Interval-Valued Fuzzy Almost α-Continuous Mappings

 Won Keun Min

Abstract

We introduce the concept of IVF almost α-continuity and investigate characterizations for such mappings on the interval-valued fuzzy topological spaces. We study the relationships between IVF almost α-continuous mappings and another types of IVF continuous mappings.

Key Words: IVF α-continuous, IVF weakly α-continuous, IVF almost α-continuous, IVF almost open mapping, IVF almost regular

1. Introduction and Preliminaries

Zadeh [9] introduced the concept of fuzzy set and investigated basic properties. Gorzalczyz [2] introduced the concept of interval-valued fuzzy set which is a generalization of fuzzy sets. In [8], Mondal and Samanta introduced the concepts of interval-valued fuzzy topology, continuity and compactness and studied some topological properties. The concept of interval-valued fuzzy topology is a generalization of fuzzy topology in sense of Chang’s fuzzy topology [1]. In [3], Jun et al. introduced the concepts of IVF α-open sets and IVF α-open mappings and studied some results about them. The concept of IVF strong semi-continuous (or IVF α-continuous mapping) was introduced in [4]. The author introduced the concept of IVF weakly α-continuous mapping and investigate some properties for them in [6]. In this paper, we introduce the concept of IVF almost α-continuous mapping and investigate characterizations for such a mapping. We study the relationships among IVF α-continuous mapping, IVF weakly α-continuous mapping and IVF almost α-continuous mapping.

2. Preliminaries

Let I be the unit interval [0,1] of the real line. A member A of I^X is called a fuzzy set of X. For any $A \in I^X$, A^c denotes the complement $1_A - A$. By 0_A and 1_A we denote constant maps on X with value 0 and 1, respectively.

A Chang’s fuzzy topology τ [1] is a family $\tau \subseteq I^X$ satisfying the following conditions:

(1) $0_A, 1_A \in \tau$;
(2) for $A, B \in \tau$, if $A, B \in \tau$, then $(A \cap B) \in \tau$;
(3) for every subfamily $\{A_i : i \in J\} \subseteq I^X$, if $A_i \in \tau$, then $\cup_{i \in J} A_i \in \tau$.

Let $D[0,1]$ be the set of all closed subintervals of the interval [0,1]. The elements of $D[0,1]$ are generally denoted by capital letters M, N, \cdots and note that $M= [M^L, M^U]$, where M^L and M^U are the lower and the upper end points respectively. Especially, we denote 0 and 1 as follows: $0= [0,0], 1=[1,1]$. We also note that

(1) $(\forall M, N \in D[0,1]) (M \cap N \Rightarrow M^L \leq N^L, M^U \leq N^U)$,
(2) $(\forall M, N \in D[0,1]) (M \subseteq N \Rightarrow M^L \leq N^L, M^U \leq N^U)$.

For each $M \in D[0,1]$, the complement of M, denoted by M^c, is defined by $M^c = [1-M^L, 1-M^U]$.

Let X be a nonempty set. A mapping $A : X \rightarrow D[0,1]$ is called an interval-valued fuzzy set (simply, IVF set) in X. For each $x \in X$, $A(x)$ is a closed interval whose lower and upper end points are denoted by $[A(x)]^L$ and $[A(x)]^U$, respectively. For any $[a,b] \in D[0,1]$, the IVF set whose value is the interval $[a,b]$ for all $x \in X$ is denoted by $\tilde{a,b}$. In particular, for any $a \in [0,1]$, the IVF set whose value is $a(x) = [a,a]$ for all $x \in X$ is denoted by simply \tilde{a}. For a point $p \in X$ and for $[a,b] \subseteq
$D[0,1]$ with $b>0$, the IVF set which takes the value $[a,b]$ at p and 0 elsewhere in X is called an interval-valued fuzzy point (simply, IVF point) and is denoted by $[a,b]$. In particular, if $b=a$, then it is also denoted by a. We denote the set of all IVF sets in X by $IVF(X)$. An IVF point M, where $M \in D[0,1]$ is said to belong to an IVF set A in X, denoted by $M \subseteq A$, if $|A(x)|^L \geq M^L$ and $|A(x)|^U \geq M^U$. In [8], it has been shown that $A = \cup \{M : M \subseteq A\}$.

For every $A, B \in IVF(X)$, we define

$$A = B \iff (\forall x \in X)(|A(x)|^L = |B(x)|^L),$$
$$A \subseteq B \iff (\forall x \in X)(|A(x)|^L \leq |B(x)|^L),$$
$$A \subseteq B \iff (\forall x \in X)(|A(x)|^U \leq |B(x)|^U).$$

The complement A^c of A is defined by

$$|A(x)|^L = 1 - |A(x)|^U$$
and

$$|A(x)|^U = 1 - |A(x)|^L$$
for all $x \in X$.

For a family of IVF sets $\{A_i : i \in J\}$ where J is an index set, the union $G = \cup_{i \in J} A_i$, and $F = \cap_{i \in J} A_i$, are defined by

$$|G(x)|^L = \sup_{i \in J} |A_i(x)|^L$$
and

$$|F(x)|^U = \inf_{i \in J} |A_i(x)|^U$$
respectively, for all $x \in X$.

Let $f : X \to Y$ be a mapping and let A be an IVF set in X. Then the image of A under f, denoted by $f(A)$ [8], defined as follows

$$f(A)(y)^L = \begin{cases}
\sup_{z \in f^{-1}(y)} |A(z)|^L, & \text{if } f^{-1}(y) \neq \emptyset, \\
0, & \text{otherwise},
\end{cases}$$

for all $y \in Y$.

Let B be an IVF set in Y. Then the inverse image of B under f, denoted by $f^{-1}(B)$ [8], defined as follows

$$|f^{-1}(B(x))|^L = |B(f(x))|^L$$
for all $x \in X$. Then it follows that $f(M) = M_{f^{-1}(y)}$.

Definition 2.1 ([8]). A family τ of IVF sets in X is called an interval-valued fuzzy topology (simply, IVFT) on X if it satisfies the following properties:

1. $0, 1 \in \tau$.
2. $A, B \in \tau \Rightarrow A \cap B \in \tau$.
3. For $i \in J$, $A_i \in \tau \Rightarrow \cup_{i \in J} A_i \in \tau$.

Every member of τ is called an IVF open set. An IVF set A is called an IVF closed set if the complement of A is an IVF open set. And the pair (X, τ) is called an interval-valued fuzzy topological space (simply, IVFTS).

In an IVF topological space (X, τ), for $A \subseteq IVF(X)$, the IVF closure and the IVF interior of A [8], denoted by $cl(A)$ and $int(A)$, respectively, are defined as

$$cl(A) = \cap \{B \subseteq IVF(X) : B \in \tau \text{ and } A \subseteq B\},$$
$$int(A) = \cup \{B \subseteq IVF(X) : B \in \tau \text{ and } B \subseteq A\}.$$

Theorem 2.2 ([8]). Let (X, τ) be an IVF topological space and $A, B \subseteq IVF(X)$. Then

1. A is an IVF closed set iff $A = cl(A)$.
2. $cl(A) \cup cl(B) = cl(A \cup B)$.
3. $cl(cl(A)) = cl(A)$.
4. $int(A) = 1 - cl(1 - A)$ and $cl(A) = 1 - int(1 - A)$.

Let A be an IVF set in an IVFTS (X, τ). Then A is said to be IVF α-continuous [3] (resp., IVF semiopen [3], IVF preopen [3], IVF regular open [5] and IVF β-open [5]) if $A \subseteq int(cl(cl(A)))$ (resp., $A \subseteq cl(int(A))$, $A \subseteq cl(cl(A))$, $A \subseteq cl(cl(cl(A)))$).

Let (X, τ_1) and (Y, τ_2) be two IVFTS. Then $f : X \to Y$ is said to be IVF continuous [8] (resp., IVF α-continuous or IVF strongly semi-continuous [4]) if for every IVF open set B in Y, $f^{-1}(B)$ is IVF open (resp., IVF α-open) in X. And f is said to be IVF weakly α-continuous [6] if for every IVF point M and each IVF open set V containing $f(M)$, there exists an IVF α-open set U containing M such that $f(U) \subseteq cl(V)$.

3. IVF Almost α-continuous Mappings

Definition 3.1. Let $f : X \to Y$ be a mapping IVFTS’s (X, τ_1) and (Y, τ_2). Then f is said to be IVF almost α-continuous if for each IVF point M and each IVF open set V containing $f(M)$, there exists an IVF α-open set U containing M such that $f(U) \subseteq int(cl(V))$.

Obviously the following implications are obtained but the converses are not true in general:

IVF continuous \Rightarrow IVF α-continuous \Rightarrow IVF almost α-continuous \Rightarrow IVF weakly α-continuous.

Example 3.2. Let $X = \mathbb{I}$ and let A, B, C, D and E be IVF sets defined as follows

$$A(x) = \frac{2}{9}, \ B(x) = \frac{1}{3}, \ C(x) = \frac{2}{3}, \ D(x) = \frac{7}{9}, \ E(x) = \frac{3}{4}.$$
Le t

E(x) = \left(\frac{8}{9}\right).

(1) Consider IVF topologies \(\tau_1 \) and \(\tau_2 \) on \(X \) as follows
\(\tau_1 = \{0, A, B, 1\} \) and \(\tau_2 = \{0, B, E, 1\} \).

Then the identity mapping \(f : (X, \tau_1) \to (X, \tau_2) \) is an IVF almost \(\alpha \)-continuous mapping but it is not IVF \(\alpha \)-continuous.

(2) Consider IVF topologies \(\tau_3 \) and \(\tau_4 \) on \(X \) as follows
\(\tau_3 = \{0, A, C, 1\} \) and \(\tau_4 = \{0, B, E, 1\} \).

Then the identity mapping \(f : (X, \tau_3) \to (X, \tau_4) \) is an IVF weakly \(\alpha \)-continuous mapping but it is not IVF almost \(\alpha \)-continuous.

Lemma 3.3 (Theorem 3.6 in [6]). Let \((X, \tau) \) be an IVFTS and \(A \) an IVF set in \(X \). Then
(1) \(A \cap \text{int}(\text{cl}(A)) \) is IVF \(\alpha \)-open.
(2) \(A \cup \text{cl}(\text{int}(A)) \) is IVF \(\alpha \)-closed.

Theorem 3.4. Let \(f : X \to Y \) be a mapping between IVFTS's \((X, \tau_1) \) and \((Y, \tau_2) \). Then the following statements are equivalent:
(1) \(f \) is IVF almost \(\alpha \)-continuous.
(2) \(f^{-1}(B) \subseteq \text{int}(\text{cl}(f^{-1}(\text{int}(cl(B))))) \) for each IVF open set \(B \) of \(Y \).
(3) \(\text{cl}(\text{int}(f^{-1}(\text{int}(F)))) \subseteq f^{-1}(\text{F}) \) for each IVF closed set \(F \) in \(Y \).
(4) \(\text{cl}(\text{int}(f^{-1}(\text{int}(cl(B)))))) \subseteq f^{-1}(\text{cl}(B)) \) for each \(B \in \text{IVF}(Y) \).
(5) \(f^{-1}(\text{int}(B)) \subseteq \text{int}(\text{cl}(f^{-1}(\text{int}(cl(B)))))) \) for each \(B \in \text{IVF}(Y) \).
(6) \(\text{cl}(\text{int}(f^{-1}(\text{cl}(V)))) \subseteq f^{-1}(\text{cl}(V)) \) for an IVF regular open set \(V \) in \(Y \).
(7) \(f^{-1}(V) \) is IVF \(\alpha \)-closed for an IVF regular closed set \(F \) in \(Y \).
(1) \(f^{-1}(V) \) is IVF \(\alpha \)-open for an IVF regular open set \(V \) in \(Y \).

Proof. (1) \(\Rightarrow \) (2) Let \(B \) be an IVF open set in \(Y \). Then for each \(M_\alpha \in f^{-1}(B) \), there exists a IVF \(\alpha \)-open set \(U \) of \(M_\alpha \), such that \(f(U) \subseteq \text{int}(cl(B)) \). Since \(U \) is IVF \(\alpha \)-open, \(M_\alpha \subseteq \text{int}(\text{cl}(U)) \subseteq \text{int}(\text{cl}(f^{-1}(\text{int}(cl(B))))) \). Hence the statement (2) is obtained.

(2) \(\Rightarrow \) (1) For an IVF point \(M_\alpha \) in \(X \) and \(V \) an IVF open set containing \(f(M_\alpha) \), by (2), \(M_\alpha \subseteq f^{-1}(V) \subseteq \text{int}(\text{cl}(f^{-1}(\text{cl}(V)))) \). Put \(U = f^{-1}(\text{cl}(V)) \cap \text{int}(\text{cl}(f^{-1}(\text{cl}(V)))) \); then by Lemma 3.3, \(U \) is an IVF \(\alpha \)-open set containing \(M_\alpha \) such that \(M_\alpha \subseteq U \subseteq f^{-1}(\text{int}(cl(V))) \). This implies \(f(U) \subseteq \text{int}(cl(V)) \), and so hence \(f \) is IVF almost continuous.

Interval-Valued Fuzzy Almost \(\alpha \)-Continuous Functions

(2) \(\Rightarrow \) (3) Let \(F \) be any IVF closed set of \(Y \). Then since \(1-F \) is IVF open, from (2) and Theorem 2.2, it follows
\[
\text{int}(\text{cl}(f^{-1}(\text{int}(cl(1-F))))) = \text{int}(\text{cl}(f^{-1}(1-\text{cl}(F))))
= \text{int}(\text{cl}(1-f^{-1}(\text{cl}(F))))
= \text{cl}(\text{cl}(f^{-1}(\text{cl}(F))))).
\]
It implies \(\text{cl}(\text{cl}(f^{-1}(\text{cl}(F)))) \subseteq f^{-1}(F) \).

(3) \(\Rightarrow \) (4) Obvious.

(4) \(\Rightarrow \) (5) For \(B \in \text{IVF}(Y) \), from hypothesis and Theorem 2.2, it follows
\[
\text{cl}(\text{cl}(f^{-1}(\text{cl}(B)))) = \text{cl}(\text{cl}(f^{-1}(\text{cl}(B))))
= \text{cl}(\text{cl}(\text{cl}(f^{-1}(\text{cl}(B))))).
\]
Hence \(\text{f}^{-1}(\text{cl}(B)) \subseteq \text{cl}(\text{cl}(f^{-1}(\text{cl}(\text{cl}(B))))). \)

(5) \(\Rightarrow \) (6) Let \(V \) be any IVF regular open set of \(Y \). Then since \(1-V \) is IVF regular closed, it follows
\[
\text{cl}(\text{cl}(f^{-1}(\text{cl}(V)))) \subseteq f^{-1}(\text{cl}(V)).
\]

(6) \(\Rightarrow \) (7) Let \(F \) be any IVF regular closed set of \(Y \). Then \(\text{int}(F) \) is IVF regular open and by (6) and \(\text{cl}(\text{cl}(F)) \subseteq f^{-1}(\text{cl}(V)) \), and so \(F \) is IVF \(\alpha \)-closed.

(7) \(\Rightarrow \) (8) Obvious.

(8) \(\Rightarrow \) (1) Let \(V \) be an IVF open set containing \(f(M_\alpha) \). Since \(\text{int}(\text{cl}(V)) \) is IVF regular open, by (8) and \(\text{V} \subseteq \text{cl}(\text{cl}(V)) \), \(f^{-1}(\text{cl}(V)) \) is an IVF \(\alpha \)-open set containing \(M_\alpha \). Set \(U = \text{f}^{-1}(\text{int}(cl(V))) \). Then \(U \) is an IVF \(\alpha \)-open set satisfying \(f(U) \subseteq \text{int}(cl(V)) \). Thus \(f \) is an IVF almost \(\alpha \)-continuous mapping.

Theorem 3.5. Let \(f : X \to Y \) be a mapping between IVFTS's \((X, \tau_1) \) and \((Y, \tau_2) \). Then the following are equivalent:
(1) \(f \) is IVF almost \(\alpha \)-continuous.
(2) \(\text{cl}(\text{cl}(f^{-1}(G))) \subseteq f^{-1}(\text{cl}(G)) \) for each IVF \(\beta \)-open set \(G \) in \(Y \).
(3) \(\text{cl}(\text{cl}(f^{-1}(G))) \subseteq f^{-1}(\text{cl}(G)) \) for each IVF semi-open set \(G \) in \(Y \).
Proof. (1) ⇒ (2) Let \(G \) be an IVF \(\beta \)-open set. Then \(G \subseteq c_l(\text{int}(c_l(G)))\) and \(c_l(G) \) is an IVF regular closed set. Hence from the IVF almost \(\alpha \)-continuity, it follows \(c_l(\text{int}(f^{-1}(c_l(G)))) \subseteq c_l(\text{int}(f^{-1}(c_l(G)))) \subseteq f^{-1}(c_l(G)) \).

(2) ⇒ (3) It is obvious since every IVF semiopen set is IVF \(\beta \)-open.

(3) ⇒ (1) Let \(F \) be an IVF regular closed set. Then \(F \) is IVF semiopen, and so from (3), we have
\[
c_l(\text{int}(f^{-1}(F))) \subseteq f^{-1}(c_l(F)) \subseteq f^{-1}(F).
\]
This implies \(f^{-1}(F) \) is IVF \(\alpha \)-closed. Hence, from Theorem 3.4 (7), \(f \) is an IVF almost \(\alpha \)-continuous mapping.

Theorem 3.6. Let \(f : X \to Y \) be a mapping between IVFTS's \((X, \tau_1)\) and \((Y, \tau_2)\). Then \(f \) is IVF almost \(\alpha \)-continuous if and only if \(c_l(\text{int}(f^{-1}(c_l(G)))) \subseteq f^{-1}(c_l(G)) \) for each IVF preopen set \(G \) in \(Y \).

Proof. Suppose \(f \) is IVF almost \(\alpha \)-continuous. Let \(G \) be an IVF preopen set in \(Y \). Then we have \(c_l(G) = \text{cl}(\text{int}(G)) \). Set \(U = \text{int}(\text{cl}(G)) \); then by Theorem 3.4 (4), \(c_l(\text{int}(f^{-1}(\text{cl}(G)))) \subseteq f^{-1}(\text{cl}(G)). \)

From \(\text{cl}(U) \subseteq c_l(G) \) and \(c_l(G) \supseteq \text{cl}(\text{int}(G)) \), it follows \(c_l(\text{int}(f^{-1}(c_l(G)))) \subseteq f^{-1}(c_l(G)). \)

For the converse, let \(A \) be an IVF regular closed set in \(Y \). Then \(\text{int}(A) \) is IVF preopen. From hypothesis and \(\text{cl}(\text{int}(A)) = A \), it follows \(c_l(\text{int}(f^{-1}(A))) \subseteq f^{-1}(A) \). This implies \(f^{-1}(A) \) is IVF \(\alpha \)-closed and hence \(f \) is IVF almost \(\alpha \)-continuous.

Theorem 3.7. Let \(f : X \to Y \) be a mapping between IVFTS's \((X, \tau_1)\) and \((Y, \tau_2)\). Then \(f \) is IVF almost \(\alpha \)-continuous if and only if \(f^{-1}(G) \subseteq \text{int}(\text{cl}(f^{-1}(\text{int}(c_l(G)))) \) for each IVF preopen set \(G \) in \(Y \).

Proof. Suppose \(f \) is IVF almost \(\alpha \)-continuous and let \(G \) be an IVF preopen set in \(Y \). Then \(\text{int}(c_l(G)) \) is IVF regular open. From Theorem 3.4, we have
\[
f^{-1}(G) \subseteq f^{-1}(\text{int}(c_l(G))) \subseteq \text{int}(\text{cl}(f^{-1}(\text{int}(c_l(G))))).
\]
For the converse, let \(U \) be IVF regular open. Then \(U \) is obviously IVF preopen. By hypothesis, \(f^{-1}(U) \subseteq \text{int}(\text{cl}(f^{-1}(\text{int}(\text{cl}(U))) \subseteq \text{int}(\text{cl}(f^{-1}(U)))). \) So \(f^{-1}(U) \) is IVF \(\alpha \)-open, and hence \(f \) is IVF almost \(\alpha \)-continuous.

Definition 3.8 ([7]). An IVFTS \((X, \tau)\) is said to be IVF semi-regular if for each IVF open set \(U \) of \(X \) and each IVF point \(M \subseteq U \) there exists an IVF regular open set \(V \) of \(X \) such that \(M \subseteq V \subseteq U \).

Theorem 3.9. Let \(f : X \to Y \) be a mapping on IVFTS's \((X, \tau_1)\) and \((Y, \tau_2)\). If \(f \) is IVF almost \(\alpha \)-continuous and \(Y \) is IVF semi-regular, then \(f \) is IVF \(\alpha \)-continuous.

Proof. Let \(M \subseteq \text{int}(X) \) be an IVF point in \(X \) and \(U \) be an IVF open set in \(Y \) containing \(f(M) \). By the IVF semi-regularity of \(Y \), there exists an IVF regular open \(V \) of \(Y \) such that \(f(M) \subseteq V \subseteq U \). Since \(f \) is IVF almost \(\alpha \)-continuous, \(f^{-1}(V) \) is an IVF \(\alpha \)-open set containing \(M \). Set \(G = f^{-1}(V) \); then \(G \) is an IVF \(\alpha \)-open set containing \(M \), so \(f(M) \subseteq f(G) \subseteq U \). Hence \(f \) is IVF \(\alpha \)-continuous.

Definition 3.10. Let \(f : X \to Y \) be a mapping on IVFTS's \((X, \tau_1)\) and \((Y, \tau_2)\). Then \(f \) is said to be IVF almost \(\alpha^* \)-open if \(f(U) \subseteq \text{int}(\text{cl}(f(U))) \) for each IVF \(\alpha^* \)-open set \(U \) in \(X \).

Definition 3.11. Let \(f : X \to Y \) be a mapping on IVFTS's \((X, \tau_1)\) and \((Y, \tau_2)\). If \(f \) is IVF weakly \(\alpha \)-continuous and IVF almost \(\alpha^* \)-open, then \(f \) is IVF almost \(\alpha \)-continuous.

Proof. Let \(M \subseteq \text{int}(X) \) be an IVF point in \(X \) and \(U \) be an IVF open set in \(Y \) containing \(f(M) \). By the IVF weakly \(\alpha \)-continuity, there exists an IVF \(\alpha \)-open set \(V \) in \(Y \) such that \(f(V) \subseteq \text{cl}(U) \). Since \(f \) is IVF almost \(\alpha \)-open, \(f(V) \subseteq \text{int}(\text{cl}(f(V))) \subseteq \text{int}(U) \). This implies \(f \) is IVF almost \(\alpha \)-continuous.

References

저 자 소 개

민원근(Won Keun Min)
1988년∼현재 : 강원대학교 수학과 교수

관심분야 : 퍼지 위상, 퍼지 이론, 일반 위상
Phone : 033-250-8419
Fax : 033-252-7289
E-mail : wkmin@kangwon.ac.kr