압축기 분야 연구동향

신 유한

1. 서 언

2004년 한 해 동안에 국내에서 발표된 압축기 관련 논문을 바탕으로 압축기분야의 연구동향을 살펴보고자 한다. 압축기 관련 국내 논문은 대한기계학회, 대한설비공학회 및 유체기계공업학회를 중심으로 발표되었으며, 발표 논문들 중에서 압축기의 전체 시스템의 단순한 부분으로 사용된 경우는 제외하고, 논문의 내용상 압축기 자체가 중요한 부분을 차지하는 경우에 대해서만 언급하기로 한다.

특히 유체기계공업학회 기술발표회의 특별세션에서 발표된 일부 자료의 경우 일반적인 논문 형태를 보이지는 않지만 특정 압축기에 대한 연구동향을 파악하는 데 많은 도움이 될 것으로 예상되어 본 자료 정리에 포함시켰다. 또한 발표된 논문에 대해 각 압축기 종류별, 발표학술지별 및 발표자 소속(학회연)별로 표를 만들어 정리하였다. 본 내용이 최근 압축기 관련 연구 동향 파악에 조금이나마 도움이 되고, 관련 산업 상호 간의 이해와 협력을 높일 수 있기를 기대한다.

2. 터보형 압축기

2.1 원심 압축기

원심압축기에 대한 2004년도의 연구실적을 보면 전체적으로 압축기 성능 특성에 관한 연구가 50% 이상으로 주를 이루고 있으며, 특히 염히어 덩안 갩의 영향에 대한 고찰이 많았다(1,7).

이경용 등(1,5)은 냉매 (R134a) 압축기 염히어 및 디퓨저 내부 유동을 수치해석적으로 연구, 그 결과를 기존 설계치와 비교, 분석하고, 동시에 압축기 성능에 관한 실험 결과와 비교함으로써 교육을 터보 냉동기 개 발의 CFD 활용 방법에 대해 고찰하였다. 노준구 등(3)은 회전식기용 터보사프트 엔진의 측유압축기와 연계하여 사용할 수 있는 고압 원심 압축기에 2열의 렌탈 디퓨저를 개발, 장착함으로써 디퓨저 입구의 최종 속 유동을 높은 디퓨저 유속을 통하여 효과적으로 감속시켜 높은 압축기 효율을 달성할 수 있었다.

조형희 등(4)은 마이크로 가스 터빈용 초소형 압축기와 관련한 2차원 염히어에 대한 설계 방법을 제시하고, 제작된 각각의 염히어에 대해 성능시험을 수행하였으며, 그 결과를 CFD 결과와 비교, 분석하였다.

이 외에 설계 및 개발과 관련된 논문들, 유동해석 및 소음 등에 조점을 맞춘 논문들이 발표되었다(8~11). 또한 헤타 여러 명의 연구주제로서 압축기 물류형성과 관련한 다수의 논문들이 꾸준히 발표되고 있다(12,13).

2.2 측류 압축기

지난 1년 동안 측류 압축기의 연구는 주로 연산 온도와 압력 내부에서의 복잡한 유동 현상 문제 등에, 고전적인 주제이지만 매우 중요한 문제를 바탕으로 하고 있으며, 압축기 블레이드의 3차원 형성과 관련한 연구 및 블레이드 진동에 관한 연구 등이 발표되었다(14, 16, 21).

이재석 등(19)은 측류 압축기 슈라우드 캐비티 (shrouded cavity)의 복잡한 유동현상을 설명의 캐스케이드를 이용해 분할함으로써 두수 유동 특성을 이해하고, 주 유동과의 상호작용에 의한 하류의 손실발생 원인을 규명하고자 하였다. 신유환 등(17)은 4단으로 구성된 측류 압축기 실험장치를 통해 세 번째 단 정직 측면에서의 정직 및 유동을 측정, 분석함으로써 블레이드 림 영역에서의 모서리 백리 (corner separation)가 압축기 설계 유량에서도 발생한다는 것을 확인하였다.

이 외에도 장준만 등(20)은 반응형 기법을 이용한 수지 특성화를 통해 동의 스냅을 최적화함으로써 전용
속 측류 압축기의 효율을 향상시키고자 하였다.

3. 융적형 압축기

3.1 리니어 압축기

리니어 압축기는 리니어 모터의 선형 운동을 직접 펌스톤에 전달하며 독립적으로 작동을 할 수 있도록 설계한 것으로, 전동기의 작동 원리는 명확하다. 

혼합효 등(22)은 스토르크 제어 장치가 있는 래미어 압축기를 개발함으로써 기존의 리니어 압축기 대비 약 4%의 EER 증가와 43%의 제어 장치 관련 비용을 줄일 수 있었으며, 모터의 소형화도 가능하였다. 변성 제 등(23)은 래미어 압축기의 scale-up 설계 방법을 모사하고자 리니어 압축기 특성을 해석적으로 묘사하고, 설계 방정식들을 유도하여 scaling 벡터를 표현하였다.

고준숙 등(24)은 극저온 냉각기용 리니어 압축기에 대한 제작 및 특성 실험에 대하여 고찰하였으며, 김진 동 등(25)은 오일 소용 문제를 고찰하였다.

3.2 로터리 압축기

현재 가정용 등 에어컨에 주로 사용되고 있는 로터 리 압축기에 대한 연구에는 지난 2003년과 유사하게 오일이 관리된 연구가 큰 비중을 차지하고 있으며, 압축기 성능측, 트윈 로터리형에 대한 연구 및 소음 문제 등이 주요 연구 주제였다(26~30)

조폐조 등(27)은 가시화 기법을 이용하여 레이 토 밸과 가시화 장치 장착된 압축기 상부의 오일 거동 특성을 분석하였으며, 새로운 정량화 기법을 개발함으로써 오일 거동에 대한 경직적 연구가 가능하게 제시하였다. 남보영 등(28)은 양식상 등에 산소공급을 목적으로 사용하는 압축기를 대상으로 혼합체식을 수행한 결과 압축기 손실의 약 59%는 기계적 마찰 손실이며, 마찰 손실의 약 90%는 범인 산란과 실린더 내면 사이의 마찰에 기인하는 사실을 밝혔다.

장인철 등(29)은 로터리 압축기의 설계를 위한 공정 도를 실험하여 발생하는 압력 백동 소음은 1차적으로 감쇄시키는 머플러를 3가지 타입별로 제작하여, 효과를 비교, 분석하였다.

3.3 서판식 압축기

서판식 압축기는 타 압축기에 비해 운전범위가 넓고, 내구성이 우수한 특징으로 인하여 자동차, 에어컨 용으로 가장 널리 사용되고 있는 압축기로서 2004년에는 가변용량형 압축기에 대한 연구가 주를 이루고 있다(31~33).

김민준 등(34)은 가변 서판식 압축기를 평가할 수 있는 레이 토 장치를 설계, 제작하고, 이를 통해 스토르크 제어방식의 가변용량형 압축기의 사양설 설계변화에 따른 압축기 특성을 고찰하였으며, 가변압축기의 제어에 관한 또 다른 연구(32)에서 제어장치의 안정성에 기여되는 전류 값을 조절함으로써 압축기 빠른스피드에 제어될 수 있다는 것을 확인하였다. 이태진 등(33)은 자동차 운전 속도에 따른 냉매 순환량 변화에 대해 실험과 계산 결과를 비교하였고, 가변 사판의 동작가동 허용을 위해 모멘트 형평방정식을 제시하였다.

3.4 스크루 압축기

2004년에도 융적형 압축기 중에서 스크루 압축기 에 관한 연구가 가장 활발히 행해졌으며, 성능과 관련한 연구, 압축기 관련 설계, 스크루 압축기에 사용한 에어컨의 냉방과 난방 특성에 대한 연구 등이 발표되었다(34~39).

장기태 등(40)은 촉방향 간극과 압축기 회전수가 압축기의 효율에 미치는 영향에 대하여 고찰하였으며, 박미서 등(35)은 래프터격 CO2 압축기의 성능을 Hot Gas 시스템을 통하여 실험적으로 고찰하였으며, 이를 통해 냉매 순환량은 압축기 회전수 및 흡입압력이 증가함수로 압축기의 토출온도가 증가하지만, 상대적으로는 회전수 증가에 대해 토출온도의 변화는 거의 없는 것으로 판단되었다.

서정환 등(36)은 압축기 진동 수준을 극소화하기 위한 상부 및 하부 균형수의 크기 및 원상 설계에 활용하고와 측정 및 진동하는데 모델이 기반으로 하는 진동 평면법 (V-plane)을 제안하고 이의 효율성을 고찰하였다.

권영철 등(39)은 다양한 설계와 조건에 적응가능한 상용 밸러 시스템 에이어를 모델로 하여 제품의 고유 냉방 제어 압고리즘에 대하여 고찰하였으며, 전의선 등(39)은 냉방 성능에 대해 각각 실험, 고찰하였다.
신 유환

Table 1 Domestic publications on compressor in 2004

<table>
<thead>
<tr>
<th>PUBLICATION</th>
<th>CONFERENCE</th>
<th>AUTHOR</th>
</tr>
</thead>
<tbody>
<tr>
<td>KFMA</td>
<td>KSME</td>
<td>SAREK</td>
</tr>
<tr>
<td>Linear</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Rotary</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Swash Plate</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Scroll</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Reciprocate</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Orbiter</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Centrifugal</td>
<td>6</td>
<td>2</td>
</tr>
<tr>
<td>Axial</td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>Total</td>
<td>7</td>
<td>6</td>
</tr>
</tbody>
</table>

3.5 왕복동 압축기

왕복동 압축기에 대한 연구는 주로 소음 문제와 관련하여 진행되어 왔다. 김병현 등장(40)은 CFD를 통한 수치해석적 방법으로 압축기 흡입부플러를 설계하고, 실험 결과와 비교, 분석하였다. 또한 이진우 등(41)은 왕복동 압축기의 고효성 소음을 감소시키기 위한 2가지 방법으로, 압축기 내부에서 발생되어 토출 파이프와 시스템의 내부로 전달되는 진동을 억제하는 방법과, 힘의 진동 억제를 통한 방사소음의 낮추는 방법을 소개, 적용하고 그 결과를 분석하였다.

고원 등(42)은 용량수 섭십대수 백마력급에 이르는 CNG 압축기에 대한 설계 프로그램을 개발함으로써 주문 생산에 따른 성능 예측을 가능하게 하였다.

3.6 기타-오비터 압축기

기존의 왕복동 압축기의 단점을 근본적으로 극복할 수 있는 새로운 구동 방식의 오비터 (orbiter) 압축기가 조광영 등(43)에 의해 제안되었다. 오비터 배인은 경판 한쪽 면에 원형의 배인을 구성을 하고 있고, 총열의 허브에는 크랭크 편심부가관통하고 있는 구조를 취하고 있다. 또한 배인은 원형으로서 구조가 용이하며, 공간 활용 면에서 매우 유리한 구조로 되어 있어 압축기의 활용량화가 가능하다.

4. 결론

2004년 한 해 국내에서 발표된 압축기 관련 논문에 대해 간단히 정리해 보았으며, 발표된 학술지와 관련 분야 및 주제자의 소속은 Table 1에서 보여주고 있다. 본 조사는 유체기계저널 (KFMA), 대한기계학회 논문집 (KSME) 및 대한설비공학회 논문집 (SAREK) 등 각각의 학술지 및 학술대회 논문집을 중심으로 이루어졌다.

2004년 한 해 동안 총 43편의 논문이 발표되었고, 터보형 압축기는 21편 (49%)으로서 2003년과 동일한 발표 빈도수를 보였으며, 유형형 압축기는 22편 (51%)으로서 2003년에 비해 약간 감소하였다.

각 압축기 형식에 따라 발표 학술지가 구분되는 양상을 보여주는 바, 터보형 압축기는 주로 유체기계공학회를 통해 발표 (67%)되었으며, 유형형은 대한설비공학회 (59%)를 중심으로 이루어졌다는 것을 알 수 있다. 이러한 경향은 2003년과 유사한 것이다. 발표된 논문의 주제자 소속에 따라 분류를 해 보면, 약 51% (22편)는 대학을 중심으로 이루어졌으며, 기업 및 연구소는 각각 23% (10편), 26% (11편)으로서 비슷하다.


터보형 압축기는 연구소에서 상대적으로 활발한 연구가 이루어져 약 48% (10편/21편) 정도 차지하며, 유형형의 경우는 약 64% (14편/22편)가 대학을 중심으로 활발하다는 양상을 보여주었다.
암촉기 분야 연구동향

심으로 이루어지고 있다는 것을 알 수 있다.

참고문헌

(3) 노준규, 김진환, 2004, "렌덤 디럭스의 상하 위치에 따른 원심압축기 성능 예측," 유체기계저널, 제 7권, 제 2호, pp. 27-34.

신 유환

a 100 MW Heavy-duty Gas Turbine,”
KSME International J., Vol. 18, No. 6, pp. 895~903.
표회 논문집, pp. 691~696.
집, pp. 783~788.
(40) 김병렬, 이성태, 박성우, 2004, “실질계획법을 이용한 양복동 압축기에의 흡입머플러 설계 (실
점과 해석적 접근),” 유체기계공업학회 2004 유체기계 연구개발 발표회 논문집, pp. 517~520.
표회 논문집, pp. 741~745.