PSO를 이용한 이족보행로봇의 보행 계획

Footstep Planning of Biped Robot Using Particle Swarm Optimization

김승석**· 김용태**
Sung-Suk Kim* and Yong-Tae Kim**

• 충북대학교 전기전자공학부, 컴퓨터 정보통신 연구소
• 한국대학교 정보제어공학과, 전자기술종합연구소

요 약
본 논문에서는 Particle Swarm Optimization (PSO) 기법을 이용한 이족보행로봇의 보행 계획 방법을 제안한다. 이족보행로봇의 보행 계획 방법은 Particle Swarm Optimization (PSO) 기법을 이용한 보행 계획 방법을 제안한다. PSO의 탐색 알고리즘은 장애물 회피의 원리와 중복되지 않는 경로를 생성하는 원리와 중복되지 않는 경로를 생성하는 원리를 사용하여 장애물을 회피하는 경로를 생성하는 원리와 중복되지 않는 경로를 생성하는 원리와 중복되지 않는 경로를 생성하는 원리를 사용하여 장애물을 회피하는 경로를 생성하는 원리

Abstract
In this paper, we propose a footstep planning method for biped robot based on the Particle Swarm Optimization (PSO). We define configuration and locomotion primitives for biped robots in the 2 dimension workspace. A footstep planning method is designed using learning process of PSO that is initialized with a population of random objects and searches for optima by updating generations. The footstep planner searches for a feasible sequence of locomotion primitives between a starting point and a goal, and generates a path that avoids the obstacles. We design a path optimization algorithm that optimizes the footstep number and planning cost based on the path generated in the PSO learning process.

The proposed planning method is verified by simulation examples in cluttered environments.

Key Words : Footstep Planning, Particle Swarm Optimization, Biped Robot, Path Optimization

1. 서 론
이족보행로봇은 바퀴형 로봇과 달리 작업 환경에 따른 제약이 적고 인간이 수행할 작업을 보조할 수 있기 때문에 많은 연구가 활발히 이루어지고 있으며, 특히 늑골이 다양한 작업공간에서의 보행 계획에 관한 연구들이 수행되고 있다[1][2][3]. 이족보행로봇의 보행 계획은 로봇의 고차원 차수 도로 고차원의 구성 공간을 가지게 되어 보행 계획의 해를 구하는 것은 매우 어렵다고 알려져 있다[2]. 다양한 종류의 장애물이 있는 복잡한 환경에서는 이족보행로봇의 가능한 보행로직을 찾기는 더욱 어렵다고 알려져 있으며, 고차원의 구성 공간에서 경로를 찾는 것은 상당한 양의 계산량과 계산 시간을 필요로 한다. 또한, 구성 공간의 복잡성과 안정성 필요조건 때문에 복잡한 환경을 동등하게 최적 일정 경로의 탐색과 장애물과의 충돌 확인도 어렵다[4].

이러한 문제를 해결하기 위해 정적으로 안정된 차체로 시작하여 끝나는 미리 계획된 보행 프리미티브(locomotion primitive)를 사용하는 방법을 연구의 대상과 관련 많은 연구들이 진행되고 있다[4]. 단순하고 정적한 환경에서의 이족보행로봇의 보행 계획은 고차원의 구성 공간 점착보다는 실행 가능한 보행 프리미티브들의 순서를 찾는 것으로 생각될 수 있다.

보행 프리미티브들을 사용하면 다양한 점착 알고리즘을 사용해 계획할 수 있지만, 작업 환경이 복잡하고 이동 경로가 길다면 검색시간이 매우 길어지거나 페달의 용량이 적게 주어지지 않을 경우 검색 시간을 가지는 보행계획기의 설계가 요구되며, 또한 탐색된 보행경로들을 기반으로 최적의 경로를 생성해야 한다.

PSO는 각 개체가 단순한 역할만 가지고 있어서 상호 정보교환 및 협력이 없어 원하는 목적을 이루는 데에는 별다른 도움을 줄 수 없게 되어 탐색하는 장점 등 몇 가지 보수적인 기법이다[5]. 각 개체는 낮은 영향을 가지지만 다수의 역할을 수행하거나 높은 규격을 유지할 수 있는 장점이 있다. 또한 각 탐색은 병렬로 발생하며, 제한된 상태로 이루어진 전체 개체의 성능은 유지한다. 또한 병렬로 발생하는 경우 연산량이기존의 기법보다 크게 줄어드는 장점이 있다. 기존의 경계선 기법의 두각하면 탐색 성능을 각 개체에서 최적해를 중심으로 해를 탐색 및 선택하는 미분계의 해소 및 탐색의 침범방지를 억제하고 있으며 이러한 PSO의 탐색 특성은 이족보행의 보행계획 문제를 해결하기에 적용될 수 있다.

본 논문에서는 보행 프리미티브를 기반으로 PSO를 사용한 이족보행로봇의 보행 계획 방법과 보행 경로 최적화 방법을 제안하였다. 이족보행로봇의 보행 계획 방법은 고차원의 구성 공간 점착보다는 실행 가능한 보행 프리미티브들의 순서를 찾는 것으로 생각될 수 있다.
고리즘을 제안하고, 다양한 2차원 장애물 환경에서 모의실험을 통해 제안한 방법의 성능을 검증하였다.

2. PSO를 사용한 보행 계획

2.1 이족보행로봇 구성 및 보행프리미터

2차원 작업공간에서 이족보행로봇의 구성 \(\gamma \)는 다음과 같이 표현된다.

\[
\gamma = (x, y, \theta, g) \tag{1}
\]

로봇의 구성은 \(x \)축과 \(y \)축 위치, 방향 \(\theta \), 자세 \(g \)로 구성되며, 위치와 방향은 작업공간의 기준 프레임과 로봇의 기준프레임을 비교하여 나타낸다. 이족보행의 보행 프리미터는 정적으로 안정된 자세로 시작하여 안정된 동작으로 끝나는 연속된 동작들의 순서의 집합 \(M = (q_1, q_2, ..., q_n) \)으로 정의된다[4].

본 연구에서는 보행프리미터 \(M \)를 사용한 이족보행 로봇의 보행 동작을 다음식 2와 같이 보행프리미터로 정의하였다.

\[
P_i = (\Delta x_i, \Delta y_i, \Delta \theta_i, M_i, C_i, \text{V}_i) \tag{2}
\]

\(\Delta x_i \)와 \(\Delta y_i \)는 로봇의 \(x \)축과 \(y \)축 위치 변화 값이며, \(\Delta \theta_i \)는 로봇의 기분 프레임의 회전 변화 값이다. \(C_i \)는 로봇이 보행프리미터 \(M_i \)를 실행할 때 비용함수이며, \(\text{V}_i \)는 로봇이 \(M_i \) 프리미터를 수행하면서 생성한 보행경로의상의 로봇 전체 이동 총계이다.

보행프리미터 \(P_i \)는 2차원 작업공간에서 이족보행 로봇의 보행 동작을 표현함으로 이족보행로봇의 보행 계획은 그림 1과 같이 2차원 작업공간의 시작지점 초기 구성, \(\gamma \)에서 목표지점의 로봇의 최종 구성, \(\gamma_f \)까지 장애물, 백 등의 몰래와의 충돌을 일으키지 않으며, 전체 비용과 거리를 최소화하는 일련의 최적의 보행프리미터들을 찾아내는 과정으로 생각할 수 있다.

\[
\gamma_f = (x_f, y_f, \theta_f, q_f)
\]

![그림 1. 이족 보행로봇의 보행 계획](Fig. 1 Footstep Planning of Biped Robot)

2.2 PSO 학습

PSO는 상호 협동을 통해 근접을 이루며 생활하는 특정 동물의 집단 생활을 모의한 알고리즘 방법이다. 각 개인들은 서로 자신의 위치에서 가장 낮은 값을 찾아 탐색하고 이전의 정보를 상호 운용함으로써 학습이 진행되면서 점차 우수한 해를 탐색하게 된다[5]. PSO의 독성 중 하나로 각 객체는 동시에 탐색을 하며 이동하지만 같은 시간에 같은 공간을 점유하지 않는다. 예를 들어, 먹이를 찾아 군주를 이루며 이동하는 새들의 비행행태를 보면 각각은 일정한 범위의 아랫쪽을 가지고 전체 무리와 이동한다. 먹이를 탐색하는 과정에서, 근접에서 가장 우수한 먹이 위치를 탐색한 개체를 중심으로 갈등은 이동하면서 각각은 더 우수한 먹이 위치를 저속적으로 탐색하며 진행한다. 탐색과정 중에 다른 개체가 더 우수한 먹이 위치를 탐색할 경우 전체 근접에 도달하며 군주는 새로운 먹이 위치를 탐색한 개체를 중심으로 다시 탐색을 하여서도 각 개체는 더 우수한 먹이 위치를 저속적으로 탐색한다. 갈등은 저속이지만 자신의 위치에서 탐색과정 결과의 보행과 공유함으로써 근접 전체에 의한 탐색하는 능력이 형성된다. 또한 근접을 이루어 탐색함으로써 현재 발견된 해당 근접을 관계들이 저속하게 탐색하거나 먹이 탐색과정이 진행되는 동안 새로운 개체가 수행되는 특성을 가진다.

PSO의 학습과정은 개체의 이동속도 추정과 속도에 따른 위치 보정과정이 있으며 다음식 3과 4와 같이 표현된다.

\[
v_{i+1} = v_i + c_1 \times \text{rand}(\cdot) \times (p_{id} - x_i) \tag{3}
\]

\[
v_{i+1} = v_i + c_2 \times \text{rand}(\cdot) \times (p_{gd} - x_i) \tag{4}
\]

여기서 \(v_i \)는 각 객체의 이동속도이며, 이전의 최적 값 \(x_{id} \)를 중심으로 새롭게 이동되고, \(c_1 \)와 \(c_2 \)는 학습에 필요한 파라미터이며, 추정된 속도를 이용해 각 객체의 새로운 위치 \(x_{i+1} \)를 계산한다. 식(3)과 식(4)에서 보통 두 최적값을 저장하는 위치의 중심으로 각 개체들은 일정한 수렴특성을 가진다. 하나의 최적값을 가진 개체를 중심으로 나머지 개체가 수렴특성을 이용하여 학습을 지속한다. 이를 이용하여 학습 알고리즘으로 표현하면 그림 1과 같다.

![그림 2. PSO의 학습과정](Fig. 2 Learning Process of PSO)
한 연구를 가하는 예제 알고리즘과 달리 PSO는 속도 계산 및 이를 이용한 위치 추정과 같은 간단한 연산만을 가진다. 주어진 입력조건에 대해 임의의 유전자 생성을 통해 정적적인 탐색을 시시하는 유전 알고리즘에 비해 PSO는 학습이 진행되는 동안 최적해를 중심으로 각 개체들이 수렴하며 탐색하는 특성을 가진다. 또한 일관적인 최적화 기법이나 유전 알고리즘의 경우 각 유전자는 이전과 변환을 통해 연산을 취하고 평가를 위해 다시 심화와 과정을 거치는데 반하여 PSO는 학습에 이용한 파라미터가 쉽게 모델의 파라미터와 변환 없이 직접적으로 이용될 수 있다.

2.3 PSO 기반 보행계획

장애물이 있는 작업공간에서의 이동방향의 보행을 위해 본 연구는 출발점과 도착점 사이의 보행 경로를 탐색하여야 한다. 출발점과 도착점 사이에 모든 장애물들이 있으며 출발점과 도착점 사이이 장애물로 인해 다양한 경로들이 있으며, 경로 탐색은 단자가 출발점과 도착점, 장애물의 위치만 알고 있다는 가정에서 보행 경로를 추정하여야 한다.

시작점의 장애물 환경에서 이동방향의 보행 경로탐색을 위해 직각, 최소 사선 직각, 좌우 중, 좌우 회전 프리미터 등으로 구성하였으며, PSO 알고리즘은 보행 계획에 적용하기 위해 로봇의 전진방향 및 보폭을 각 개체의 파라미터로 설정하였다. 이동방향의 알고리즘은 2차원 좌표와 이동 방향 θ로 구성되며, PSO 객체의 파라미터는 2차원 공간의 x축과 y축 위치, 방향 θ로 구성하였다. PSO는 알고리즘 기반의 보행계획은 2차원 공간에서 장애물과 충돌하지 않는 출발점과 목표점사이의 보행 경로를 탐색한 다.

본 연구에서 학습에 이용되는 근본은 각각의 학습파라미터를 가진 개체를 20개로 구성하였다. 임의의 학습파라미터를 이용하기 위해 이론적으로 정한 것은 달러질 수 있다. 이는 예측된 데이터의 근본적인 특성 중 하나로 임의의 수 를 생성하고 이를 학습에 이용함으로써 기존의 기법들이 가지던 수학적 제한을 해결하면서도 탐색의 다양성을 가능하게 한다. 그림 3은 학습 초기 의의로 생성된 학습파라미터를 PSO의 개체로 설정하고 목표지점까지의 최단경로 탐색을 통해 새로운 보행파라미터를 탐색하는 과정을 보여준다.

그림 3. PSO를 이용한 경로 탐색
Fig. 3 Path searching using PSO

2.4 경로 최적화 알고리즘

PSO에 의해 탐색된 보행경로는 학습과정 중 발생하는 다양한 조건을 만족하는 학습 방법을 이용하기 때문에 최적화되어 있지 않다. 따라서 이동방향의 효율적인 이동 및 최적 경로 생성을 위해 보행 경로의 최적화 알고리즘을 설계하여야 한다.

출발점에서 시작된 보행 경로 최적화는 장애물을 거치지 않는 최장 경로를 찾기고 그림 4에서와 같이 장애물을 거치지 않는 최장 경로가 발견되었을 때, 그 방향으로 최적화 경로를 설정하고 실현한 방향을 향해 한 걸음을 이동한다. 한점을 이동된 위치에서 다시 장애물과 충돌하지 않는 가장 먼 경로를 탐색하여 최장 경로 방향으로 보행을 반복하는 형태로 최적화 알고리즘을 구현하였다. 이러한 보행은 반복적으로 이루어지며 목적지까지 지속적으로 최단 경로를 탐색하는 최적화된 보행 경로가 생성된다.

그림 4. 경로 최적화 과정
Fig. 4 Path Optimization Step

보행경로 최적화 알고리즘은 그림 5와 같다. PSO를 이용하여 추정된 경로를 기반으로 경로 탐색을 실시하며, 현재 위치에서 장애물에 가려지지 않은 가장 멀리 있는 경로를 기반으로 진행방향을 결정하고 보행 프리미터를 사용하여 한점을 이동을 한 후, 목표점에 도착할 때까지 같은 과정을 반복한다. 이러한 최적화 과정을 통해 전체 이동 발각 수를 줄이고 진행방향을 완만하게 만들 수 있다.

그림 5. 경로 최적화 알고리즘
Fig. 5 Path Optimization Algorithm
3. 모의 실험

다양한 형태의 장애물을 가지는 환경에서 이동방향을 추정하고 최적 경로를 탐색하기 위한 PSO 알고리즘을 사용하였다. PSO 알고리즘은 장애물으로부터 최소 경로를 추정하기 위한 방법을 사용한다. PSO 알고리즘은NES 연구에서 사용한 PSO 알고리즘을 기반으로 구현하였다. PSO 알고리즘은 장애물의 위치와 방향을 고려하여 탐색 알고리즘을 적용하였다.

먼저 그림 6에서와 같이 주된 장애물을 가지는 환경에서 탐색한 결과를 보았다. PSO 알고리즘은 장애물 정보를 이용하여 경로 탐색을 최적화하기 위한 알고리즘을 사용하였다. 장애물 정보를 이용하여 경로 탐색을 최적화할 수 있게 되었다. 그림 6에서와 같이 주된 장애물 정보를 이용하여 경로 탐색을 최적화할 수 있게 되었다.

그림 6. PSO를 이용한 경로 탐색(경우 1)
Fig. 6 Path Search using PSO(Case 1)

PSO 알고리즘을 이용한 경로 탐색 결과를 그림 7에 나타내었다. 경로 탐색 결과는 보행 경로의 정확도를 확인할 수 있었다. PSO 알고리즘은 장애물 정보를 이용하여 경로 탐색을 최적화할 수 있었다. 그림 7에서와 같이 주된 장애물 정보를 이용하여 경로 탐색을 최적화할 수 있었다.
그림 7의 모의실험에서 PSO 학습에 의한 시작점과 목적지까지 이동 거리 및 최적화 과정을 마친 후 보행 거리를 표 1에 나타내었다. 반복적으로 PSO를 학습하였을 때, 보행 경로는 표 1에서 나타난 것보다 더 다양한 경로를 가지며 최적화 과정을 통해 가장 짧은 거리를 가지는 이동 경로를 선택하여 이동할 경우 최단 거리 및 최단 시간에 목적지에 도달할 수 있다.

표 1. 모의실험 결과 비교(경우 1)
Table 1. Comparison of Simulation Result (Case 1)

<table>
<thead>
<tr>
<th>모 유</th>
<th>PSO 추정 보행경로 거리</th>
<th>최적화 보행경로 거리</th>
</tr>
</thead>
<tbody>
<tr>
<td>경우 1 (I)</td>
<td>167.4</td>
<td>124.5</td>
</tr>
<tr>
<td>경우 1 (II)</td>
<td>171.1</td>
<td>130.0</td>
</tr>
<tr>
<td>경우 1 (III)</td>
<td>170.9</td>
<td>125.0</td>
</tr>
<tr>
<td>경우 1 (IV)</td>
<td>171.7</td>
<td>123.3</td>
</tr>
<tr>
<td>경우 1 (V)</td>
<td>257.8</td>
<td>135.0</td>
</tr>
</tbody>
</table>

장애물의 형태 및 위치를 변경하여 2가지 보행경로를 가지는 환경에서 실험을 실시하였을 경우 그림 8와 같이 탐색 경로와 최적화 결과를 얻을 수 있었다. 보행계획기에서는 그림 8(a)의 경우 8(b)의 2가지 보행 경로가 생성되며, 경로 최적화를 통해 그림 8(b)의 최적화 보행경로가 생성되었다. 장애물 근처에서는 다수의 이동이 발생하며, 탐색 경로 중에 다수의 점이 장애물과 충돌하는 경우 우수한 점을 제외하여 탐색을 실시하는 과정에서 이동 경로가 길어지게 된다. 그림 8의 경로 추정 및 최적화에 대한 보행경로 거리를 표 2에 나타내었다.

(a) 경로 탐색 및 최적화(경우 2 (I))
(a) Path Search and Optimization(Case 2 (I))

(b) 경로 탐색 및 최적화(경우 2 (II))
(b) Path Search and Optimization(Case 2 (II))

그림 8. 보행계획 모의실험 결과(경우 2)
Fig. 8. Simulation Result(Case 2)

표 2. 모의실험 결과 비교(경우 2)
Table 2. Comparison of Simulation Result (Case 2)

<table>
<thead>
<tr>
<th>모 유</th>
<th>PSO 추정 보행경로 거리</th>
<th>최적화 보행경로 거리</th>
</tr>
</thead>
<tbody>
<tr>
<td>경우 2 (I)</td>
<td>197.0</td>
<td>135</td>
</tr>
<tr>
<td>경우 2 (II)</td>
<td>163.7</td>
<td>130</td>
</tr>
</tbody>
</table>

그림 9. 보행계획 모의실험 결과(경우 3)
Fig. 9. Simulation Result(Case 3)

급 9는 최단경로가 장애물로 둘러싸인 경우의 보행 경로 검색 및 최적화 모의실험 결과를 보여준다. 그림 9(a)에서와 같이 경로 검색과정에서 장애물 근처로 이동하는 경우 탐색 경로가 길어지는 특징을 가지지만 경로 탐색과정은 빠른 학습 성능을 가진다. 추정된 경로들은 최적화하는 과정에서 불필요한 이동이나 경로가 정리되는 것을 볼 수 있다. 표 3에 그림 9의 장애물 배치에 따른 경로 추정 및 최적화 결과를 나타내었다. PSO에 의한 보행 추정 경로는 그림 9(a)의 경우가 가장 긴 값을 가지지만 경로 최적화 알고리즘을 통해 최적의 보행경로를 생성하는 것을 볼 수 있다.

(c) 경로 탐색 및 최적화(경우 3 (III))
(c) Path Search and Optimization(Case 3 (III))

그림 9. 보행계획 모의실험 결과(경우 3)
Fig. 9. Simulation Result(Case 3)

표 3. 모의실험 결과 비교(경우 1)
Table 3. Comparison of Simulation Result (Case 1)

<table>
<thead>
<tr>
<th>모 유</th>
<th>PSO 추정 보행경로 거리</th>
<th>최적화 보행경로 거리</th>
</tr>
</thead>
<tbody>
<tr>
<td>경우 3 (I)</td>
<td>244.1</td>
<td>129</td>
</tr>
<tr>
<td>경우 3 (II)</td>
<td>201.8</td>
<td>136.6</td>
</tr>
<tr>
<td>경우 3 (III)</td>
<td>221.3</td>
<td>144.6</td>
</tr>
</tbody>
</table>
그림 10은 보행을 방해하는 장애물을 중간에 배치하였을 때 경로의 추정 및 최적화 결과를 나타내었다. 그림 10(c)에서는 최적화 과정에서 추정된 기존 경로와 달리 PSO 학습과정에서 발생한 불필요한 경로량 최적화하여 그림 10(b)와 유사한 새로운 경로가 만들어진 것을 볼 수 있다. 그림 10의 각 경우들의 성능을 표 4에서 비교하였다.

![그림 10. 보행계획 모의실험 결과(경우 4)](image)

표 4. 모의실험 결과 비교(경우 4)

<table>
<thead>
<tr>
<th>분류</th>
<th>PSO 추정</th>
<th>보행경로 거리</th>
<th>최적화</th>
<th>보행경로 거리</th>
</tr>
</thead>
<tbody>
<tr>
<td>경우 4 (I)</td>
<td>187.9</td>
<td>125</td>
<td></td>
<td></td>
</tr>
<tr>
<td>경우 4 (II)</td>
<td>165.9</td>
<td>126.9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>경우 4 (III)</td>
<td>196.9</td>
<td>126.8</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

4. 결론

본 논문에서는 2차원 작업공간에서 PSO 기법을 이용한 이축보트로봇의 보행 계획 방법을 제안하였다. 다양한 장애물을 가진 복잡한 환경에서 보행 계획 시간을 줄이기 위해 보행 프로파일과 PSO의 군집 및 학습 방법을 사용하여 보행 계획기를 설계하고, 로봇의 보행 거리를 줄이고 합

참고 문헌

저자 소개

김승석(Sung-Suk Kim)
1998. 2 : 충주대학교 전기공학과(공학석사)
2002. 2 : 충북대학교 전기공학과(공학석사)
2003. 8 : 충북대학교 전기공학과(공학박사)
2005년 ~ 2008년 : 충북대학교 차세대전력 NURI 초일진단장
2008. 7년 ~ 현재 : 광주과학기술원
박사후 연구원

김용태(Yong-Tae Kim)
1991년 : 연세대학교 전자공학과(학사)
1993년 : KAIST 전기 및 전자공학과 졸업(공학석사)
1998년 : KAIST 전기 및 전자공학과 졸업(공학박사)
2003년 ~ 2006년 : (주)삼성전자
2006년 : Univ. of Illinois at Urbana-Champaign 방문연구원
2002년 ~ 현재 : 국립 한성대학교 정보제어공학과 부교수

 관심분야 : 지능robot, 지능시스템, 지능제어, 기계학습
E-mail : ytkim@hiknu.ac.kr