-preopen and fuzzy \((r, s)\)-semi-preclosed mappings on intuitionistic fuzzy topological spaces in Šostak’s sense, and then we investigate some of their characteristic properties.

Key words: fuzzy \((r, s)\)-semi-preopen set, fuzzy \((r, s)\)-semi-precontinuous mapping, fuzzy \((r, s)\)-semi-preopen mapping, fuzzy \((r, s)\)-semi-preclosed mapping

1. Introduction

The concept of fuzzy topological spaces was introduced by Chang [2]. These spaces and its generalizations are later studied by several authors, one of which, developed by Šostak [14], used the idea of degree of openness. This type of generalization of fuzzy topological spaces was later rephrased by Chattopadhyay and his colleagues [3], and by Ramadan [13].

As a generalization of fuzzy sets, the concept of intuitionistic fuzzy sets was introduced by Atanassov [1]. Recently, Çoker and his colleagues [4, 7] introduced intuitionistic fuzzy topological spaces using intuitionistic fuzzy sets. Using the idea of degree of openness and degree of nonopenness, Çoker and Demirci [6] defined intuitionistic fuzzy topological spaces in Šostak’s sense as a generalization of smooth topological spaces and intuitionistic fuzzy topological spaces. Thakur and Singh [15] introduced the concepts of fuzzy semi-preopen sets and fuzzy semi-precontinuous mappings on Chang’s fuzzy topological spaces.

In this paper, we introduce the concepts of fuzzy \((r, s)\)-semi-preopen sets and fuzzy \((r, s)\)-semi-precontinuous mappings on intuitionistic fuzzy topological spaces in Šostak’s sense. The relations among fuzzy \((r, s)\)-semitopological, fuzzy \((r, s)\)-precontinuous, and fuzzy \((r, s)\)-semi-precontinuous mappings are discussed. The concepts of fuzzy \((r, s)\)-semi-preinterior, fuzzy \((r, s)\)-semi-preclosure, fuzzy \((r, s)\)-semi-preneighborhood, and fuzzy \((r, s)\)-quasi-semi-preneighborhood are given. Using these concepts, the characterization for the fuzzy \((r, s)\)-semi-precontinuous mapping is obtained. Also, we introduce the notions of fuzzy \((r, s)\)-semi-preopen and fuzzy \((r, s)\)-semi-preclosed mappings on intuitionistic fuzzy topological spaces in Šostak’s sense, and then we investigate some of their characteristic properties.

2. Preliminaries

For the nonstandard definitions and notations we refer to [9, 10].

Definition 2.1. ([6]) Let \(X\) be a nonempty set. An intuitionistic fuzzy topology in Šostak’s sense(SoIFT for short) \(T = (T_1, T_2)\) on \(X\) is a mapping \(T : I(X) \to I \otimes I\) which satisfies the following properties:

1. \(T_1(\emptyset) = T_1(\{1\}) = 1\) and \(T_2(\emptyset) = T_2(\{0\}) = 0\).

2. \(T_1(A \cap B) \geq T_1(A) \wedge T_1(B)\) and \(T_2(A \cap B) \leq T_2(A) \vee T_2(B)\).

3. \(T_1(\bigcup A_i) \geq \bigwedge T_1(A_i)\) and \(T_2(\bigcup A_i) \leq \bigvee T_2(A_i)\).

The \((X, T) = (X, T_1, T_2)\) is said to be an intuitionistic fuzzy topological space in Šostak’s sense(SoIFTS for short). Also, we call \(T_1(A)\) a gradation of openness of \(A\) and \(T_2(A)\) a gradation of nonopenness of \(A\).
Definition 2.2. ([5, 8]) Let \((X, T_1, T_2)\) be a SoFTS and
\((r, s) \in I \otimes I\). Then

1. an intuitionistic fuzzy point \(x_{(\alpha, \beta)}\) in \(X\) is said to be
 quasi-coincident with the intuitionistic fuzzy set \(A\) in
 \(X\), denoted by \(x_{(\alpha, \beta)} \triangleq A\), if and only if \(\mu_A(x) > \beta\)
 or \(\gamma_A(x) < \alpha\).

2. two intuitionistic fuzzy sets \(A\) and \(B\) in \(X\) are said
 to be quasi-coincident, denoted by \(A \triangleq B\), if and only
 if there exists an element \(x \in X\) such that \(\mu_A(x) > \gamma_B(x)\) or \(\gamma_A(x) < \mu_B(x)\).

The word ’not quasi-coincident’ will be abbreviated as \(\triangleq\).

Definition 2.3. ([12]) Let \(A\) be an intuitionistic fuzzy set
in a SoFTS \((X, T_1, T_2)\) and \((r, s) \in I \otimes I\). Then \(A\) is said
 to be

1. fuzzy \((r, s)\)-preopen if \(A \subseteq \text{int}(\text{cl}(A, r, s), r, s)\).

2. fuzzy \((r, s)\)-preclosed if \(\text{cl}(\text{int}(A, r, s), r, s) \subseteq A\).

Definition 2.4. ([12]) Let \((X, T_1, T_2)\) be a SoFTS. For each
\((r, s) \in I \otimes I\) and for each \(A \in I(X)\), the fuzzy
\((r, s)\)-preinterior is defined by

\[
\text{pint}(A, r, s) = \bigcup\{B \in I(X) \mid B \subseteq A, \ B \text{ is fuzzy } (r, s)\text{-preopen}\}
\]

and the fuzzy \((r, s)\)-preclosure is defined by

\[
\text{pcl}(A, r, s) = \bigcap\{B \in I(X) \mid A \subseteq B, \ B \text{ is fuzzy } (r, s)\text{-preclosed}\}.
\]

Definition 2.5. ([11, 12]) Let \(f : (X, T_1, T_2) \rightarrow
(Y, U_1, U_2)\) be a mapping from a SoFTS \(X\) to a SoFTS
\(Y\) and \((r, s) \in I \otimes I\). Then \(f\) is called

1. a fuzzy \((r, s)\)-semi-closed mapping if \(f(A)\) is a fuzzy
 \((r, s)\)-semi-closed set in \(Y\) for each fuzzy \((r, s)\)-
 closed set \(A \subseteq X\),

2. a fuzzy \((r, s)\)-precontinuous mapping if \(f^{-1}(B)\) is a
 fuzzy \((r, s)\)-preopen set in \(X\) for each fuzzy \((r, s)\)-
 open set \(B \subseteq Y\),

3. a fuzzy \((r, s)\)-preopen mapping if \(f(A)\) is a fuzzy
 \((r, s)\)-preopen set in \(Y\) for each fuzzy \((r, s)\)-open set
 \(A \subseteq X\),

4. a fuzzy \((r, s)\)-preclosed mapping if \(f(A)\) is a fuzzy
 \((r, s)\)-preclosed set in \(Y\) for each fuzzy \((r, s)\)-closed set
 \(A \subseteq X\).

Definition 2.6. ([10]) Let \(x_{(\alpha, \beta)}\) be an intuitionistic fuzzy
point in a SoFTS \((X, T_1, T_2)\) and \((r, s) \in I \otimes I\). Then an
intuitionistic fuzzy set \(A\) in \(X\) is called

1. a fuzzy \((r, s)\)-neighborhood of \(x_{(\alpha, \beta)}\) if there is a
 fuzzy \((r, s)\)-open set \(B\) in \(X\) such that \(x_{(\alpha, \beta)} \in B \subseteq A\),

2. a fuzzy \((r, s)\)-semineighborhood of \(x_{(\alpha, \beta)}\) if there is a
 fuzzy \((r, s)\)-semi-open set \(B\) in \(X\) such that \(x_{(\alpha, \beta)} \in B \subseteq A\).

3. Fuzzy \((r, s)\)-semi-preopen sets and fuzzy
\((r, s)\)-semi-precontinuous mappings

Now, we define the notions of fuzzy \((r, s)\)-semi-preopen sets and fuzzy \((r, s)\)-semi-precontinuous mappings
on intuitionistic fuzzy topological spaces in Šostak’s sense, and then we investigate some of their properties.

Theorem 3.1. Let \(A\) be an intuitionistic fuzzy set in a
SoFTS \((X, T_1, T_2)\) and \((r, s) \in I \otimes I\). Then \(A\) is a fuzzy
\((r, s)\)-preopen set in \(X\) if and only if there is a fuzzy \((r, s)\)-
open set \(B\) in \(X\) such that \(A \subseteq B \subseteq \text{cl}(A, r, s)\).

Proof. Let \(A\) be a fuzzy \((r, s)\)-preopen set in \(X\). Then \(A \subseteq
\text{int}(\text{cl}(A, r, s), r, s)\). Put \(B = \text{int}(\text{cl}(A, r, s), r, s)\). Then \(B\)
is a fuzzy \((r, s)\)-open set in \(X\) and \(A \subseteq B \subseteq \text{cl}(A, r, s)\).

Conversely, let \(B\) be a fuzzy \((r, s)\)-open set in \(X\) such that
\(A \subseteq B \subseteq \text{cl}(A, r, s)\). Then \(A \subseteq B = \text{int}(B) \subseteq
\text{int}(\text{cl}(A, r, s), r, s)\). Hence \(A\) is a fuzzy \((r, s)\)-preopen set.

Definition 3.2. Let \(A\) be an intuitionistic fuzzy set in a
SoFTS \((X, T_1, T_2)\) and \((r, s) \in I \otimes I\). Then \(A\) is called

1. a fuzzy \((r, s)\)-semi-preopen set if there is a fuzzy
 \((r, s)\)-semi-preopen set \(B\) in \(X\) such that \(B \subseteq A \subseteq
 \text{cl}(B, r, s)\).

2. a fuzzy \((r, s)\)-semi-preclosed set if there is a fuzzy
 \((r, s)\)-semi-preclosed set \(B\) in \(X\) such that \(\text{int}(B, r, s) \subseteq
 A \subseteq B\).

Theorem 3.3. Let \(A\) be an intuitionistic fuzzy set in a
SoFTS \((X, T_1, T_2)\) and \((r, s) \in I \otimes I\). Then the following
statements are equivalent :

1. \(A\) is a fuzzy \((r, s)\)-semi-preopen set.

2. \(A^c\) is a fuzzy \((r, s)\)-semi-preclosed set.

Proof. Straightforward.

Remark 3.4. It is clear that every fuzzy \((r, s)\)-semiopen(resp.
fuzzy \((r, s)\)-semi-closed) set and every fuzzy \((r, s)\)-preopen(resp.
fuzzy \((r, s)\)-preclosed) set is fuzzy \((r, s)\)-semi-preopen(resp. fuzzy
\((r, s)\)-semi-preclosed) for each \((r, s) \in I \otimes I\). However, the following
example shows that all of the converses need not be true.
Example 3.5. Let $X = \{x, y\}$ and let A_1, A_2, A_3, and A_4 be intuitionistic fuzzy sets in X defined as

$$
A_1(x) = (0.2, 0.8), \quad A_1(y) = (0.3, 0.5);
$$

$$
A_2(x) = (0.8, 0.1), \quad A_2(y) = (0.8, 0.1);
$$

$$
A_3(x) = (0.5, 0.2), \quad A_3(y) = (0.2, 0.5);
$$

and

$$
A_4(x) = (0.1, 0.9), \quad A_4(y) = (0.2, 0.6).
$$

Define $T : I(X) \rightarrow I \otimes I$ by

$$
T(A) = (T_1(A), T_2(A)) = \begin{cases}
(1, 0) & \text{if } A = A_1, \\
(\frac{1}{3}, \frac{1}{3}) & \text{if } A = A_2, \\
(0, 1) & \text{otherwise}.
\end{cases}
$$

Then clearly T is a SoIFT on X. Since $A_2 \subseteq \frac{1}{3} = \text{int}(\text{cl}(A_2, \frac{1}{3}, \frac{2}{3}, \frac{1}{3}))$, A_2 is a fuzzy $(\frac{1}{3}, \frac{1}{3})$-preopen set and hence A_2 is fuzzy $(\frac{1}{2}, \frac{1}{2})$-preopen. But A_2 is not a fuzzy $(\frac{1}{2}, \frac{1}{2})$-semiopen set, because $A_2 \not\subseteq \text{cl}(\text{int}(A_2, \frac{1}{3}, \frac{2}{3}, \frac{1}{3})) = A_1'$. Since $A_4 \subseteq \text{cl}(A_4, \frac{1}{3}, \frac{1}{3}, \frac{1}{3}) = A_1$, A_4 is a fuzzy $(\frac{1}{2}, \frac{1}{2})$-preopen set. Also, A_3 is a fuzzy $(\frac{1}{3}, \frac{1}{3})$-preopen set, because $A_3 \subseteq \text{cl}(\text{int}(A_3, \frac{1}{3}, \frac{2}{3}, \frac{1}{3})) = A_1$.

Theorem 3.6. Let A be an intuitionistic fuzzy set in a SoIFTS (X, T_1, T_2) and $(r, s) \in I \otimes I$. Then the following statements are true:

1. For each fuzzy (r, s)-semi-preopen set B in X, $B \subseteq A \subseteq \text{cl}(B, r, s)$ implies that A is fuzzy (r, s)-semi-preopen in X.

2. For each fuzzy (r, s)-semi-preclosed set B in X, $B \subseteq A \subseteq \text{cl}(B, r, s)$ implies that A is fuzzy (r, s)-semi-preclosed in X.

Proof. (1) Let C be a fuzzy (r, s)-preopen set in X such that $C \subseteq B \subseteq \text{cl}(C, r, s)$. Then clearly $C \subseteq A$ and $B \subseteq \text{cl}(C, r, s)$ implies that $\text{cl}(B, r, s) \subseteq \text{cl}(C, r, s)$. Thus $C \subseteq A \subseteq \text{cl}(B, r, s) \subseteq \text{cl}(C, r, s)$. Hence A is a fuzzy (r, s)-semi-preopen set in X.

(2) Similar to (1). □

Theorem 3.7. Let (X, T_1, T_2) be a SoIFTS and $(r, s) \in I \otimes I$.

1. If $\{A_i\}$ is a family of fuzzy (r, s)-semi-preopen sets in X, then $\bigcup A_i$ is fuzzy (r, s)-semi-preopen.

2. If $\{A_i\}$ is a family of fuzzy (r, s)-semi-preclosed sets in X, then $\bigcap A_i$ is fuzzy (r, s)-semi-preclosed.

Proof. (1) Let $\{A_i\}$ be a collection of fuzzy (r, s)-semi-preopen sets in X. Then for each i, there is a fuzzy (r, s)-preopen set B_i in X such that $B_i \subseteq A_i \subseteq \text{cl}(B_i, r, s)$. So

$$
\bigcup B_i \subseteq \bigcup A_i \subseteq \bigcup \text{cl}(B_i, r, s) \subseteq \text{cl}(\bigcup B_i, r, s)
$$

and $\bigcup B_i$ is fuzzy (r, s)-preopen. Hence $\bigcup A_i$ is a fuzzy (r, s)-semi-preopen set.

(2) It follows from (1) using Theorem 3.3. □

The following example shows that the intersection(resp. union) of two fuzzy (r, s)-semi-preopen(resp. fuzzy (r, s)-semi-preclosed) sets need not be a fuzzy (r, s)-semi-preopen(resp. fuzzy (r, s)-semi-preclosed) set for each $(r, s) \in I \otimes I$.

Example 3.8. Let $X = \{x, y\}$ and let A_1 and A_2 be intuitionistic fuzzy sets in X defined as

$$
A_1(x) = (0.1, 0.7), \quad A_1(y) = (0.4, 0.3);
$$

and

$$
A_2(x) = (0.8, 0.1), \quad A_2(y) = (0.2, 0.4).
$$

Define $T : I(X) \rightarrow I \otimes I$ by

$$
T(A) = (T_1(A), T_2(A)) = \begin{cases}
(1, 0) & \text{if } A = A_1, \\
(\frac{1}{2}, \frac{1}{2}) & \text{if } A = A_2, \\
(0, 1) & \text{otherwise}.
\end{cases}
$$

Then clearly T is a SoIFT on X. Since $A_1 \subseteq \frac{1}{2} = \text{int}(\text{cl}(A_2, \frac{1}{2}, \frac{1}{2}, \frac{1}{2}))$, A_1 is a fuzzy $(\frac{1}{2}, \frac{1}{2})$-preopen, A_2 is a fuzzy $(\frac{1}{2}, \frac{1}{2})$-semiopen set and hence A_2 is fuzzy $(\frac{1}{2}, \frac{1}{2})$-semi-preopen. But A_2 is not a fuzzy $(\frac{1}{2}, \frac{1}{2})$-semiopen set, because $A_2 \not\subseteq \text{cl}(\text{int}(A_2, \frac{1}{2}, \frac{1}{2}, \frac{1}{2})) = A_1'$. Since $A_4 \subseteq \text{cl}(A_4, \frac{1}{2}, \frac{1}{2}, \frac{1}{2}) = A_1$, A_4 is a fuzzy $(\frac{1}{2}, \frac{1}{2})$-preopen set. Also, A_3 is a fuzzy $(\frac{1}{2}, \frac{1}{2})$-preopen set, because $A_3 \subseteq \text{cl}(\text{int}(A_3, \frac{1}{2}, \frac{1}{2}, \frac{1}{2})) = A_1$.

Definition 3.9. Let (X, T_1, T_2) be a SoIFTS. For each $(r, s) \in I \otimes I$ and for each $A \in I(X)$, the fuzzy (r, s)-preinterior is defined by

$$
\text{spint}(A, r, s) = \{B \in I(X) \mid B \subseteq A, \text{ } B \text{ is fuzzy } (r, s)-\text{preopen}\}
$$

and the fuzzy (r, s)-preclosure is defined by

$$
\text{spcl}(A, r, s) = \{B \in I(X) \mid A \subseteq B, \text{ } B \text{ is fuzzy } (r, s)-\text{preclosed}\}.
$$

Obviously spcl(A, r, s) is the smallest fuzzy (r, s)-semi-preclosed set which contains A, and spint(A, r, s) is the greatest fuzzy (r, s)-semi-preopen set which is contained in A. Also, spcl$(A, r, s) = A$ for any fuzzy (r, s)-semi-preclosed set A, and spint$(A, r, s) = A$ for any fuzzy (r, s)-semi-preopen set A. Moreover, we have

$$
\text{int}(A, r, s) \subseteq \text{pint}(A, r, s) \subseteq \text{spint}(A, r, s) \subseteq A \subseteq \text{spcl}(A, r, s) \subseteq \text{pcl}(A, r, s) \subseteq \text{cl}(A, r, s).
$$
Also, we have the following results:

1. \(\text{spcl}(0, r, s) = 0 \).
2. \(\text{spcl}(A, r, s) \supseteq A \).
3. \(\text{spcl}(A \cup B, r, s) \supseteq \text{spcl}(A, r, s) \cup \text{spcl}(B, r, s) \).
4. \(\text{spcl}(\text{spcl}(A, r, s), r, s) = \text{spcl}(A, r, s) \).
5. \(\text{spint}(0, r, s) = 0 \).
6. \(\text{spint}(A, r, s) \subseteq A \).
7. \(\text{spint}(A \cap B, r, s) \subseteq \text{spint}(A, r, s) \cap \text{spint}(B, r, s) \).
8. \(\text{spint}(\text{spint}(A, r, s), r, s) = \text{spint}(A, r, s) \).

Definition 3.10. Let \(A \) be an intuitionistic fuzzy set and \(x_{(\alpha, \beta)} \) an intuitionistic fuzzy point in a SoIFTS \((X, \mathcal{T}_1, \mathcal{T}_2) \) and \((r, s) \in I \otimes I \). Then \(A \) is called

1. a **fuzzy \((r, s)\)-semi-preneighborhood** of \(x_{(\alpha, \beta)} \) if there is a fuzzy \((r, s)\)-semi-preopen set \(B \) in \(X \) such that \(x_{(\alpha, \beta)} \in B \subseteq A \).

2. a **fuzzy \((r, s)\)-quasi-semi-preneighborhood** of \(x_{(\alpha, \beta)} \) if there is a fuzzy \((r, s)\)-semi-preopen set \(B \) in \(X \) such that \(x_{(\alpha, \beta)}qB \subseteq A \).

Theorem 3.11. Let \(A \) be an intuitionistic fuzzy set in a SoIFTS \((X, \mathcal{T}_1, \mathcal{T}_2) \) and \((r, s) \in I \otimes I \). Then \(A \) is fuzzy \((r, s)\)-semi-preopen if and only if \(A \) is a fuzzy \((r, s)\)-semipreneighborhood of \(x_{(\alpha, \beta)} \) for each intuitionistic fuzzy point \(x_{(\alpha, \beta)} \in A \).

Proof. Straightforward. \(\square \)

Theorem 3.12. Let \(A \) be an intuitionistic fuzzy set in a SoIFTS \((X, \mathcal{T}_1, \mathcal{T}_2) \) and \((r, s) \in I \otimes I \). Then an intuitionistic fuzzy point \(x_{(\alpha, \beta)} \) is contained in \(\text{spcl}(A, r, s) \) if and only if every fuzzy \((r, s)\)-quasi-semi-preneighborhood of \(x_{(\alpha, \beta)} \) is quasi-coincidence with \(A \).

Proof. Suppose \(x_{(\alpha, \beta)} \in \text{spcl}(A, r, s) \) and there exists a fuzzy \((r, s)\)-quasi-semi-preopen set \(B \) of \(x_{(\alpha, \beta)} \) such that \(AqB \). Then there is a fuzzy \((r, s)\)-semi-preopen set \(C \) in \(X \) such that \(x_{(\alpha, \beta)}qC \subseteq B \), which shows that \(AqC \) and hence \(A \subseteq C^c \). Since \(C^c \) is fuzzy \((r, s)\)-semi-preclosed in \(X \), \(\text{spcl}(A, r, s) \subseteq C^c \). Thus \(x_{(\alpha, \beta)} \in C^c \). But \(x_{(\alpha, \beta)} \notin C^c \), because \(x_{(\alpha, \beta)}qC \). This is a contradiction.

Conversely, suppose every fuzzy \((r, s)\)-quasi-semi-preneighborhood of \(x_{(\alpha, \beta)} \) is quasi-coincidence with \(A \). If \(x_{(\alpha, \beta)} \notin \text{spcl}(A, r, s) \), then there is a fuzzy \((r, s)\)-semi-preclosed set \(B \) in \(X \) such that \(A \subseteq B \) and \(x_{(\alpha, \beta)} \notin B \). So \(B^c \) is a fuzzy \((r, s)\)-semi-preopen set in \(X \) such that \(x_{(\alpha, \beta)}qB \cap B^c = 0 \). This is a contradiction. \(\square \)

Definition 3.13. Let \(f : (X, \mathcal{T}_1, \mathcal{T}_2) \rightarrow (Y, \mathcal{U}_1, \mathcal{U}_2) \) be a mapping from a SoIFTS \(X \) to a SoIFTS \(Y \) and \((r, s) \in I \otimes I \). Then \(f \) is called a fuzzy \((r, s)\)-semi-precontinuous mapping if \(f^{-1}(B) \) is a fuzzy \((r, s)\)-semi-preopen set in \(X \) for each fuzzy \((r, s)\)-open set \(B \) in \(Y \).

Remark 3.14. It is clear that every fuzzy \((r, s)\)-semicontinuous and every fuzzy \((r, s)\)-precontinuous mapping is fuzzy \((r, s)\)-semi-precontinuous for each \((r, s) \in I \otimes I \). However, the following examples show that all of the converses need not be true.

Example 3.15. Let \(X = \{x, y\} \) and let \(A_1, A_2 \) and \(B \) be intuitionistic fuzzy sets in \(X \) defined as

\[
A_1(x) = (0.2, 0.7), \quad A_1(y) = (0.3, 0.5);
\]
\[
A_2(x) = (0.7, 0.2), \quad A_2(y) = (0.7, 0.2);
\]
and
\[
B(x) = (0.7, 0.2), \quad B(y) = (0.6, 0.3).
\]

Define \(T : I(X) \rightarrow I \otimes I \) and \(U : I(X) \rightarrow I \otimes I \) by

\[
T(A) = (\mathcal{T}_1(A), \mathcal{T}_2(A)) = \begin{cases}
(1, 0) & \text{if } A = 0, 1, \\
(\frac{1}{2}, \frac{1}{2}) & \text{if } A = A_1, \\
(0, 1) & \text{otherwise};
\end{cases}
\]

and

\[
U(A) = (\mathcal{U}_1(A), \mathcal{U}_2(A)) = \begin{cases}
(1, 0) & \text{if } A = 0, 1, \\
(\frac{1}{2}, \frac{1}{2}) & \text{if } A = A_2, \\
(0, 1) & \text{otherwise}.
\end{cases}
\]

Then clearly \(T \) and \(U \) are SoIFTS on \(X \). Consider a mapping \(f : (X, T) \rightarrow (X, U) \) defined by \(f(x) = x \) and \(f(y) = y \). Then it is easy to see that \(B \) is a fuzzy \((\frac{1}{2}, \frac{1}{2})\)-preopen set in \((X, T) \) and \(B \subseteq f^{-1}(A_2) \subseteq \text{cl}(B, \frac{1}{2}, \frac{1}{2}) = 1 \). So \(f^{-1}(A_2) = A_2 \) is a fuzzy \((\frac{1}{2}, \frac{1}{2})\)-semi-preopen set in \((X, T) \) and hence \(f \) is a fuzzy \((\frac{1}{2}, \frac{1}{2})\)-semi-precontinuous mapping. But \(f^{-1}(A_1) = A_2 \) is not a fuzzy \((\frac{1}{2}, \frac{1}{2})\)-semiopen set in \((X, T) \), because \(A_2 \subseteq \text{cl}(\text{int}(A_1), \frac{1}{2}, \frac{1}{2}) = A_1^c \) in \((X, T) \). Hence \(f \) is not fuzzy \((\frac{1}{2}, \frac{1}{2})\)-semicontinuous.

Example 3.16. Let \(X = \{x, y\} \) and let \(A_1, A_2 \) and \(B \) be intuitionistic fuzzy sets in \(X \) defined as

\[
A_1(x) = (0.2, 0.5), \quad A_1(y) = (0.3, 0.3);
\]
\[
A_2(x) = (0.5, 0.3), \quad A_2(y) = (0.3, 0.4);
\]
and
\[
B(x) = (0.2, 0.6), \quad B(y) = (0.2, 0.4).
\]

Define \(T : I(X) \rightarrow I \otimes I \) and \(U : I(X) \rightarrow I \otimes I \) by

\[
T(A) = (\mathcal{T}_1(A), \mathcal{T}_2(A)) = \begin{cases}
(1, 0) & \text{if } A = 0, 1, \\
(\frac{1}{2}, \frac{1}{2}) & \text{if } A = A_1, \\
(0, 1) & \text{otherwise};
\end{cases}
\]

and

\[
U(A) = (\mathcal{U}_1(A), \mathcal{U}_2(A)) = \begin{cases}
(1, 0) & \text{if } A = 0, 1, \\
(\frac{1}{2}, \frac{1}{2}) & \text{if } A = A_2, \\
(0, 1) & \text{otherwise}.
\end{cases}
\]
Then clearly T and U are SIOFTs on X. Consider a mapping $f : (X, T) \to (X, U)$ defined by $f(x) = x, f(y) = y$. Then it is easy to see that B is a fuzzy $(\frac{1}{2}, \frac{1}{3})$-preopen set in (X, T) and $B \subseteq f^{-1}(A_2) = A_2 \subseteq \text{cl}(B, \frac{1}{2}, \frac{1}{3}) = A_1'$. So $f^{-1}(A_2) = A_2$ is a fuzzy $(\frac{1}{2}, \frac{1}{3})$-preopen set in (X, T) and hence f is a fuzzy $(\frac{1}{2}, \frac{1}{3})$-semi-precontinuous mapping. But $f^{-1}(A_2) = A_2$ is not a fuzzy $(\frac{1}{2}, \frac{1}{3})$-preopen set in (X, T), because $A_2 \not\subseteq \text{int}(\text{cl}(A_2, \frac{1}{2}, \frac{1}{3}), \frac{1}{2}, \frac{1}{3}) = A_1$ in (X, T). Hence f is not fuzzy $(\frac{1}{2}, \frac{1}{3})$-precontinuous.

Theorem 3.17. Let $f : (X, T_1, T_2) \to (Y, U_1, U_2)$ be a mapping from a SIOFT X to a SIOFT Y and $(r, s) \in I \otimes I$. Then the following statements are equivalent:

1. f is fuzzy (r, s)-semi-precontinuous.
2. For each fuzzy (r, s)-closed set B in Y, $f^{-1}(B)$ is a fuzzy (r, s)-semi-preclosed set in X.
3. For each intuitionistic fuzzy point $x_{(a, b)}$ in X and each fuzzy (r, s)-open set B in Y such that $f(x_{(a, b)}) \in B$, there is a fuzzy (r, s)-semi-preopen set A in X such that $x_{(a, b)} \in A$ and $f(A) \subseteq B$.
4. For each intuitionistic fuzzy point $x_{(a, b)}$ in X and each fuzzy (r, s)-neighborhood B of $f(x_{(a, b)})$, $f^{-1}(B)$ is a fuzzy (r, s)-semi-preneighborhood of $x_{(a, b)}$.
5. For each intuitionistic fuzzy point $x_{(a, b)}$ in X and each fuzzy (r, s)-neighborhood B of $f(x_{(a, b)})$, there is a fuzzy (r, s)-semi-preneighborhood A of $x_{(a, b)}$ such that $f(A) \subseteq B$.
6. For each intuitionistic fuzzy set B in Y, $\text{spcl}(f^{-1}(B), r, s) \subseteq f^{-1}(\text{cl}(B, r, s))$.
7. For each intuitionistic fuzzy set A in X, $f(\text{spcl}(A, r, s)) \subseteq \text{cl}(f(A), r, s)$.
8. For each intuitionistic fuzzy set B in Y, $f^{-1}(\text{int}(B, r, s)) \subseteq \text{spint}(f^{-1}(B), r, s)$.

Proof. (1) \Rightarrow (2) It is obvious.

(1) \Rightarrow (3) Let $x_{(a, b)}$ be an intuitionistic fuzzy point in X and B a fuzzy (r, s)-open set in Y such that $f(x_{(a, b)}) \in B$. Then $x_{(a, b)} \in f^{-1}(B)$. Put $A = f^{-1}(B)$. Then by (1), A is a fuzzy (r, s)-semi-preopen set in X such that $x_{(a, b)} \in A$ and $f(A) = f(f^{-1}(B)) \subseteq B$.

(3) \Rightarrow (1) Let B be a fuzzy (r, s)-open set in Y and $x_{(a, b)} \in f^{-1}(B)$. Then $f(x_{(a, b)}) \in B$. By (3), there is a fuzzy (r, s)-semi-preopen set $A_{x_{(a, b)}}$ in X such that $x_{(a, b)} \in A_{x_{(a, b)}}$ and $f(A_{x_{(a, b)}}) \subseteq B$. Thus $x_{(a, b)} \in A_{x_{(a, b)}} \subseteq f^{-1}(\text{cl}(A_{x_{(a, b)}}, r, s)) \subseteq f^{-1}(B)$. So we have

$$f^{-1}(B) = \bigcup \{x_{(a, b)} \mid x_{(a, b)} \in f^{-1}(B)\} \subseteq \bigcup \{A_{x_{(a, b)}} \mid x_{(a, b)} \in f^{-1}(B)\} \subseteq f^{-1}(B).$$

Thus $f^{-1}(B) = \bigcup \{A_{x_{(a, b)}} \mid x_{(a, b)} \in f^{-1}(B)\}$ and hence $f^{-1}(B)$ is fuzzy (r, s)-semi-preopen in X. Therefore f is a fuzzy (r, s)-semi-precontinuous mapping.

(1) \Rightarrow (4) Let $x_{(a, b)}$ be an intuitionistic fuzzy point in X and B a fuzzy (r, s)-neighborhood of $f(x_{(a, b)})$. Then there is a fuzzy (r, s)-open set C in Y such that $f(x_{(a, b)}) \in C \subseteq B$ and hence $x_{(a, b)} \in f^{-1}(C) \subseteq f^{-1}(B)$. Since f is fuzzy (r, s)-semi-precontinuous, $f^{-1}(C)$ is a fuzzy (r, s)-semi-preopen set in X. Thus $f^{-1}(B)$ is a fuzzy (r, s)-semi-preneighborhood of $x_{(a, b)}$.

(4) \Rightarrow (5) Let $x_{(a, b)}$ be an intuitionistic fuzzy point in X and B a fuzzy (r, s)-neighborhood of $f(x_{(a, b)})$. By (4), $A = f^{-1}(B)$ is a fuzzy (r, s)-semi-preneighborhood of $x_{(a, b)}$ and $f(A) = f(f^{-1}(B)) \subseteq B$.

(5) \Rightarrow (3) Let $x_{(a, b)}$ be an intuitionistic fuzzy point in X and B a fuzzy (r, s)-open set in Y such that $f(x_{(a, b)}) \in B$. Then B is a fuzzy (r, s)-neighborhood of $f(x_{(a, b)})$. By (5), there is a fuzzy (r, s)-semi-preneighborhood A of $x_{(a, b)}$ in X such that $x_{(a, b)} \in A$ and $f(A) \subseteq B$. Thus there is a fuzzy (r, s)-semi-preopen set C in X such that $x_{(a, b)} \in C \subseteq A$ and hence $f(C) \subseteq f(A) \subseteq B$.

(2) \Rightarrow (6) Let B be an intuitionistic fuzzy set in Y. Then $\text{cl}(B, r, s)$ is a fuzzy (r, s)-closed set in Y and $f^{-1}(B) \subseteq f^{-1}(\text{cl}(B, r, s))$. By (2), $f^{-1}(\text{cl}(B, r, s))$ is a fuzzy (r, s)-semi-preclosed set in X. Hence

$$\text{spcl}(f^{-1}(B), r, s) \subseteq f^{-1}(\text{cl}(B, r, s)).$$

(6) \Rightarrow (2) Let B be a fuzzy (r, s)-closed set in Y. Then by (6),

$$f^{-1}(B) \subseteq \text{spcl}(f^{-1}(B), r, s) \subseteq f^{-1}(\text{cl}(B, r, s)) = f^{-1}(B).$$

Hence $f^{-1}(B) = \text{spcl}(f^{-1}(B), r, s)$. Thus $f^{-1}(B)$ is a fuzzy (r, s)-semi-preclosed set in X.

(6) \Rightarrow (7) Let A be an intuitionistic fuzzy set in X. Then $f(A)$ is an intuitionistic fuzzy set in Y. By (6),

$$\text{spcl}(A, r, s) \subseteq \text{spcl}(f^{-1}(f(A)), r, s) \subseteq f^{-1}(\text{cl}(f(A), r, s)).$$

Thus $f(\text{spcl}(A, r, s)) \subseteq \text{cl}(f(A), r, s)$.

(7) \Rightarrow (6) Let B be an intuitionistic fuzzy set in Y. Then $f^{-1}(B)$ is an intuitionistic fuzzy set in X. By (7),

$$f(\text{spcl}(f^{-1}(B), r, s)) \subseteq \text{cl}(f(f^{-1}(B)), r, s) \subseteq \text{cl}(B, r, s).$$
4. Fuzzy (r,s)-semi-preopen and fuzzy (r,s)-semi-preclosed mappings

We define the notions of fuzzy (r,s)-semi-preopen and fuzzy (r,s)-semi-preclosed mappings on intuitionistic fuzzy topological spaces in Šostak’s sense, and then we investigate some of their properties.

Definition 4.1. Let $f : (X, T_1, T_2) \rightarrow (Y, U_1, U_2)$ be a mapping from a SoIFTs X to a SoIFTs Y and $(r,s) \in I \otimes I$. Then f is called

1. a fuzzy (r,s)-semi-preopen mapping if $f(A)$ is a fuzzy (r,s)-semi-preopen set in Y for each fuzzy (r,s)-open set A in X,

2. a fuzzy (r,s)-semi-preclosed mapping if $f(A)$ is a fuzzy (r,s)-semi-preclosed set in Y for each fuzzy (r,s)-closed set A in X.

Remark 4.2. It is obvious that every fuzzy (r,s)-semi-preopen(resp. fuzzy (r,s)-semi-closed) and every fuzzy (r,s)-preopen(resp. fuzzy (r,s)-preclosed) mapping is fuzzy (r,s)-semi-preopen(resp. fuzzy (r,s)-semi-preclosed). However, the following examples show that all of the converses need not be true.

Example 4.3. Let $X = \{x, y\}$ and let A_1, A_2 and B be intuitionistic fuzzy sets in X defined as

$$A_1(x) = (0.9, 0.1), \quad A_1(y) = (0.5, 0.4);$$

$$A_2(x) = (0.4, 0.5), \quad A_2(y) = (0.4, 0.2);$$

and

$$B(x) = (0.5, 0.4), \quad B(y) = (0.3, 0.4).$$

Define $T : I(X) \rightarrow I \otimes I$ and $U : I(X) \rightarrow I \otimes I$ by

$$T(A) = (T_1(A), T_2(A)) =

\begin{cases}
(1,0) & \text{if } A = 0, 1, \\
(\frac{1}{2}, \frac{1}{3}) & \text{if } A = A_1, \\
(0,1) & \text{otherwise};
\end{cases}
$$

and

$$U(A) = (U_1(A), U_2(A)) =

\begin{cases}
(1,0) & \text{if } A = 0, 1, \\
(\frac{1}{2}, \frac{1}{3}) & \text{if } A = A_2, \\
(0,1) & \text{otherwise}.
\end{cases}
$$

Then clearly T and U are SoIFTs on X. Consider a mapping $f : (X, T) \rightarrow (X, U)$ defined by $f(x) = x$ and $f(y) = y$. Since $B \subseteq \text{int}(cl[B, \frac{1}{2}, \frac{1}{3}], \frac{1}{2}, \frac{1}{3}) = 1$ in (X, U), B is a fuzzy $(\frac{1}{2}, \frac{1}{3})$-preopen set in (X, U). Also, $f(A_1)$ is a fuzzy $(\frac{1}{2}, \frac{1}{3})$-semi-preopen set, because $B \subseteq cl[B, \frac{1}{2}, \frac{1}{3}] = 1$ in (X, U). Thus f is a fuzzy $(\frac{1}{2}, \frac{1}{3})$-semi-preopen mapping. But $f(A_1) = A_1$ is not a fuzzy $(\frac{1}{2}, \frac{1}{3})$-semi-closed set in (X, U), because $A_1 \not\subseteq cl[\text{int}(A_1, \frac{1}{2}, \frac{1}{3}), \frac{1}{2}, \frac{1}{3}] = 0$ in (X, U). Thus f is not a fuzzy $(\frac{1}{2}, \frac{1}{3})$-semi-closed mapping.
Theorem 4.5. Let \(f : (X, T_1, T_2) \rightarrow (Y, U_1, U_2) \) be a mapping from a SoFTS \(X \) to a SoFTS \(Y \) and \((r, s) \in I \otimes I \). Then \(f \) is a fuzzy \((r, s)\)-semi-preopen mapping if and only if \(f(\text{int}(A, r, s)) \subseteq \text{spint}(f(A), r, s) \) for each intuitionistic fuzzy set \(A \) in \(X \).

Proof. Let \(f \) be a fuzzy \((r, s)\)-semi-preopen mapping. Since \(\text{int}(A, r, s) \) is fuzzy \((r, s)\)-open in \(X \), \(f(\text{int}(A, r, s)) \) is a fuzzy \((r, s)\)-semi-preopen set in \(Y \). Hence

\[
f(\text{int}(A, r, s)) = \text{spint}(f(\text{int}(A, r, s), r, s) \subseteq \text{spint}(f(A), r, s).
\]

Conversely, let \(A \) be a fuzzy \((r, s)\)-open set in \(X \). By hypothesis, \(f(A) = f(\text{int}(A, r, s)) \subseteq \text{spint}(f(A), r, s) \subseteq f(A) \). So \(f(A) = \text{spint}(f(A), r, s) \). Thus \(f(A) \) is a fuzzy \((r, s)\)-semi-preopen set in \(Y \). Hence \(f \) is a fuzzy \((r, s)\)-semi-preopen mapping.

\(\square \)

Theorem 4.6. Let \(f : (X, T_1, T_2) \rightarrow (Y, U_1, U_2) \) be a mapping from a SoFTS \(X \) to a SoFTS \(Y \) and \((r, s) \in I \otimes I \). Then \(f \) is a fuzzy \((r, s)\)-semi-preclosed mapping if and only if \(\text{spcl}(f(A), r, s) \subseteq f(\text{cl}(A, r, s)) \) for each intuitionistic fuzzy set \(A \) in \(X \).

Proof. Let \(f \) be a fuzzy \((r, s)\)-semi-preclosed mapping. Since \(f(\text{cl}(A, r, s)) \) is a fuzzy \((r, s)\)-closed set in \(X \), \(f(\text{cl}(A, r, s)) \) is a fuzzy \((r, s)\)-semi-preclosed set in \(Y \). Since \(f(A) \subseteq f(\text{cl}(A, r, s)) \), we have \(\text{spcl}(f(A), r, s) \subseteq f(\text{cl}(A, r, s)) \). Conversely, let \(A \) be a fuzzy \((r, s)\)-closed set in \(X \). By hypothesis, \(f(A) \subseteq f(\text{cl}(A, r, s)) = f(A) \). So \(f(A) = f(\text{cl}(A, r, s)) \). Thus \(f(A) \) is a fuzzy \((r, s)\)-semi-preclosed set in \(Y \). Hence \(f \) is a fuzzy \((r, s)\)-semi-preclosed mapping.

\(\square \)

References

제자소개

Seok Jong Lee

한국 편지 및 지능시스템학회 부회장
현재 충북대학교 수학과 교수
제 15권 1호 (2005년 2월호) 참조
E-mail : sjl@cbnu.ac.kr

Jin Tae Kim

현재 충북대학교 수학과 박사과정
E-mail : kjmath@hanmail.net