Effect of Internal Flow in Symmetric and Asymmetric Micro Regenerative Pump Impellers on Their Pressure Performance

Hironori Horiguchi 1, Shinji Matsumoto 2, Yoshinobu Tsujimoto 1
Masaaki Sakagami 3 and Shigeo Tanaka 3

1 Graduate School of Engineering Science, Osaka University
1-3 Machikaneyama, Toyonaka, Osaka, 560-8531, Japan
2 ANA Airframe Maintenance Center, All Nippon Airways Co., Ltd.
3-5-4 Haseda Airport, Ota-ku, Tokyo, 144-0041, Japan
3 Taisei Kogyo Co., Ltd.
26-1 Ikedakita, Neyagawa, Osaka, 572-0073, Japan

Abstract

The effect of symmetric and asymmetric micro regenerative pump impellers on their pressure performance was studied. The shut off head of the pump with the symmetric impeller was about 2.5 times as that with the asymmetric impeller. The computation of the internal flow was performed to clarify the cause of the increase of the head. It was found that the contribution of the angular momentum supply was larger than that of shear stress for the head development in both cases. The larger head and momentum supply in the case of the symmetric impeller were caused by larger recirculated flow rate and larger angular momentum difference between the inlet and outlet to the impeller. The larger recirculated flow rate was caused by smaller pressure gradient in the direction of recirculated flow. The decrease of the circumferential velocity in the casing was attributed to the smaller local flow rate in the casing.

Keywords: Regenerative Pump, Pump Performance, Internal Flow, Leakage Flow, Geometry

1. Introduction

Micro pumps with high discharge pressure are demanded in the fields of micro, bio, and chemical applications and energy-related devices such as micro heat exchangers. Practical applications of micro pumps are also expected for medical devices such as portable fluid delivery systems and for fuel supply to fuel cells. Regenerative pumps have desirable characters with high discharge pressure and continuous discharge unlike positive-displacement type fluid machinery. Consequently, the development of the micro regenerative pump with the impeller whose diameter is about 10mm has been carried out in our research group.

In the prototype of micro regenerative pump made by our research group, a single sided impeller was chosen for the easiness of manufacturing. By a computation of the internal flow, it was found that the discharge pressure increased when the side clearance between the impeller and the casing was decreased due to the decrease of the leakage flow. From this result, it is expected that the leakage flow is decreased and the discharge pressure is increased if the vanes are attached in both sides of the impeller.

In the present study, a capability of the increase of discharge pressure by using a symmetrical impeller with vanes on both sides was investigated. The influence of an internal flow to the discharge pressure was also examined by computation.

2. Experimental Setup and Experiment

The schematic of the regenerative pump with a symmetrical impeller and the coordinate system are shown in Fig.1. Figure 2 shows the cross section of the pump. The materials of the impeller and the casing are aluminum and transparent acrylic resin, respectively. The values of the parameters shown in Figs.1 and 2 are given in Table 1. For the accurate adjustment of the clearance between the impeller and the casing, which would largely affect the performance, the size of the pump is increased to about ten times of the targeted micro regenerative pump. The thickness of the vane is 5 mm so that it is not extremely thin in real micro regenerative pump. The diameter of the impeller D_T is 75mm and the axial clearance c_1 between the impeller and the casing is 1.2mm. This value is pretty large as compared with industrial pump but might be required when manufacturing the micro pump.
with 1/10 size. The larger thickness of the vanes and the larger clearance are different from conventional regenerative pumps. The depth of the casing flow path a_1 and the depth of the vane channel b_1 are 6mm and 8mm, respectively. These values were selected to realize the highest head based on preliminary tests with asymmetric impellers. The meridional cross-section and the dimensions of the pump with the asymmetric impeller are shown in Fig.3 and Table 1.

The geometry of the casing for the symmetric impeller is made by setting the casing for the asymmetric impeller symmetrically to the z direction. The geometry of the symmetric impeller is produced by back-to-back setting the asymmetric impeller and cutting the impeller at the diameter of $D_T = 75$ mm. A lot of researches for general regenerative pumps with symmetric impellers have been done to achieve the high performance of pumps [1-4]. In the present study, $D_T = 75$ mm was determined for high discharge pressure following [2].

Figure 4 shows the schematic of the experimental setup. The impeller is driven by a blushless servomotor. The rotational speed is 600rpm. The flow rate is adjusted by controlling the downstream valve and estimated by measuring the weight of discharged fluid. The pressure coefficient ψ is estimated from the pressures at the wall of the inlet pipe about 9.4 times of the casing diameter (85mm) upstream from the shaft axis and at the wall of the outlet pipe about 11.8 times of the casing diameter downstream from the shaft axis. The working fluid is a water with ambient temperatures (about 25 degrees Celsius). The Reynolds numbers defined by the impeller diameter D_T and the tip speed U_T are about 2.0×10^5 and 2.4×10^5 for the pumps with the symmetric and asymmetric impellers, respectively. These values are about 10 times of the Reynolds number for the targeted micro pump.
3. Computation

For the analysis of the internal flow, a commercial software ANSYS CFX-10.0 was used. Basic equations are the continuity equation and the Reynolds averaged Navier-Stokes equation. SST turbulence model are used.

The computational domain consists of the rotational domain of the impeller, the static domains of the casing, the inlet and outlet pipes. The computational grid on the casing is shown in Fig.5. The geometry of the computational cells is mainly tetrahedral and triangular prism near the wall. The impeller rotates around the z axis shown in Fig.1. The center lines of the inlet and outlet pipes are at $\theta = -28.6^\circ$ and 28.6°, respectively. The lengths of the inlet and outlet pipes are about 11.1 and 13.5 times of the casing diameter (only a part is shown in Fig.5). The number of the computational cells for the pump with the symmetric impeller is about 310 thousands in the impeller, about 740 thousands in the casing, about 60 thousands in the inlet pipe, about 70 thousands in the outlet pipes, and about 1,170 thousands in total. The number of the computational cells for the pump with the asymmetric impeller is about 220 thousands in the impeller, about 430 thousands in the casing, about 50 thousands in the inlet pipe, about 60 thousands in the outlet pipes, and about 760 thousands in total. To confirm the accuracy in evaluating the leakage flow, calculations for the pump with the asymmetric impeller were made with 6 and 12 computational cells in the clearance c_1 between the impeller and the casing. The difference of the values of the pressure coefficient ψ in the both calculations was less than 0.1%. In the present study, 6 cells were used in the clearance c_1 to reduce computational load.

The static pressure at the inlet, the mass flow rate at the outlet, and a non-slip condition on the wall were given as boundary conditions. Unsteady calculation was performed. The time step is $1/400$ of one period of the rotation of the impeller. The results shown in the present study are the results at least after 3 revolutions of the impeller where the fluctuation of the head becomes periodic. Working fluid is water with ambient temperatures (25 degrees Celsius).

4. Results and Discussions

4.1 Performance Curve

Figure 6 shows the performance curves from experiments and computations. The effect of changing the asymmetric geometries of the impeller and the casing into the symmetrical ones are significant and the value of the pressure coefficient ψ of the pump with the symmetric impeller at the shutoff flow rate $\phi=0$ is about 2.5 times as large as that of the pump with the asymmetric impeller.

The value of the pressure coefficient ψ obtained by the computation is not in good agreement with the experimental results, but similar to them qualitatively. The cause of the quantitative disagreement is not clear.

Figure 6 also shows the pump efficiency obtained by the computation. The maximum efficiencies of the pumps with the symmetric and asymmetric impellers are about 16% at $\phi=0.24$ and 11% at $\phi=0.33$, respectively.

4.2 Angular Momentum

The angular momentum in the casing was investigated to clarify the cause of the large difference of the performance curves. Figure 7 shows control volumes. The control volumes are set in the casing flow passage excluding the inlet and outlet regions ($-45^\circ < \theta < 45^\circ$). Surface 1 of the control volume is located at an axial distance of 1.2mm ($=c_1$) from the side of the impeller vane. Surface 2 of the control volume for the symmetrical impeller is located at a radial distance of 1.0mm from the tip of the impeller.

We consider the conservation law of the angular momentum around the axis of the impeller using the circular cylinder coordinate system shown in Fig.1. Since the temporal change of the angular momentum due to the impeller vane passage is not negligible, we use the unsteady conservation law of the angular momentum.

$$AM_{\text{pressure}}^* = \frac{dL^*}{dt} + AM_{\text{flux}}^* + AM_{\text{shear}}^*$$ (1)
where

\[
AM_{\text{pressure}}^* = \left(\sum_i r_i \cdot \Delta q_{\text{outlet},i} \cdot P_{\text{outlet},i} - \sum_i r_i \cdot \Delta q_{\text{inlet},i} \cdot P_{\text{inlet},i} \right) / (\rho AU_T^2 D_T)
\]

\[
L^* = \rho \sum_i \Delta V_i \cdot r_i \cdot V_{\theta,i} / \left(\rho AU_T^2 D_T^2 \right)
\]

\[
AM_{\text{flux}}^* = \left(\sum_i \Delta m_{\text{in},i} \cdot r_i \cdot V_{\theta,i} - \sum_i \Delta m_{\text{out},i} \cdot r_i \cdot V_{\theta,i} \right) / (\rho AU_T^2 D_T)
\]

\[
AM_{\text{shear}}^* = T / \left(\rho AU_T^2 D_T \right)
\]

\[
t^* = t / (D_T / U_T)
\]

\(AM_{\text{pressure}}^*\) is the moment of the pressure forces at the inlet and outlet boundary. \(L^*\) is the angular momentum in the control volume, \(AM_{\text{flux}}^*\) is the angular momentum of the fluid entering the control volume, \(AM_{\text{shear}}^*\) is the moment due to the shear force on the surface of the control volume, and \(t^*\) is the nondimensional time.

4.3 Effect of Geometry to Angular Momentum

First, we discuss the angular momentum at the low flow rate \(\phi=0.047\) where the difference of the pressure coefficients \(\psi\) of the pumps with the symmetric and asymmetric impellers is larger.

Figure 8 shows the value of \(AM_{\text{pressure}}^*\) on the left hand side of Eq.(1) and the value of \(-dL^*/dt + AM_{\text{flux}}^* + AM_{\text{shear}}^*\) on the right hand side of Eq.(1). The number of vanes is 16 and the value of the angular momentum fluctuates with one sixteenth of the rotational period. Therefore, the results in one sixteenth periods are shown. At the number of revolution of \(N=0\), the center lines of vanes are at \(\theta=45\text{deg}\) and \(-45\text{deg}\), i.e., at the inlet and outlet surfaces of the control volume, respectively. The values of \(AM_{\text{pressure}}^*\) and \(-dL^*/dt + AM_{\text{flux}}^* + AM_{\text{shear}}^*\) are nearly equal and the conservation law are satisfied fairly well in both cases of the pumps with the symmetric and asymmetric impellers.
of the fluid which flows in/out from the control volume through Surface 1 and 2 and its averaged circumferential velocity is about 1.9 in the pump with the symmetric impeller. The differences of the flow rate with the symmetric and asymmetric impellers are 0.72 and 0.42, respectively, and their difference is 0.30. In the pump with the asymmetric impeller, the values of \(\phi_c \) are negative in the pump with the symmetric impeller, the total angular momentum of the pump with the asymmetric impeller largely contribute to the pressure rise.

Although the value of \(AM_{flux, surface \ 1}^* \) is negative in the pump with the symmetric impeller, the total angular momentum of the pump with the asymmetric impeller largely contribute to the pressure rise. The averaged \(-dL^*/dt^* \) and the values of \(AM_{shear}^* \) in both pumps are nearly equal, respectively. The value of \(AM_{flux}^* \) of the pump with the symmetric impeller is 3 times as large as that of the pump with the asymmetric impeller. It is found that the influence of the difference of the pump geometry largely appears in the value of \(AM_{flux}^* \).

4.4 Angular Momentum of the Flow Entering the Control Volume

Figure 10 shows the values of the angular momentum which enters the control volume through each surface. \(AM_{flux, inlet}^* \), \(AM_{flux, outlet}^* \), \(AM_{flux, surface \ 1}^* \), and \(AM_{flux, surface \ 2}^* \) are the angular momenta which flow into the control volume through the inlet and outlet surfaces, and the surfaces near the impeller (Surface 1 and 2) shown in Fig.7, respectively. Absolute values of \(AM_{flux, inlet}^* \) and \(AM_{flux, outlet}^* \) are similar and their signs are opposite. Therefore, \(AM_{flux, inlet}^* \) and \(AM_{flux, outlet}^* \) do not contribute to the pressure rise. \(AM_{flux, surface \ 2}^* \) of the pump with the symmetric impeller and \(AM_{flux, surface \ 1}^* \) of the pump with the asymmetric impeller largely contribute to the pressure rise.

Table 2 Mass flow rate into/out from the control volume through the surface 1 and 2, and mean circumferential velocity

<table>
<thead>
<tr>
<th></th>
<th>Pump with symmetric impeller</th>
<th>Pump with asymmetric impeller</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>in</td>
<td>out</td>
</tr>
<tr>
<td>(\phi_c)</td>
<td>1.93</td>
<td>1.86</td>
</tr>
<tr>
<td>(\overline{V}_{U_T})</td>
<td>0.72</td>
<td>0.42</td>
</tr>
<tr>
<td></td>
<td>in</td>
<td>out</td>
</tr>
<tr>
<td>(\phi_c)</td>
<td>1.31</td>
<td>1.26</td>
</tr>
<tr>
<td>(\overline{V}_{U_T})</td>
<td>0.67</td>
<td>0.58</td>
</tr>
</tbody>
</table>

Figure 9 shows the values of \(-dL^*/dt^* \), \(AM_{flux}^* \), and \(AM_{shear}^* \). It is found that the temporal changes of \(AM_{pressure}^* \) are mainly due to \(-dL^*/dt^* \). The value of \(AM_{flux}^* \) is larger than the average of \(-dL^*/dt^* \) and the value of \(AM_{shear}^* \) in both pumps.

The averages of \(-dL^*/dt^* \) and the values of \(AM_{shear}^* \) in both pumps are nearly equal, respectively. The value of \(AM_{flux}^* \) of the pump with the symmetric impeller is about 3 times as large as that of the pump with the asymmetric impeller. It is found that the influence of the difference of the pump geometry largely appears in the value of \(AM_{flux}^* \).

4.5 Cause of the Changes of the Flow Rate \(\phi_c \) and the Averaged Circumferential Velocity \(\overline{V}_{U_T} \)

The flow rate \(\phi_c \) is determined so that the pressure rise between the inlet and outlet of the vane channel equals the pressure drop in the casing. Figure 11 shows the pressure and velocity distributions on the meridian plane in the meridian plane of the flow path of the casing from the original pressure. Figures 11(a) and (b) show the results for the pumps with the symmetric and asymmetric impellers, respectively. In the pump with the symmetric impeller, the pressure gradient along the circulating flow is smaller in the casing, as shown in Fig.11(a). In the pump with the asymmetric impeller, the pressure gradient along the circulating flow is larger in the casing, as shown in Fig.11(b). To compensate the higher pressure drop in the casing, the pressure increase is higher for the asymmetric impeller. So, it is difficult to say clearly why the recirculation flow rate is higher for the symmetrical impeller. Figure 12 show the control surfaces to estimate the flow rate of the fluid which goes through the flow path of the casing.
Figs.11 and 12 also show the control surfaces. Figure 13 shows the local flow rate L_{ϕ} of the fluid which goes through the control surfaces. The value of L_{ϕ} of the pump with the symmetric impeller is smaller than that of the pump with the asymmetric impeller. The cause of the larger pressure gradient along the circulating flow in the pump with the asymmetric impeller is considered to be a larger centrifugal force in the flow path of the casing due to the larger local flow rate L_{ϕ}. It is thought that the increase of pressure drop in the casing due to the increase of the centrifugal force causes the decrease of the circulating flow rate c_{ϕ} in the pump with the asymmetric impeller.

The averaged local flow rates \bar{L}_{ϕ} of the fluid which goes through the control surfaces indicated by the doubly encircled numbers 1-6 in Fig.12 are 0.45 and 0.53 in the pumps with the symmetric and asymmetric impellers, respectively. It is thought that the smaller local flow rate \bar{L}_{ϕ} causes the smaller circumferential velocity \bar{v}_{θ}/U_{r} of the fluid which flows out of the control volume in the pump with the symmetric impeller.

The value of the local flow rate ϕ_{l} is about 10 times as large as the flow rate $\phi=0.047$, as shown in Fig.13. To clarify the cause of that, the flow rate through the clearance was investigated. The lines indicated by the numbers 1-12 in squares in Fig.12 show the control surfaces for estimating the flow rate through the clearance. Each control surface has an axial width of 1.2mm, which is the same as the clearance c_{1}. In the case of the pump with the symmetric impeller, the control surfaces for the clearance are also set in the rear side. In the case of the pump with the asymmetric impeller, the control surfaces indicated by the circled numbers 1-12 are set in the tip clearance of the impeller, as shown in Fig.12(b). The radial width of the control surface in the tip
clearance equals 1.0mm (=c₁). The control surface in the tip clearance is located at a distance of 0.5mm to z direction from the front surface of the impeller. Figure 14 shows the flow rate \(\phi_{\text{leak}} = (Q_{\text{leak}} / (AU_T)) \) of the fluid which goes through the clearance. It was confirmed that the local flow rate \(\phi_L \) is obtained by adding the leakage flow rate \(\phi_{\text{leak}} \) in the upstream to the inlet/outlet flow rate \(\phi \). It was found that a large amount of fluid flows in/out from the flow path of the casing through the clearance and the increase of the local flow rate \(\phi_L \) from the flow rate \(\phi \) was due to the clearance flow.

The local flow rates \(\phi_L \) and \(\phi_{\text{leak}} \) are defined as the flow rate divided by the area \(A \) of the flow path of the casing and the tip speed of the impeller \(U_T \). The area \(A \) and the tip speed \(U_T \) of the pump with the symmetric impeller are about 3.1 times and about 0.9 times as those of the pump with the asymmetric impeller, respectively. Therefore, the values of \(\phi_L \) and \(\phi_{\text{leak}} \) of the pump with the symmetric impeller should be about one third of those of the pump with asymmetric impeller if the amounts of the leakage flow in both pumps are the same. However, the values of \(\phi_L \) and \(\phi_{\text{leak}} \) of the pump with the symmetric impeller are about 0.85 times as those of the pump with the asymmetric impeller and larger than one third of the values of \(\phi_L \) and \(\phi_{\text{leak}} \) of the pump with the asymmetric impeller. The larger local flow rate \(\phi_L \) of the pump with the symmetric impeller is due to the larger pressure rise.

5. Conclusions

The effect of the internal flow in the symmetric and asymmetric micro regenerative pumps on their pressure performance was investigated in experiments and computations. The following results were obtained.

(1) The pressure coefficient of the pump with the symmetric impeller at the shutoff flow rate was about 2.5 times as large as that of the pump with the asymmetric impeller.

(2) The pressure rise in the pumps is mainly caused by the angular momentum of the fluid which flows in the flow path of the casing from the impeller. This angular momentum is larger and causes the larger pressure rise in the pump with the symmetric impeller.

(3) In the pump with the symmetric impeller, the flow rate of the fluid which flows in the flow path of the casing is larger and the circumferential velocity largely decreases in the flow path of the casing. Therefore, the angular momentum of the fluid which flows in the flow path of the casing is larger.

(4) The cause of the larger flow rate of the fluid which flows in the flow path of the casing in the pump with the symmetric impeller is the smaller local flow rate in the flow path of the casing due to the smaller leakage flow rate.

(5) The cause of the larger deceleration of the circumferential velocity in the flow path of the casing in the pump with the symmetric impeller is the smaller local flow rate in the flow path of the casing due to the smaller leakage flow rate.

Acknowledgement

This study was financially supported by the Comprehensive Support Programs for Creation of Regional Innovation which is provided by the Japan Science and Technology Agency (JST).

Nomenclature

- \(a_1 \): Depth of the flow path of the casing [m]
- \(\Delta a_{\text{inlet}} \): Minute area on the inlet surface of the control volume [m²]
- \(\Delta a_{\text{outlet}} \): Minute area on the outlet surface of the control volume [m²]
- \(A \): Area in the meridional plane (vane section not included) of the flow path of the casing [m²]
- \(AM^*_{\text{flux}} \): Angular momentum of the fluid which flows in/out from the control volume, Eq.(1)
- \(AM^*_{\text{flux surface1}} \), \(AM^*_{\text{flux surface2}} \): Angular momentum of the fluid which flows in/out from the control surfaces near the impeller
- \(AM^*_{\text{pressure}} \): Moment generated by a pressure, Eq.(1)
- \(AM^*_{\text{shear}} \): Moment generated by a shear force, Eq.(1)
- \(c_1 \): Axial clearance between the impeller and the casing [m]
- \(D_T \): Diameter of the impeller [m]
- \(g \): Gravity [m/s²]
- \(I^* \): Nondimensional angular momentum, Eq.(1)
- \(N \): Number of the revolution of the impeller
- \(\phi_{\text{leak}} \): Local flow coefficient of the leakage flow (\(= Q_{\text{leak}} / (AU_T) \))
- \(\phi_L \): Local flow coefficient in the flow path of the casing (\(= Q_L / (AU_T) \))
- \(\phi \): Flow coefficient = \(Q / (AU_T) \)
- \(\eta \): Pump efficiency = \(\phi \psi / (2 \tau) \)
- \(\Delta \): Minute volume of the control volume [m³]
- \(\theta \): Circumferential coordinate
- \(Q_{\text{leak}} \): Volume flow rate of the leakage flow through the clearance [m³/s]
- \(r \): Radial coordinate
- \(r^* \): Nondimensional time, Eq.(1)
- \(T \): Torque [N·m]
- \(\psi \): Circumferential velocity [m/s]
- \(\tau \): Mass flow rate of the fluid which flows in the minute area on the control volume [kg/s]
- \(\theta \): Mass flow rate of the fluid which flows out from the minute area on the control volume [kg/s]

78
Average pressure on the meridional plane of the flow path of the casing [Pa] \(P_{ave} \)

Volume flow rate \([m^3/s]\) \(Q \)

Volume flow rate of the fluid which flows in/out from the control volume through the control surfaces near the impeller \([m^3/s]\) \(Q_c \)

Local volume flow rate through the flow path of the casing \([m^3/s]\) \(Q_L \)

Density \([kg/m^3]\) \(\rho \)

Torque coefficient \(\tau \)

Pressure coefficient \(\varphi \)

Pressure coefficient \(\psi \)

Number of the minute elements at the control volume \(i \)

Angular velocity of the impeller \(\omega \)

Subscript \(i \)

\[\tau = \frac{T \omega}{(\rho A U_i^2)} \]

\[\psi = \frac{(p_2 - p_1)}{\left(\rho U_i^2 / 2\right)} \]

References

