Flowrate Integration Errors of Multi-path Ultrasonic Flowmeter using Weighting Factors

Ho-June Lee*, Shang-Yoon Hwang*, Kyoung-Jin Kim*

Key Words: Multi-path Ultrasonic Flowmeter (다회선 초음파 유량계), Integration Error (적분오차), Weighting Factor (가중계수), Ultrasonic (초음파)

ABSTRACT

Multi-path ultrasonic flowrate measuring technology is being received much attentions from a variety of industrial fields to exactly measure the flowrate. Multi-path ultrasonic flowmeter has much advantage since it has no moving parts and little pressure loss. It offers good accuracy, repeatability, linearity and turn-down ratio can be over 1:50. The present study investigates flowrate integration errors using weighting factors. A theoretical flow model uses power law to describe a fully developed velocity profiles and wall roughness is changed. Gaussian, Chebyshev, and Tailor methods are used to integrate line-average velocities. The obtained results show that Chebyshev method in 2, 4-path arrangement and Gaussian method in 3, 5-path arrangement are not affected for wall roughness changes.

1. 서 론

초음파를 이용한 유량측정기술이 상업화된 지는 약 40년 가까이 된다. 최근에 신호처리기술의 급속한 발전으로 유량계 시장에서 초음파유량계는 가장 빠르게 성장하고 있다. 초음파유량계의 장점은 측정관 내에 기계적인 구동부가 없어 신뢰성에 거의 없으며(1), 측정관 크기에 따라 제작비용이 크게 증가하지 않는다. 초음파유량계는 선형유량계로 유량측정비 (turn-down ratio)가 1:50이상이므로 저 유량에서는 고 유량까지 정밀한 측정이 가능하다. 초창기에에는 도플러효과에 의한 형태였으나, 지금은 정확도를 향상시키기 위하여 측정관에 구멍을 뚫고 초음과 변환기를 퀵트하는 습식방법이 많이 사용하고 있다. 습식방법에서 초음과 변환기를 여러 회선을 설치하는 것을 다회선 초음파유량계라고 한다. 회선 수가 많음수록 유동의 영향에 틀림하며, 정밀 측정 유량계로 많은 인식을 하고 있다(2).

다회선 초음파유량계의 불확도 요인들은 레이놀즈 수, 백면조도(3), 난류강도(4,5), 대칭/비대칭유동, 정상/ 비정상 유동 등에 따른 유량측정부의 유속분포의 변화(6), 유체와 압력변화의 상호작용(7), 초음과 변환기의 측정관내 둘레도 정도, 유속계질량법(8) 등 다양한 불확도 요인이 있다. 이 중에서 다회선 초음파유량계에서 중요한 불확도 요인 중 하나가 각 회선에서 얻어진 유속값을 이용하여 유량을 산출하는 유속계질량법이다. 국내에
서는 다회선 초음파유량계의 유속분법 방법에 관한 연구가 미흡한 실정이다.

종래의 연구에 따르면 황 등\(^{(9)}\)은 다회선 초음파유량계의 불확도를 오차소요법으로 산출하였으며, 레이놀즈 수, 백면조도, 절편률 특성 및 초음파 변환기의 측정 내 용도를 정도 등에 따라서 유체유동 특성에 영향을 미칠 수 있다고 하였으나, 상세한 연구는 수행하지 않았다. A. Calogirou 등\(^{(3)}\)은 백면조도의 효과를 이론적으로 조사하였으며, 1회선 초음파유량계에서 백면조도가 20°일 경우, 중심유속이 메이지선 관에 비하여 0.5%가 빠르다는 것을 발표하였으며, 백면조도에 두김한 회선배치에 대한 필요성을 제시하였다. 김 등\(^{(1)}\)의 연구에서는 대정, 비대정 유속분포 모델링에 대하여 단 간격 회선배치에서 얻어진 유속값을 3차 스폴라인 보간법과 교차보간법을 이용하여 유량산출요차를 계산하였다. 최근, 김 등\(^{(1)}\)의 연구에서는 다회선 초음파유량계를 수치 해석적으로 모사하기 위하여 유동장을 3차원, 비정상, 압축성 Navier-Stokes 방정식에 유한 체적법을 적용하였으며, 초음파의 거동을 모사하기 위하여 유체의 압력변동을 사인파로 가정하여 연구를 수행하였다. 연구결과는 신 평균유속이 수신파를 통한 유속과 유사하다는 것을 밝혔다.

본 연구에서는 다회선 초음파유량계의 중요한 불확도 요소 중 하나인 유속분분법이 백면 거점기에 미치는 영향을 이론적으로 조사하였다. 유속분법은 회선별 가중계수들을 이용하였으며, 유동모델로 백 벽적을 이용하여 백면거점기와 회선 수에 따라 유량산출요차를 평가하였다. 본 연구 자료는 가중계수들을 이용하여 유속을 산정한 경우, 회선 수와 회선배치 선택에 기초적인 자료를 제시하고자 한다.

2. 다회선 초음파유량계의 측정원리

전파 시간차 방법은 초음파 변환기를 경사지에 측정관 앞쪽에 취부하여 초음파 신호가 상류측 변환기에 도달하는 시간과 하류측 변환기에 도달하는 시간차를 측정하여 유속을 구하는 방식으로 유속에 비례하여 시간차가 발생하게 된다. 본 연구에서는 전파 시간차 방법을 이론적으로 모사하였다. Fig. 1에는 초음파유량계의 유량측정원리를 설명하기 위한 도형도를 나타내었다. 그림에서, \(t_1\), \(t_2\)는 각각의 변환기에 수신한 시간, \(L\)은 변환기 사이거리, \(d\)는 두께가, \(D\)는 측정관 직경, \(\theta\)는 초음파 변환기와 측정관 사이의 각도, \(V\)는 국소유속을 나타내었다. 유동은 원쪽에서 오른쪽으로 향하며, 측정관 아래쪽의 초음파 변환기로부터 조사된 초음파는 유동의 속도방향으로 진행하여 반대편 초음파 변환기에 수신한 시간을 \(t_1\), 반대로 초음파가 유동을 거슬러 측정관 아래쪽의 초음파 변환기까지 도달한 시간을 \(t_2\) 일 경우, \(t_2\)보다 크게 된다.

위에 기술한 초음파 전파시간은 음속과 유속에 대한 관계식으로 표현된다.

\[
t_1 = \frac{L}{C + V \cos \theta}
\]

\[
t_2 = \frac{L}{C - V \cos \theta}
\]

식(1), (2)에서 유체의 음속 \(C\)를 소거하고, 유속 \(V\)와 전달시간 \(t_1\), \(t_2\) 기하학적인 향상 \(L\), \(d\)의 상관관계를 나타내면 다음과 같다.

\[
V = \frac{L^2}{2d} \left(\frac{1}{t_1} - \frac{1}{t_2} \right) = \frac{L^2}{2d} \left(\frac{t_2 - t_1}{t_1 \cdot t_2} \right)
\]

식(3)은 회선별 초음파 전파 시간차 법을 이용하여 구한 유속이며, 회선의 유속값을 이용하여 유량을 산출하게 된다.

3. 이론해석

3.1 이론유동모델

가중계수를 이용한 유량오차를 산출하기 위하여 Fig. 2에 나타낸 바와 같이 완전발달유동의 대표적인
가중계수에 의한 다회선 초음파유량계의 유량측정

유동모델인 멍 법칙을 이용하였다. Fig. 2는 매끄러운 관에서의 유속분포를 나타내었다. 그림에서 직선은 관 중심에서 반경방향의 거리를 각 반경으로 무차원화한 값 을 의미하며, 직선은 관속유속을 관 중심의 유속 즉, 최대속도로 무차원화한 값을 나타내었다. 그림에서 Re수 가 증가함에 따라 반경방향의 국소유속들은 관 중심유 속에 접근한다. 이는 반경방향의 국소유속과 최대유속 의 비가 점점 커짐을 나타내고 있다.

3.2 가중계수를 이용한 유량산출

가중계수를 이용하여 유량을 산출하기 위한 유속적 분방법의 원리를 Fig. 3에 나타내었다. 초음파 변환기 를 측정면내 위치하고 유속을 측정하는 전과 시간차 방법을 모사하기 위하여 회선에서 얻어진 유속값은 초 음파가 작전한다고 가정하여 유동모델에서 선 평균유 속을 이용하였다. 이를 식(6)에 표현하였다.

\[V_{path} = \frac{1}{L} \int_{path} v(l) \, dl \]

(6)

선 평균유속을 Gaussian, Chebyshev, Tailor 방법 을 이용하여 구한 각각의 회선에서 가중계수들을 곱하 면, 회선 수에 따른 평균유속을 구할 수 있으며 이를 식(7)에 나타내었다.

\[V_{mean} = \sum_{i=1}^{m} W_i V_i \]

(7)

여기에서 \(m \)은 회선수를 나타내며, 본 연구에서는 \(m \)을 2에서 5까지 변화하였다. 식(8)과 같이 평균유속에 단 면적으로 곱하면 가중계수를 이용한 유량을 산출하게 된다.

\[Q = \frac{\pi D^2}{4} \cdot V_{mean} \]

(8)

유동모델을 통한 유량값 \(Q_{ref} \) 와 비교하여 피센트 오차로 평가하며, 이를 식(9)에 표현하였다.

\[Error(\%) = \frac{Q - Q_{ref}}{Q_{ref}} \times 100 \]

(9)
Table 1 Three different configurations of measuring locations and weighting factors

<table>
<thead>
<tr>
<th>Configuration</th>
<th>Number of paths</th>
<th>Weight (W)</th>
<th>Abscissa (×10)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gaussian</td>
<td>2</td>
<td>0.519736</td>
<td>0.577330</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>0.563645</td>
<td>0.774506</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>0.239438</td>
<td>0.339861</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>0.112580</td>
<td>0.861136</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>0.362165</td>
<td>0.000000</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>0.256759</td>
<td>0.538469</td>
</tr>
<tr>
<td>Chebyshev</td>
<td>2</td>
<td>0.500000</td>
<td>0.500000</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>0.500000</td>
<td>0.500000</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>0.250000</td>
<td>0.707106</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>0.361803</td>
<td>0.300016</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>0.138917</td>
<td>0.890016</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>0.333333</td>
<td>0.000000</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>0.245000</td>
<td>0.500000</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>0.065334</td>
<td>0.800025</td>
</tr>
<tr>
<td>Tailor</td>
<td>2</td>
<td>0.489175</td>
<td>0.478196</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>0.592038</td>
<td>0.000000</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>0.200846</td>
<td>0.779890</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>0.432745</td>
<td>0.406734</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>0.061817</td>
<td>0.882725</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>0.516423</td>
<td>0.000000</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>0.215722</td>
<td>0.686631</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>0.025332</td>
<td>0.947420</td>
</tr>
</tbody>
</table>

Table 1에서는 Gaussian, Chebyshev, Tailor 방법을 통하여 구한 회선위치와 가중계수들을 나타내었다.

2~5회선의 회선위치와 가중계수를 산출하였으며, 유량산출오차는 3가지 방법에서 상태조건과 레이놀즈 수 변화에 따른 회선수별 유량산출오차를 조사한다.

4. 결과 및 고찰

Fig. 4는 Gaussian, Chebyshev, Tailor 방법에 대하여 레이놀즈 수와 상태조건을 고려한 2회선에 대한 유량산출오차를 나타내었다. 그림에서 황측은 레이놀즈 수를 종축으로 유량산출오차를 루시드 오차로 나타내었으며, 종축의 값은 1/10으로 축소하여 표현하였다.

Gaussian 방법에서 k/D=0일 경우, 레이놀즈 수가 증가함에 따라 오차는 증가한다. 레이놀즈 수가 10^6일 경우, 오차는 3.3%이며, 상태조건과 거절수록 오차는 감소하는 경향으로 나타났다. k/D=10^-4인 경우, 레이놀즈 수가 증가하여도 오차에 거의 영향을 미치지 않는다는 것을 볼 수 있다. Chebyshev 방법에서 일정한 상태조건에서 레이놀즈 수가 증가함에 따라 오차는 단조감소하는 경향을 나타내며, 상태조건에 따른 영향은 Gaussian, Tailor 방법과 비교하여 둔각한 것으로 나타났다. 그러므로 2회선인 경우는 Chebyshev 방법이 상태조건의 영향에 가장 토감하다.

Fig. 5는 3회선에 대한 유량산출오차를 나타내었다. 그림에서 홍측과 황측은 Fig. 4와 동일하며, 종축의 값은 1/5로 축소하여 표현하였다. 레이놀즈 수가 10^8인 경우, 상태조건과 증가하면 Chebyshev와 Tailor 방법은 오차가 증가하며, Gaussian 방법은 감소한다. Tailor 방법에서 k/D=10^-4일 경우, 레이놀즈 수 범위에서 오차는 -0.025%~0.018%로 가장 정확하게 나
기존계수에 의한 다회선 초음파유량계의 유량추정오차

Fig. 6 Velocity integration errors for 4-path

Fig. 7 Velocity integration errors for 5-path

Fig. 8 Velocity integration errors for weighting factor numbers (k/D=0): (a) Gaussian, (b) Chebyshev and (c) Tailor

타났다. 레이놀즈와 상대조도에 따른 유량산출 오차범위가 가장 작은 것은 Gaussian 방법이며, 상대조도에 가장 둔감한 것으로 나타났다.

Fig. 6은 4회선인 경우로 Gaussian, Chebyshev, Tailor 방법에서 Gaussian 방법이 상대조도에 가장 민감한 것으로 나타났다. Gaussian 방법에서 레이놀즈 수가 10^6일 경우, k/D=0에서 10^-2로 증가할 경우, 오차는 0.49%에서 0.19%로 급격하게 감소한다. 정확도는 k/D=0일 경우, 레이놀즈 수가 10^4에서 10^8 범위에서 0.11%~0.12%로 Chebyshev 방법이 가장 좋게 나타났다. 4회선에서는 상대조도의 영향이 Chebyshev 방법이 가장 둔감한 것으로 나타났다.

Fig. 7은 5회선인 경우로 레이놀즈 수에 따른 상대 조도의 민감성은 Tailor 방법이 가장 민감하며, Gaussian 방법이 가장 둔감하게 나타났다. Tailor 방법에서 레이놀즈 수가 10^6일 경우, k/D=0에서 10^-2로 증가할 경우, 오차는 0.07%에서 0.12%로 증가한다. 다 회선 초음파유량계에서 각 방법을 이용하여 각각의 회 선 수에 따라 상대조도의 영향을 조사한 결과는 회선 수가 2, 4회선일 경우, Chebyshev 방법이 3, 5회선 일 경우, Gaussian 방법이 상대조도의 영향에 둔감하 게 나타났다. 그러므로 다회선 초음파유량계에서 가중 계수법으로 유속적분을 할 경우, 회선 수에 따라 상대 조도에 둔감한 적분방법을 선택할 필요성이 있다.

Fig. 8은 Gaussian, Chebyshev, Tailor 방법에서 각각의 회선 수에 따른 유량산출오차를 나타내었다.

그림에서의 예시를 관찰한 경우 즉, k/D=0 일 때를 나타내었다. Fig. 8(a)의 Gaussian 방법에서 2회선일 경우, 레이놀즈 수가 증가함에 따라 유량산출오차는 급격히 증가하여, 레이놀즈 수가 10^6일 경우에 오차는 3.3%를 나타내었다. 3회선에서는 레이놀즈 수가 증가하여도 유량산출오차는 크게 변하지 않으며, 1.2%의 유량산출오차를 나타내고 있다. 회선 수가 증가할수록 유량산출오차는 작아지는 경향을 나타낸다.

Fig. 8(b)는 Chebyshev 방법으로 2, 3회선인 경우 는 레이놀즈 수가 증가함수록 급격하게 유량산출오차
가 감소하며, 최소 수가 증가할수록 레이놀즈 수의 증가에 따른 유량측정 오차변화가 드라마절로 나타났다. 그러나, 본 연구에서는 5회전보다 4회전의 경우에 오차가 더 작은 것으로 나타났다.

Fig. 8(c)는 Tailor 방법으로 2회전에서 레이놀즈 수가 증가할수록 유량측정오차는 급격하게 감소하며, 최소 수가 증가함에 따라 유량측정오차는 감소한다.

Gaussain, Chebyshev, Tailor 방법에서 k/D=0일 경우, 최소 수가 증가함에 따라 유량측정오차는 감소한 다.

5. 결 론

본 연구는 단처리 초음파유량계의 불확도 요인 중 유속적분방법과 백면 거절기의 영향을 이론적으로 조사하였다. 유량측정방법으로 Gaussain, Chebyshev, Tailor 방법을 이용하였으며, 백면 거절기의 영향은 상대도로 표현하여 백적을 사용하였다. 백적에서 각각의 최소유속과 가중계수들을 이용하여 유량을 산출하고 피드백 오차로 표현하였다.

본 연구의 결과를 요약하면 다음과 같다.

1) 측정최선 수에 따라 가중계수법을 이용하여 유속적분을 수행할 경우, 최선 수에 따라 상대도로 드라마절한 적분방법 선정이 필요하다.
2) 2회전, 4회전일 경우, Chebyshev 방법이 3, 5회전일 경우는 Gaussain방법이 유량측정오차에서 상대도로의 영향에 드라마절하게 나타났다.
3) k/D=0일 경우, Gaussain, Chebyshev, Tailor 방법에서 최소 수가 많음수록 유량측정오차가 감소하는 경향으로 나타났다.

참고문헌