Fuzzy Test of Hypotheses by Rate of Internal Division

Man Ki Kang* and Ji Young Jung

Department of Data Information Science, Dong-Eui University

Abstract

We propose some properties for fuzzy hypotheses testing by the principle of the rate of internal division on delta-levels. By the rate of internal division, we show that the acceptance and rejection degree for fuzzy the fuzzy hypotheses and reduce the spread of the fuzzy variance with average of the center and left or right spread of fuzzy number data.

Key Words: fuzzy number data, degree of acceptance and rejection, fuzzy hypotheses testing, rate of internal division.

1. Introduction

For the uncertainty data, fuzzy hypotheses testing method concerning the fuzzy expected value combing with other fuzzifications have shown to be very useful inferences about distributions of real-valued random variables[1].

We define the fuzzy null hypotheses membership function as

\[H_{f0}: m_{\theta} = m_{\theta_0}, \quad \text{or} \quad H_{f0}: m_{\theta} < m_{\theta_0}, \quad \theta \in \Omega \]

where \(\Omega \) is parameter space. Kang and Seo defined an agreement index by area ratio for the fuzzy hypotheses membership function with respect to membership function of fuzzy critical region[2]. They obtained the results by the grade for the judgement of acceptance or rejection for the fuzzy hypotheses.

Now, we suggest some properties for a fuzzy hypothesis test by a rate of internal division with a reduced-spread fuzzy variance and covariation using an average of fuzzy number's center and spreads[3,4]. Thus, we illustrate the fuzzy hypothesis \(t \)-test by difference of hypothyroid samples for symptom light and heavy with a fuzzy degree of freedom.

This paper is organized as follows. In chapter 2, we suggest a reduced-spread of fuzzy variance. The acceptance or rejection degree by rate of internal division for the fuzzy hypothesis was shown in Chapter 3. Finally, We illustrate the fuzzy hypothesis by thyroxine random sample data of hypothyroids difference of symptom light and heavy.

2. Reduced-spread of fuzzy variance

Let \(K(\mathbb{R}^p) \) be the class of the non-empty compact convex subsets of \(\mathbb{R}^p \). We will consider the class of fuzzy sets

\[F_{\delta}(\mathbb{R}^p) = \{ U: \mathbb{R}^p \rightarrow [0, 1] \mid \bar{U}^{(\delta)} \in K(\mathbb{R}^p) \text{ for all } \delta \in [0, 1] \} \quad (2.1) \]

where \(\bar{U}^{(\delta)} \) stands for the \(\delta \)-level of \(U \) (i.e. \(\bar{U}^{(\delta)} = \{ x \in \mathbb{R}^p \mid U(x) \geq \delta \} \) for all \(\delta \in (0, 1] \). \(\delta \) is precision of data in statistical concept and \(U^{(0)} \) is the closure of the support of \(U \) [5].

The space \(F_{\delta}(\mathbb{R}^p) \) can be endowed with the sum and the product a scalar based on Zadeh's extension principle. Let \(A \) and \(B \) be fuzzy numbers data in \(\mathbb{R} \) and let \(\circ \) be a binary operation defined in \(\mathbb{R} \). Then the operation \(\circ \) can be extended to the fuzzy numbers \(A \) and \(B \) by defining the relation of extension principle as:

\[m_{A \circ B}^{(\delta)}(z) = \bigvee_{x, y \in \mathbb{R}} (m_{A}^{(\delta)}(x) \wedge m_{B}^{(\delta)}(y)) \quad (2.2) \]

by \(\delta \)-level.

This work was supported by Dong-eui University Grant (2012AA086)
Let \((Ω,A,P)\) be the probability space. A random fuzzy variable (RFV) is a mapping \(X: Ω→F_2(\mathbb{R}^p)\) so that the \(δ\)-level functions \(X^{(δ)}: Ω→K_2(\mathbb{R}_d)\), defined so that \(X^{(δ)}(\theta) = (x(\theta))^{(δ)}\) for all \(\theta∈Ω\), are the random sets.

Definition 2.1. If \(X: Ω→F_2(\mathbb{R}^p)\) is a RFV such that \(E(\sup x|X) < ∞\) with \(|X(\theta)| = sup|x|\) \(x∈X(\theta)\) for all \(\theta∈Ω\), then the expected fuzzy value (or mean) of \(X\) is the unique \(E(X)∈F_2(\mathbb{R}^p)\). Thus we have Aumann’s expectation of the random set \(X^{(δ)}\) for all \(δ∈[0,1]\) as

\[
(E(X))^{(δ)} = \{E(X|P) | X: Ω→\mathbb{R}^p, X∈L^1(Ω,A,P)\}
\]

where \(L^1\) is a metrics for left, center and right spreads form origin "0" of fuzzy number data, respectively.

Definition 2.2. Given a probability space \((Ω,A,P)\), if RFV \(X\) have \(E(\chi) < ∞\) then fuzzy variance of \(X\) is defined as

\[
σ_X^2 = Var(\chi) = E(D_1(\chi, E(\chi)))^2
\]

where \(D_1(\cdot\cdot\cdot)\) are \((c^2 + min[\ell, r^2])/2\) and \((c^2 + max[\ell, r^2])/2\) for \(x∈E(\chi) = [l, c, r]\) by Zadeh’s extension principle.

A modeling of data were describe a random sample \(χ=[χ_1, χ_2, \cdots, χ_n]\). If we observe an object \(x_i\) at three times then we have minimum, median or maximum value (minimum, median or maximum error term data). Thus we organize a fuzzy number data to \(χ_i = [min (χ_{i,k}), median (χ_{i,k}), max (χ_{i,k})] = [x_{i,l}, x_{i,m}, x_{i,r}],\)

\(k=1,2,3, i=1,2,\cdots,n\).

We have the fuzzy sample mean as:

\[
\bar{X}^{(δ)} = \left[\frac{1}{n} \sum_{i=1}^{n} X_i \right]^{(δ)} = \left[\frac{1}{n} \sum_{i=1}^{n} x_{i,l}, \frac{1}{n} \sum_{i=1}^{n} x_{i,m}, \frac{1}{n} \sum_{i=1}^{n} x_{i,r} \right]^{(δ)}
\]

by definition \(2.1\) for \(δ\)-level.

If we let \([l_i, c_i, r_i]<X\) \(\bar{X}<[l, c, r]\) for \([l_i, c_i, r_i]\) then

\[
\min\{\ell, r\}, \min\{\ell, r\}\}
\]

\(\chi\) is the sample mean of \(\chi\) by \(\bar{X}\).

However, in case of overlapping \(\chi\), by \(\bar{X}\), we have

\[
|ξ_\chi| < \max\{\ell, r\}, \max\{\ell, r\}, \max\{\ell, r\}, \min\{\ell, r\}, \min\{\ell, r\}, \min\{\ell, r\}, \min\{\ell, r\}, \min\{\ell, r\}\}
\]

In order to reduce the spreads of fuzzy numbers for sample fuzzy variance, we have reduced-spread fuzzy variance in this paper as:

\[
S^2 = \frac{1}{n-1} \sum_{i=1}^{n} \left(((c_i + \min\{\ell_i, r_i\})/2, c_i^2, (c_i + \max\{\ell_i, r_i\})/2) \right)
\]

\(S^2 = \frac{1}{n-1} \sum_{i=1}^{n} \left(((c_i + \min\{\ell_i, r_i\})/2, c_i^2, (c_i + \max\{\ell_i, r_i\})/2) \right)\)

\(S^2 = \frac{1}{n-1} \sum_{i=1}^{n} \left(((c_i + \min\{\ell_i, r_i\})/2, c_i^2, (c_i + \max\{\ell_i, r_i\})/2) \right)
\]

where \(\beta\) is analogously equal by definition \(2.2\).

3. Acceptance or rejection degree by rate of internal division

Let \(T\) is a test statistics by fuzzy random sample from sample space \(Ω\). Let \(\{P_\theta, \theta∈Ω\}\) is a family of fuzzy probability distribution, where \(θ\) is a parameter vector of \(Ω\). Choose a membership function \(m_\chi(x)\) of \(T\) whose value is likely to best reflect the plausibility of the fuzzy hypothesis being tested. Let us consider membership function \(m_\chi(x)\) of critical region \(C\), we have a index of rate of internal division of \(m_\chi(x)\) which regard to \(m_\chi(x)\) by \(δ\)-level.

![Fig. 3.1. Fuzzy test statistic](image-url)

Definition 3.1. Let a fuzzy membership function \(m_\chi(x), x∈\mathbb{R}\), we consider a degree of rate of internal division by \(δ\)-level as:

\[
\text{Fig. 3.1. Fuzzy test statistic}
\]

426
\[D_m = \frac{T_i - k}{T_i - T_i} \text{ for all } k \in (T_i, T_i) \] (3.1)

for the fuzzy number \(|T|^{(i)} = \{ x | m_T(x) \geq \delta, 0 \leq \delta \leq 1 \} = [T_i, T_i, T_i] \).

Definition 3.2. We define real-valued function \(D(\cdot)^{(i)} \) by supremum grade of membership function for rejection or acceptance degree by rate of internal division by \(\delta \)-level as:

\[D(0)^{(i)} = \sup \left(\frac{C_T - C_T^{(i)}}{T_i - T_i} \right) \] (3.2)

for the fuzzy number \(|C|^{(i)} = \{ x | m_T(x) \geq \delta, 0 \leq \delta \leq 1 \} = [C, C, C] \) and \(T_i^{(i)} < C_i^{(i)} < C_i^{(i)} < T_i^{(i)} \),

\[D(1)^{(i)} = 1 - D(0)^{(i)} , \] (3.3)

for the fuzzy hypothesis testing, respectively as figure 3.1.

The "\(\frac{1}{2} \)\)" and "\(1 \)" for equation (3.2) are ambiguity decision and exactly decision within fuzzy rejection region.

![Fig. 3.2. Test statistics and critical region](image)

For example, let \(l = T_i^{(i)} - T_i^{(i)} \), \(l_i = C_i^{(i)} - T_i^{(i)} \), \(l_2 = T_i^{(i)} - C_i^{(i)} \) and \(l_3 = T_i^{(i)} - C_i^{(i)} \), if \(l = l_1 \) then \(D(0)^{(i)} = 0 \) by \(\delta = \delta_2 \) and

\[D(0)^{(i)} = \sup \left(\frac{l_1^2 + l_2^2 + \frac{1}{2}}{l} \right) \] (3.4)

by \(\delta = \delta_1 \) as figure 3.1.

![Fig. 3.3. Test statistics and critical region by \(\delta \)-level](image)

4. Illustration

We can illustrate the fuzzy hypotheses test by rate of internal division on fuzzy \(t \)-test for the difference of thyroxine of hypothyroid sample data for symptom light and heavy by an experiment.

For the fuzzy hypothesis

\[H_0: m_{h_1} = m_{h_2} , \] (4.1)

we have fuzzy \(t \)-test statistics from [Table 4.1] as:

\[t = \left(\left(\frac{\sqrt{2}}{n_1} + \frac{\sqrt{2}}{n_2} \right) \right) = \left(\left(\frac{[53.456.4.59.3] \text{ } [35.3.3.7.4.40.3]}{[0.0.0]} \right) \right) \]

\[\cap \left(\left(\frac{[10.5.14.2.18.3]}{[26.4].30.0.36.7]} \right) \right) \]

\[= \left(\left(0.9, 1.0, 2.0 \right) \right) \]

From the thyroxine of hypothyroid sample data, we have sample size \(n_1 = 9 \) and \(n_2 = 7 \).

By

\[w_1 = \frac{\tilde{s}^2}{n_1} = \left[\frac{10.5.14.2.18.3}{9} \right] \]

and \(w_2 = \frac{\tilde{s}^2}{n_2} = \left[\frac{26.4.31.0.36.7}{7} \right] \),

we have degree of freedom as:

\[\nu = \left(w_1 \oplus w_2 \right) \left(w_1 + w_2 \right) \left(\frac{n_1}{n_1 - 1} + \frac{n_2}{n_2 - 1} \right) \]

\[= \left(\left(4.8, 10.1, 20.8 \right) \right) \]

\[= \left(5, 10.21 \right) . \]
Some significance level $\alpha = 0.2$ and degree of freedom [5, 10, 21], we have ambiguity rejection region $[1.3, 1.4, 1.5]$ and fuzzy rejection region $[1.3, 1.4, \infty]$.

By definition 3.2, we have rejection degree

$$D^{(d=0)}(0) = \sup_{x} \left(\frac{1.5 - 1.3}{2.0 - 0.9} \right) = 0.56$$

for the hypothesis equation (4.1).

If the data are crisp cases, that is the precision $\delta = 1$, then the fuzzy statistics is revolve to ordinary statistics. Thus we have rejection degree $D^{(d=1)}(0) = 0$ by definition 3.2 for the hypothesis equation (4.1) as <Figure 4.1>.

References

