Fuzzy Pairwise \(\beta-(r, s) \)-continuous Mappings

Eun Pyo Lee\(^1\) and Seung On Lee\(^2\)

\(^1\) Department of Mathematics, Seonam University, Namwon 590-711, Korea
\(^2\) Department of Mathematics, Chungbuk National University, Cheongju 361-763, Korea

Abstract

We introduce the concepts of fuzzy pairwise \(\beta-(r, s) \)-continuous mappings and fuzzy pairwise \(\beta-(r, s) \)-open mappings in smooth bitopological spaces and then we investigate some of their characteristic properties.

Key words: fuzzy \(\beta-(r, s) \)-open sets, fuzzy \(\beta-(r, s) \)-closures, fuzzy pairwise \(\beta-(r, s) \)-continuous mappings

1. Introduction

After the introduction of fuzzy sets by Zadeh [9] in his classical paper, Chang [1] was the first to introduce the concept of a fuzzy topology on a set \(X \) by axiomatizing a collection \(T \) of fuzzy subsets of \(X \), where he referred to each member of \(T \) as an open set. In his definition of fuzzy topology, fuzziness in the concept of openness of a fuzzy subset was absent. These spaces and its generalizations are later studied by several authors, one of which, developed by Šostak [8], used the idea of degree of openness. This type of generalization of fuzzy topological spaces was later rephrased by Chattopadhyay, Hazra, and Samanta [2], and by Ramadan [7]. Kandil [3] introduced and studied the notion of fuzzy bitopological spaces as a natural generalization of fuzzy topological spaces. Lee [4] introduced the concept of smooth bitopological spaces as a generalization of smooth topological spaces and Kandil’s fuzzy bitopological spaces.

In this paper, we introduce the concepts of fuzzy pairwise \(\beta-(r, s) \)-continuous, fuzzy pairwise \(\beta-(r, s) \)-open and fuzzy pairwise \(\beta-(r, s) \)-closed mappings in smooth bitopological spaces and then we investigate some of their characteristic properties.

2. Preliminaries

Let \(I \) be the closed unit interval \([0, 1]\) of the real line and let \(I_0 \) be the half open interval \((0, 1]\) of the real line. For a set \(X \), \(I^X \) denotes the collection of all mapping from \(X \) to \(I \). A member \(\mu \) of \(I^X \) is called a fuzzy set of \(X \). By \(\hat{0} \) and \(\hat{1} \) we denote constant mappings on \(X \) with value 0 and 1, respectively. For any \(\mu \in I^X \), \(\mu^c \) denotes the complement \(\hat{1} - \mu \). All other notations are the standard notations of fuzzy set theory.

A Chang’s fuzzy topology on \(X \) [1] is a family \(T \) of fuzzy sets in \(X \) which satisfies the following properties:

1. \(\hat{0}, \hat{1} \in T \).
2. If \(\mu_1, \mu_2 \in T \) then \(\mu_1 \land \mu_2 \in T \).
3. If \(\mu_k \in T \) for all \(k \), then \(\bigvee \mu_k \in T \).

The pair \((X, T)\) be called a Chang’s fuzzy topological space. Members of \(T \) are called \(T \)-fuzzy open sets of \(X \) and their complements \(T \)-fuzzy closed sets of \(X \).

A system \((X, T_1, T_2)\) consisting of a set \(X \) with two Chang’s fuzzy topologies \(T_1 \) and \(T_2 \) on \(X \) is called a Kandil’s fuzzy bitopological space.

A smooth topology on \(X \) is a mapping \(T : I^X \to I \) which satisfies the following properties:

1. \(T(\hat{0}) = T(\hat{1}) = 1 \).
2. \(T(\mu_1 \land \mu_2) \geq T(\mu_1) \land T(\mu_2) \).
3. \(T(\bigvee \mu_i) \geq \bigwedge T(\mu_i) \).

The pair \((X, T)\) is called a smooth topological space. For \(r \in I_0 \), we call \(\mu \) a \(T \)-fuzzy \(r \)-open set of \(X \) if \(T(\mu) \geq r \) and \(\mu \) a \(T \)-fuzzy \(r \)-closed set of \(X \) if \(T(\mu^c) \geq r \).

A system \((X, T_1, T_2)\) consisting of a set \(X \) with two smooth topologies \(T_1 \) and \(T_2 \) on \(X \) is called a smooth bitopological space. Throughout this paper the indices \(i, j \) take values in \(\{1, 2\} \) and \(i = j \).

Let \((X, T)\) be a smooth topological space. Then it is easy to see that for each \(r \in I_0 \), an \(r \)-cut

\[T_r = \{ \mu \in I^X \mid T(\mu) \geq r \} \]

is a Chang’s fuzzy topology on \(X \).
Let \((X, T)\) be a Chang’s fuzzy topological space and \(r \in I_0\). Then the mapping \(T^r : I^X \rightarrow I\) is defined by
\[
T^r(\mu) = \begin{cases}
1 & \text{if } \mu = \emptyset, 1, \\
r & \text{if } \mu \in T - \{\emptyset, 1\}, \\
0 & \text{otherwise}
\end{cases}
\]
becomes a smooth topology.

Hence, we obtain that if \((X, T_1, T_2)\) is a smooth bitopological space and \(r, s \in I_0\), then \((X, (T_1)_r, (T_2)_s)\) is a Kandil’s fuzzy bitopological space. Also, if \((X, T_1, T_2)\) is a Kandil’s fuzzy bitopological space and \(r, s \in I_0\), then \((X, (T_1)^r, (T_2)^s)\) is a smooth bitopological space.

Definition 2.1. [4] Let \((X, T)\) be a smooth topological space. For each \(r \in I_0\) and for each \(\mu \in I^X\), the \(T\)-fuzzy \(r\)-closure is defined by
\[
T\text{-Cl}(\mu, r) = \{\rho \in I^X | \mu \leq \rho, T(\rho) \geq r\}
\]
and the \(T\)-fuzzy \(r\)-interior is defined by
\[
T\text{-Int}(\mu, r) = \{\rho \in I^X | \mu \geq \rho, T(\rho) \geq r\}.
\]

Lemma 2.2. [4] Let \(\mu\) be a fuzzy set of a smooth topological space \((X, T)\) and let \(r \in I_0\). Then we have:
1. \(T\text{-Cl}(\mu, r)\) is \(T\text{-Int}(\mu, r)\).
2. \(T\text{-Int}(\mu, r)\) is \(T\text{-Cl}(\mu, r)\).

Definition 2.3. [6] Let \(\mu\) be a fuzzy set of a smooth bitopological space \((X, T_1, T_2)\) and \(r, s \in I_0\). Then \(\mu\) is said to be
1. a \((T_1, T_2)\)-fuzzy \(\beta\)-(r, s)-open set if \(\mu \leq T_1\text{-Cl}(T_2\text{-Int}(T_1\text{-Cl}(\mu, s), r), s)\),
2. a \((T_1, T_2)\)-fuzzy \(\beta\)-(r, s)-closed set if \(T_2\text{-Int}(T_1\text{-Cl}(T_1\text{-Cl}(\mu, s), r), s) \leq \mu\).

Definition 2.4. [4, 5] Let \(f : (X, T_1, T_2) \rightarrow (Y, U_1, U_2)\) be a mapping from a smooth bitopological space \(X\) to a smooth bitopological space \(Y\) and \(r, s \in I_0\). Then \(f\) is said to be
1. a fuzzy pairwise \((r, s)\)-continuous mapping if the induced mapping \(f : (X, T_1) \rightarrow (Y, U_1)\) is a fuzzy \(r\)-continuous mapping and the induced mapping \(f : (X, T_2) \rightarrow (Y, U_2)\) is a fuzzy \(s\)-continuous mapping,
2. a fuzzy pairwise \((r, s)\)-semicontinuous mapping if \(f^{-1}(\mu)\) is a \((T_1, T_2)\)-fuzzy \((r, s)\)-seminopen set of \(X\) for each \(U_1\)-fuzzy \(r\)-open set \(\mu\) of \(Y\) and \(f^{-1}(\nu)\) is a \((T_2, T_1)\)-fuzzy \((s, r)\)-seminopen set of \(X\) for each \(U_2\)-fuzzy \(s\)-open set \(\nu\) of \(Y\).

3. Fuzzy pairwise \(\beta\)-(r, s)-continuous mappings

Definition 3.1. Let \(f : (X, T_1, T_2) \rightarrow (Y, U_1, U_2)\) be a mapping from a smooth bitopological space \(X\) to a smooth bitopological space \(Y\) and \(r, s \in I_0\). Then \(f\) is called
1. a fuzzy pairwise \(\beta\)-(r, s)-continuous mapping if \(f^{-1}(\mu)\) is a \((T_1, T_2)\)-fuzzy \((r, s)\)-preopen set of \(X\) for each \(U_1\)-fuzzy \(r\)-open set \(\mu\) of \(Y\) and \(f^{-1}(\nu)\) is a \((T_2, T_1)\)-fuzzy \((s, r)\)-preopen set of \(X\) for each \(U_2\)-fuzzy \(s\)-open set \(\nu\) of \(Y\).
2. a fuzzy pairwise \(\beta\)-(r, s)-open mapping if \(f\) is a \((U_1, U_2)\)-fuzzy \((r, s)\)-open set of \(Y\) for each \(T_1\)-fuzzy \(r\)-open set \(\rho\) of \(X\) and \(f(\lambda)\) is a \((U_2, U_1)\)-fuzzy \((s, r)\)-open set of \(Y\) for each \(T_2\)-fuzzy \(s\)-open set \(\lambda\) of \(X\).
3. a fuzzy pairwise \(\beta\)-(r, s)-closed mapping if \(f\) is a \((U_1, U_2)\)-fuzzy \((r, s)\)-closed set of \(Y\) for each \(T_1\)-fuzzy \(r\)-closed set \(\rho\) of \(X\) and \(f(\lambda)\) is a \((U_2, U_1)\)-fuzzy \((s, r)\)-closed set of \(Y\) for each \(T_2\)-fuzzy \(s\)-closed set \(\lambda\) of \(X\).

Remark 3.2. It is clear that every fuzzy pairwise \((r, s)\)-semicontinuous mapping is a fuzzy pairwise \(\beta\)-(r, s)-continuous mapping and every fuzzy pairwise \((r, s)\)-precontinuous mapping is a fuzzy pairwise \(\beta\)-(r, s)-continuous mapping. However, the following example show that all of the converses need not be true.

Example 3.3. Let \(X = \{x, y\}\) and \(\mu_1, \mu_2, \mu_3, \mu_4\) be fuzzy sets of \(X\) defined as
\[
\begin{align*}
\mu_1(x) &= 0.4, & \mu_1(y) &= 0.7; \\
\mu_2(x) &= 0.1, & \mu_2(y) &= 0.2; \\
\mu_3(x) &= 0.8, & \mu_3(y) &= 0.5; \\
\mu_4(x) &= 0.7, & \mu_4(y) &= 0.6.
\end{align*}
\]
Define \(T_1 : I^X \rightarrow I\) and \(T_2 : I^X \rightarrow I\) by
\[
T_1(\mu) = \begin{cases}
1 & \text{if } \mu = \emptyset, 1, \\
\frac{1}{2} & \text{if } \mu = \mu_1, \\
0 & \text{otherwise;}
\end{cases}
\]
and
\[
T_2(\mu) = \begin{cases}
1 & \text{if } \mu = \emptyset, 1, \\
\frac{1}{4} & \text{if } \mu = \mu_2, \\
0 & \text{otherwise.}
\end{cases}
\]
Then clearly \((T_1, T_2)\) is a smooth bitopology on \(X\). Define \(U_1 : I^X \rightarrow I\) and \(U_2 : I^X \rightarrow I\) by

\[
U_1(\mu) = \begin{cases}
1 & \text{if } \mu = \hat{0}, \hat{1}, \\
\frac{1}{2} & \text{if } \mu = \mu_3, \\
0 & \text{otherwise};
\end{cases}
\]

and

\[
U_2(\mu) = \begin{cases}
1 & \text{if } \mu = \hat{0}, \hat{1}, \\
\frac{1}{2} & \text{if } \mu = \mu_4, \\
0 & \text{otherwise};
\end{cases}
\]

Then clearly \((U_1, U_2)\) is a smooth bitopology on \(X\). Consider the identity mapping \(1_X : (X, T_1, T_2) \rightarrow (X, U_1, U_2)\). Then it is a fuzzy pairwise \(\beta-(\frac{1}{2}, \frac{1}{2})\)-continuous mapping which is not a fuzzy pairwise \(\beta-(\frac{1}{2}, \frac{1}{2})\)-semicontinuous mapping.

Define \(V_1 : I^X \rightarrow I\) and \(V_2 : I^X \rightarrow I\) by

\[
V_1(\mu) = \begin{cases}
1 & \text{if } \mu = \hat{0}, \hat{1}, \\
\frac{1}{2} & \text{if } \mu = \mu_4, \\
0 & \text{otherwise};
\end{cases}
\]

and

\[
V_2(\mu) = \begin{cases}
1 & \text{if } \mu = \hat{0}, \hat{1}, \\
\frac{1}{2} & \text{if } \mu = \mu_3, \\
0 & \text{otherwise};
\end{cases}
\]

Then clearly \((V_1, V_2)\) is a smooth bitopology on \(X\). Consider the identity mapping \(1_X : (X, T_1, T_2) \rightarrow (X, V_1, V_2)\). Then it is a fuzzy pairwise \(\beta-(\frac{1}{2}, \frac{1}{2})\)-continuous mapping which is not a fuzzy pairwise \(\beta-(\frac{1}{2}, \frac{1}{2})\)-precontinuous mapping.

Definition 3.4. Let \((X, T_1, T_2)\) be a smooth bitopological space and \(r, s \in I_0\). For each \(\mu \in I^X\), the \((T_1, T_2)\)-fuzzy \(\beta-(r, s)\)-closure is defined by

\[
(T_1, T_2)-\beta Cl(\mu, r, s) = \bigwedge \{ \rho \in I^X | \rho \leq \mu, \rho \text{ is } (T_1, T_2)\text{-fuzzy } \beta-(r, s)\text{-closed}\}
\]

and the \((T_1, T_2)\)-fuzzy \(\beta-(r, s)\)-interior is defined by

\[
(T_1, T_2)-\beta Int(\mu, r, s) = \bigvee \{ \rho \in I^X | \rho \geq \mu, \rho \text{ is } (T_1, T_2)\text{-fuzzy } \beta-(r, s)\text{-open}\}
\]

Lemma 3.5. For a fuzzy set \(\mu\) of a smooth bitopological space \((X, T_1, T_2)\) and let \(r, s \in I_0\), we have:

1. \((T_1, T_2)\)-Cl(\(\mu, r, s\)) = \((T_1, T_2)\)-Int(\(\mu^c, r, s\)).
2. \((T_1, T_2)\)-Int(\(\mu, r, s\)) = \((T_1, T_2)\)-Cl(\(\mu^c, r, s\)).

Proof. (1) Since \((T_1, T_2)\)-Int(\(\mu, r, s\)) is a \((T_1, T_2)\)-fuzzy \(\beta-(r, s)\)-open set and \((T_1, T_2)\)-Cl(\(\mu^c, r, s\)) \(\leq \mu\), we have \((T_1, T_2)\)-Int(\(\mu, r, s\)) \(\subseteq \) \((T_1, T_2)\)-cl(\(\mu^c, r, s\)) \(\subseteq \) \((T_1, T_2)\)-cl(\(\mu, r, s\)). Thus

\[
(T_1, T_2)\text{-Cl}(\mu^c, r, s) \leq (T_1, T_2)\text{-Cl}((T_1, T_2)\text{-cl}(\mu^c, r, s), r, s) = (T_1, T_2)\text{-cl}(\mu, r, s).
\]

Conversely, \((T_1, T_2)\text{-Cl}(\mu^c, r, s) \leq \mu\). Thus

\[
(T_1, T_2)\text{-Cl}(\mu^c, r, s) \leq (T_1, T_2)\text{-cl}(\mu, r, s).
\]

and hence

\[
(T_1, T_2)\text{-cl}(\mu, r, s) \leq (T_1, T_2)\text{-Cl}(\mu^c, r, s).
\]

(2) Similar to (1).

Theorem 3.6. Let \(f : (X, T_1, T_2) \rightarrow (Y, U_1, U_2)\) be a mapping and \(r, s \in I_0\). Then the following statements are equivalent:

1. \(f\) is a fuzzy pairwise \(\beta-(r, s)\)-continuous mapping.
2. \(f^{-1}(\mu)\) is a \((T_1, T_2)\)-fuzzy \(\beta-(r, s)\)-closed set of \(X\) for each \(U_1\)-fuzzy \(r\)-closed set \(\mu\) of \(Y\) and \(f^{-1}(\nu)\) is a \((T_2, T_1)\)-fuzzy \(\beta-(s, r)\)-closed set of \(X\) for each \(U_2\)-fuzzy \(s\)-closed set \(\nu\) of \(Y\).
3. For each fuzzy set \(\rho\) of \(X\),

\[
f((T_1, T_2)-\text{Cl}(\rho, r, s)) \leq U_1-\text{Cl}(f(\rho), r)
\]

and

\[
f((T_2, T_1)-\text{Cl}(\rho, s, r)) \leq U_2-\text{Cl}(f(\rho), s).
\]

4. For each fuzzy set \(\mu\) of \(Y\),

\[
(T_1, T_2)-\text{Cl}(f^{-1}(\mu), r, s) \leq f^{-1}(U_1-\text{Cl}(\mu, r))
\]

and

\[
(T_2, T_1)-\text{Cl}(f^{-1}(\mu), s, r) \leq f^{-1}(U_2-\text{Cl}(\mu, s)).
\]

5. For each fuzzy set \(\mu\) of \(Y\),

\[
f^{-1}(U_1-\text{Int}(\mu, r)) \leq (T_1, T_2)-\text{Int}(f^{-1}(\mu), r, s)
\]

and

\[
f^{-1}(U_2-\text{Int}(\mu, s)) \leq (T_2, T_1)-\text{Int}(f^{-1}(\mu), s, r).
\]

Proof. (1) \(\Rightarrow\) (2) Let \(\mu\) be any \(U_1\)-fuzzy \(r\)-closed set and \(\nu\) any \(U_2\)-fuzzy \(s\)-closed set of \(Y\). Then \(\mu^c\) is a \(U_1\)-fuzzy \(r\)-open set and \(\nu^c\) is a \(U_2\)-fuzzy \(s\)-open set of \(Y\). Since \(f\) is a fuzzy pairwise \(\beta-(r, s)\)-continuous mapping, \(f^{-1}(\mu^c)\) is a \((T_1, T_2)\)-fuzzy \(\beta-(r, s)\)-open set and \(f^{-1}(\nu^c)\) is a \((T_2, T_1)\)-fuzzy \(\beta-(s, r)\)-open set of \(X\). Thus \(f^{-1}(\mu)\) is a \((T_1, T_2)\)-fuzzy \(\beta-(r, s)\)-closed set and \(f^{-1}(\nu)\) is a \((T_2, T_1)\)-fuzzy \(\beta-(s, r)\)-closed set of \(X\).

(2) \(\Rightarrow\) (3) Let \(\rho\) be any fuzzy set of \(X\). Then \(U_1\)-Cl(\(f(\rho), r\)) is a \(U_1\)-fuzzy \(r\)-closed set and \(U_2\)-Cl(\(f(\rho), s\)) is a \(U_2\)-fuzzy \(s\)-closed set of \(Y\). By (2),
(4) Let μ be any fuzzy set of Y. Then $f^{-1}(\mu)$ is a fuzzy set of X. By (3),
\[
{f^{-1}(U_f-Cl(f(\mu), r))} \leq f^{-1}(U_1-Cl(f(\mu), r)) \leq U_1-Cl(f(\mu), r)
\]
and
\[
f((T_1, T_2)-\beta Cl(f^{-1}(\mu), s, r)) \leq U_2-Cl(f^{-1}(\mu), s, r)
\]
Thus
\[
(T_1, T_2)-\beta Cl(f^{-1}(\mu), r, s)
\]
and
\[
(T_2, T_1)-\beta Cl(f^{-1}(\mu), s, r)
\]
By Lemma 3.5,
\[
{f^{-1}(U_f-Int(\mu, r))} = f^{-1}(U_f-Cl(f^{-1}(\mu), r, s)) \leq (T_1, T_2)-\beta Cl(f^{-1}(\mu), r, s)
\]
and
\[
{f^{-1}(U_2-Int(\mu, s))} = f^{-1}(U_2-Cl(f^{-1}(\mu), s, r)) \leq (T_2, T_1)-\beta Int(f^{-1}(\mu), s, r)
\]
(5) \Rightarrow (4) Let μ be any U_1-fuzzy r-open set and ν any U_2-fuzzy s-open set of Y. Then $U_1-Int(\mu, r) = \mu$ and $U_2-Int(\nu, s) = \nu$. By (5),
\[
f^{-1}(\mu) = f^{-1}(U_f-Int(\mu, r)) \leq (T_1, T_2)-\beta Int(f^{-1}(\mu), r, s)
\]
and
\[
f^{-1}(\nu) = f^{-1}(U_f-Int(\nu, s)) \leq (T_2, T_1)-\beta Int(f^{-1}(\nu), s, r)
\]
So $f^{-1}(\mu) = (T_1, T_2)-\beta Int(f^{-1}(\mu), r, s)$ and $f^{-1}(\nu) = (T_2, T_1)-\beta Int(f^{-1}(\nu), s, r)$. Hence $f^{-1}(\mu)$ is a (T_1, T_2)-fuzzy β-continuous mapping of X. Thus f is a fuzzy pairwise β-continuous mapping.

Theorem 3.7. Let $f : (X, T_1, T_2) \to (Y, U_1, U_2)$ be a bijection and $r, s \in I_0$. Then f is a fuzzy pairwise β-continuous mapping if and only if $U_f-Int(f(\mu), r) \leq f((T_1, T_2)-\beta Int(\mu, r, s))$ and $U_f-Int(f(\nu), s) \leq f((T_2, T_1)-\beta Int(\nu, s, r))$ for each fuzzy set X.

Proof. Let f be a fuzzy pairwise β-continuous mapping and μ any fuzzy set of X. Then $U_f-Int(f(\mu), r)$ is a U_1-fuzzy r-open set and $U_f-Int(f(\mu), s)$ is a U_2-fuzzy s-open set of Y. Since f is a fuzzy pairwise β-continuous mapping, we have $f^{-1}(U_f-Int(f(\mu), r))$ is a (T_1, T_2)-fuzzy β-continuous mapping of X. Since f is fuzzy pairwise β-continuous and one-to-one, we have
\[
f^{-1}(U_f-Int(f(\mu), r)) \leq (T_1, T_2)-\beta Int(f^{-1}(\mu), r, s)
\]
and
\[
\begin{align*}
 f^{-1}(U_2{-}\text{Int}(f(\rho), s)) \\
 \leq (T_2, T_1){-}\beta\text{Int}(f^{-1}f(\rho), s, r) \\
 = (T_2, T_1){-}\beta\text{Int}(\rho, s, r).
\end{align*}
\]
Since \(f \) is onto,
\[
\begin{align*}
 U_1{-}\text{Int}(f(\rho), r) \\
 = f f^{-1}(U_1{-}\text{Int}(f(\rho), r)) \\
 \leq f((T_1, T_2){-}\beta\text{Int}(\rho, s, r))
\end{align*}
\]
and
\[
\begin{align*}
 U_2{-}\text{Int}(f(\rho), s) \\
 = f f^{-1}(U_2{-}\text{Int}(f(\rho), s)) \\
 \leq f((T_2, T_1){-}\beta\text{Int}(\rho, s, r)).
\end{align*}
\]
Conversely, let \(U_1 \)-fuzzy \(r \)-open set and \(\nu \) any \(U_2 \)-fuzzy \(s \)-open set of \(Y \). Then \(U_1{-}\text{Int}(\mu, r) = \mu \) and \(U_2{-}\text{Int}(\nu, s) = \nu \). Since \(f \) is onto,
\[
\begin{align*}
 f((T_1, T_2){-}\beta\text{Int}(f^{-1}(\mu), r, s)) \\
 \geq U_1{-}\text{Int}(f^{-1}(\mu), r) \\
 = U_1{-}\text{Int}(\mu, r) \\
 = \mu
\end{align*}
\]
and
\[
\begin{align*}
 f((T_2, T_1){-}\beta\text{Int}(f^{-1}(\nu), s, r)) \\
 \geq U_2{-}\text{Int}(f^{-1}(\nu), s) \\
 = U_2{-}\text{Int}(\nu, s) \\
 = \nu.
\end{align*}
\]
Since \(f \) is one-to-one, we have
\[
\begin{align*}
 f^{-1}(\mu) \leq f^{-1}f((T_1, T_2){-}\beta\text{Int}(f^{-1}(\mu), r, s)) \\
 = (T_1, T_2){-}\beta\text{Int}(f^{-1}(\mu), r, s) \\
 \leq f^{-1}(\mu)
\end{align*}
\]
and
\[
\begin{align*}
 f^{-1}(\nu) \leq f^{-1}f((T_2, T_1){-}\beta\text{Int}(f^{-1}(\nu), s, r)) \\
 = (T_2, T_1){-}\beta\text{Int}(f^{-1}(\nu), s, r) \\
 \leq f^{-1}(\nu).
\end{align*}
\]
So \(f^{-1}(\mu) = (T_1, T_2){-}\beta\text{Int}(f^{-1}(\mu), r, s) \) and \(f^{-1}(\nu) = (T_2, T_1){-}\beta\text{Int}(f^{-1}(\nu), s, r) \). Hence \(f^{-1}(\mu) \) is a \((T_1, T_2){-}\beta\text{Int}(\mu, r, s) \)-open set and \(f^{-1}(\nu) \) is a \((T_2, T_1){-}\beta\text{Int}(\nu, s, r) \)-open set of \(X \). Therefore \(f \) is a fuzzy pairwise \(\beta-(r, s) \)-continuous mapping. \(\square \)

Theorem 3.8. Let \(f : (X, T_1, T_2) \to (Y, U_1, U_2) \) be a mapping and \(r, s \in I_0 \). Then the following statements are equivalent:

1. \(f \) is a fuzzy pairwise \(\beta-(r, s) \)-open mapping.

2. For each fuzzy set \(\rho \) of \(X \),
\[
 f((T_1{-}\text{Int}(\rho, r))) \leq (U_1, U_2){-}\beta\text{Int}(f(\rho), r, s)
\]
and
\[
 f((T_2{-}\text{Int}(\rho, s))) \leq (U_2, U_1){-}\beta\text{Int}(f(\rho), s, r).
\]

3. For each fuzzy set \(\mu \) of \(Y \),
\[
 T_1{-}\text{Int}(f^{-1}(\mu), r) \leq f^{-1}((U_1, U_2){-}\beta\text{Int}(\mu, r, s))
\]
and
\[
 T_2{-}\text{Int}(f^{-1}(\mu), s) \leq f^{-1}((U_2, U_1){-}\beta\text{Int}(\mu, s, r)).
\]

Proof. (1) \(\Rightarrow \) (2) Let \(\rho \) be any fuzzy set of \(X \). Clearly \(T_1{-}\text{Int}(\rho, r) \) is a \(T_1{-}\beta\text{Int}(r, s) \)-open set and \(T_2{-}\text{Int}(\rho, s) \) is a \(T_2{-}\beta\text{Int}(r, s) \)-open set of \(Y \). Since \(f \) is a fuzzy pairwise \(\beta-(r, s) \)-open mapping, \(f(T_1{-}\text{Int}(\rho, r)) \) is a \((U_1, U_2)-\beta\text{Int}(r, s) \)-open set and \(f(T_2{-}\text{Int}(\rho, s)) \) is a \((U_1, U_2)-\beta\text{Int}(r, s) \)-open set of \(Y \). Thus
\[
\begin{align*}
 f(T_1{-}\text{Int}(\rho, r)) \\
 = (U_1, U_2){-}\beta\text{Int}(f(T_1{-}\text{Int}(\rho, r)), r, s) \\
 \leq (U_1, U_2){-}\beta\text{Int}(f(\rho), r, s)
\end{align*}
\]
and
\[
\begin{align*}
 f(T_2{-}\text{Int}(\rho, s)) \\
 = (U_2, U_1){-}\beta\text{Int}(f(T_2{-}\text{Int}(\rho, s)), s, r) \\
 \leq (U_2, U_1){-}\beta\text{Int}(f(\rho), s, r)
\end{align*}
\]
(2) \(\Rightarrow \) (3) Let \(\mu \) be any fuzzy set of \(Y \). Then \(f^{-1}(\mu) \) is a fuzzy set of \(X \). By (2),
\[
\begin{align*}
 f(T_1{-}\text{Int}(f^{-1}(\mu), r)) \\
 \leq (U_1, U_2){-}\beta\text{Int}(f f^{-1}(\mu), r, s) \\
 \leq (U_1, U_2){-}\beta\text{Int}(\mu, r, s)
\end{align*}
\]
and
\[
\begin{align*}
 f(T_2{-}\text{Int}(f^{-1}(\mu), s)) \\
 \leq (U_2, U_1){-}\beta\text{Int}(f f^{-1}(\mu), s, r) \\
 \leq (U_2, U_1){-}\beta\text{Int}(\mu, s, r).
\end{align*}
\]
Thus we have
\[
\begin{align*}
 T_1{-}\text{Int}(f^{-1}(\mu), r) \\
 \leq f^{-1}f(T_1{-}\text{Int}(f^{-1}(\mu), r)) \\
 \leq f^{-1}((U_1, U_2){-}\beta\text{Int}(\mu, r, s))
\end{align*}
\]
and
\[
\begin{align*}
 T_2{-}\text{Int}(f^{-1}(\mu), s) \\
 \leq f^{-1}f(T_2{-}\text{Int}(f^{-1}(\mu), s)) \\
 \leq f^{-1}((U_2, U_1){-}\beta\text{Int}(\mu, s, r)).
\end{align*}
\]
(3) ⇒ (1) Let \(\rho \) be any \(T_1 \)-fuzzy \(r \)-open set and \(\lambda \) any \(T_2 \)-fuzzy \(s \)-open set of \(X \). Then \(T_1 \)-Int(\(\rho \), \(r \)) = \(\rho \) and \(T_2 \)-Int(\(\lambda \), \(s \)) = \(\lambda \). By (3),

\[
\rho = T_1 \text{-Int}(\rho, r) \\
\leq T_1 \text{-Int}(f^{-1}f(\rho), r) \\
\leq f^{-1}((U_1, U_2) - \beta \text{Int}(f(\rho), r, s))
\]

and

\[
\rho = T_2 \text{-Int}(\lambda, s) \\
\leq T_2 \text{-Int}(f^{-1}f(\lambda), s) \\
\leq f^{-1}((U_2, U_1) - \beta \text{Int}(f(\lambda), s, r))
\]

Hence we have

\[
f(\rho) \leq f f^{-1}((U_1, U_2) - \beta \text{Int}(f(\rho), r, s)) \\
\leq (U_1, U_2) - \beta \text{Int}(f(\rho), r, s) \\
\leq f(\rho)
\]

and

\[
f(\lambda) \leq f f^{-1}((U_2, U_1) - \beta \text{Int}(f(\lambda), s, r)) \\
\leq (U_2, U_1) - \beta \text{Int}(f(\lambda), s, r) \\
\leq f(\lambda)
\]

Thus \(f(\rho) = (U_1, U_2) - \beta \text{Int}(f(\rho), r, s) \) and \(f(\lambda) = (U_2, U_1) - \beta \text{Int}(f(\lambda), s, r) \). Hence \(f(\rho) \) is a \((U_1, U_2)\)-fuzzy \(\beta-(r, s)\)-open set and \(f(\lambda) \) is a \((U_2, U_1)\)-fuzzy \(\beta-(s, r)\)-open set of \(Y \). Therefore \(f \) is a fuzzy pairwise \(\beta-(r, s)\)-open mapping. \(\square\)

Acknowledgements

This work was supported by the research grant of the Chungbuk National University in 2010.

References

Eun Pyo Lee
Professor of Seonam University
E-mail: eplee55@paran.com

Seung On Lee
Professor of Chungbuk National University
E-mail: solee@chungbuk.ac.kr
Corresponding author