Changes of DNA Fragmentation by Irradiation Doses and Storage in Gamma-Irradiated Fruits

Sang-Mi Kim, Eunju Park*, Jae-Seung Yang**, and Myung-Hee Kang*

Dept. of Food and Nutrition, Hannam University, Taejon 306-791, Korea
*Division of Life Sciences, Kyungnam University, Masan 631-701, Korea
**Laboratory for Detection of Irradiated Foods, Korea Atomic Energy Research Institute, Taejon 305-333, Korea

Abstract

The changes in DNA damage were investigated during storage after irradiation. Kiwi, orange and pear were irradiated at 0.1, 0.3, 0.5, 0.7 and 1.0 kGy and stored for 3 months at 4°C. The comet assay was applied to the sample seeds at the beginning of irradiation and at the end of storage. Seeds were isolated and crushed, and the suspended cells were embedded in an agarose layer. After lysis of the cells, they were electrophoresed for 2 min and then stained. DNA fragmentation in seeds caused by irradiation was quantified as tail length and tail moment (tail length × % DNA in tail) by comet image analyzing system. Immediately after irradiation, the differences in tail length between unirradiated and irradiated fruit seeds were significant (p<0.05) in kiwi, orange and pear seeds. With increasing the irradiation doses, statistically significant longer extension of the DNA from the nucleus toward anode was observed. The results represented as tail moment showed similar tendency to those of tail length, but the latter parameter was more sensitive than the former. Similarly even 3 months after irradiation, all the irradiated fruit seeds significantly showed longer tail length than the unirradiated controls. These results indicate that the comet assay could be one of the simple methods of detecting irradiated fruit seeds. Moreover, the method could detect DNA damage even after 3 months after irradiation.

Key words: fruits, irradiation detection, storage, comet assay, DNA damage

서 론

최근 식품의 방사선 조사 기준은 식품이나 농산물의 살균, 살충, 저장기간 연장, 과채류의 수성 저연 등으로 각 국 정부와 식품산업계로부터 관심이 높아지고 있다(1,2). 식품의 방사선 조사는 WHO, FAO, IAEA와 같은 국제기구에서 인정받았으며(3) 현재 40여 개국에서 허가되어 국제 교역에서 조사서류의 유통이 점차 증가하는 추세이다(4).

방사선 조사 과일은 살충을 위해 기준에 쓰였던 화학 살충제 처리 과일에 비해 인체에 유해하지 않다고 알려지고 있지만 방사선 자체에 대한 안전성 우려도 존재 하여 아직은 소비자들이 거부감을 가지고 있는 실정이다(5). 현재 우리 나라에서는 방사선 조사 혜용 식품에 과일이 포함되어 있지 않으나, 외국에 서는 살충 또는 경력을 위해 과일의 방사선 조사가 허용되고 있으며 그 조사량은 1.0 kGy 이하로 규제되고 있다(6). 따라서 국제적인 교역의 증대로 인해 국내 시장에서 수입 과일의 유통이 점점 증가하고 있는 이 시점에서 소비자들이 방사선 조사된 수입 과일에 대한 저유로운 선택을 할 수 있도록 다양한 수입과 일을 대상으로 정확한 방사선 조사 검정 방법을 통한 표시제도가 확립되어야 할 것이다.

Comet assay는 방사선 조사로 인한 DNA 손상을 검출하는 장비를 이용해 빠른 시간 내에 효과적으로 검지하는 것으로 알려져 있다(7). 최근 comet assay 방법이 방사선 조사 식품 검지에 도입되어 국내외에서 방사선 조사된 과류, 과일류, 콩류류 대상으로 조사차량을 확인하는 연구가 활발히 이루어지고 있다(8-16). 그 중 comet assay를 이용한 방사선 조사 과
일에 대한 검지확인 연구로는 Delincoee 등에 의해 grapefruit (6), 발기(16)을 각각 1 kg, 0.5 kg까지 방사선 조사하여 DNA 손상을 나타내는 tail length를 측정하여 비교 조사 실험과 비교한 연구가 수행된 바 있으며 국내에서는 온등(13)이에 의해 포도, 자두, 발기, 복숭아, 사과, 천도복숭아 볼 태양으로 comet assay를 이용해 방사선 건지임을 확인한 연구가 있다. 그러나 이 연구들은 방사선 조사 이후 comet assay을 실시하여 DNA 손상도를 측정한 것으로써 방사선 조사방안을 일정기간 저장한 후 DNA 손상도의 변화를 측정한 연구는 그 필요성만 제안되었던 뿐(7) 국내외를 통하여 아직까지 보고된 바 없 다. 과일의 경우 수확한 뒤 일정한 수송기간과 저장기간을 거친 후 시장에서 유통되므로 조사결과보다는 조사한 과일을 일정기간 저장한 뒤 저전압 comet assay를 이용해 방사선 조사에 의한 DNA 손상도를 측정할 수 있는 것을 검토해보는 것은 매우 중요한 의의가 있다고 할 수 있다.

본 연구에서는 어류와서 수출수입량의 수원을 차지 하는 과일 중 키위, 오렌지, 배를 선정하여 10 Kg의 과일을 조사한 뒤 comet assay를 이용해 방사선 조사여부를 확인하여 보고하였으며, 또한 조사작위 후보로를(3C) 3개월간 저장한 뒤에 comet assay을 이용하여 방사선 조사 여부를 감지할 수 있는지에 대해 살펴보았다.

재료 및 방법
시료 및 시약
본 실험에 사용된 과일은 키위, 오렌지, 배 등이며 수입과일인 키위는 뉴질랜드산, 오렌지는 미국 캅리포니아산으로 선정한 상태의 것을 2000년 9월 시중 대형 마케트에서 구입하였고, 배는 2000년에 우리 나라에서 생산된 신종 품종으로 축량산 내용물 올록록 작고 상장한 상태로 구입하였다. 모든 과일은 1.0 Kg의 이하의 산당으로 방사선 조사하였으며 일부는 조사작위 과일을 저장한 후 지름으로 유체에 주입하여 comet 분석을 하였고, 나머지는 저장기간에 따른 방사선의 효과를 측정하기 위해 저온품과 냉장고에서(0~4℃) 3개월간 저장한 뒤 comet assay를 실시하였다. 3개월간 저장 후 배는 상태가 약한 것하였고 키위와 오렌지는 약간 물리치거나 습도 등의 저장조건 중에서 최적의 조건에 따라 다양하게 적용했다. 주요사항 가운데는 sodium chloride, potassium tris, tris-base ethylenediamine tetracet-acid(EDTA), low melting point agarose, normal melting point agarose, disodium hydrogen phosphate, phosphate dihydrogen phosphate, ethidium bromide는 Sigma Chemical(St. Louis, MO., USA) 제품을 사용하였으며, boric acid, sodium dodecyl sulphate(SDS)는 Appliehem(Darmstadt, Germany) 제품을 사용하였다.

시료의 방사선 조사
시료의 방사선 조사는 한국원자력연구소의 10℃ 감마선 조사 시설(AELC, Canada)을 이용하여 0.1, 0.3, 0.5, 0.7, 1.0 Kg의 신량으로 시간당 일정한 선량으로 조사하였다.

Comet assay
Comet assay는 Koppen과 Cerda(9)의 방법을 변형하여 실 시하였다. 과일을 제거한 채는 막자 사방로 세포에 손상을 주지 않는 정도로 부드럽게 매라하고 0.25 g의 의료를 취하여 ice bath상에 있는 작은 양방에 넣었다. PBS(Phosphate buffered saline, pH 7.4) 환증액을 키워배를 5 mL, 오렌지는 3 mL을 넣고 magnetic stirrer로 500 rpm에서 5분 동안 섞여주었다. 이 키워배를 200 μm nylon sieve 클로어서키고 냉장온도에서 10분 동안 방치하여 첨진시간 후 상층액을 취하여 100 μm nylon sieve 클로어서키고 다시 냉장온도에서 키워배를 30분, 오렌지는 45분 동안 방치시킨 후 상층액을 취하여 comet 분석용으로 사용하였다.

슬라이드(76×26 mm, Marienfeld, Superior, Germany)는 ethanol에 하룻밤 담근 후 깨끗하게 닦고 45℃에 유지되어 있는 0.5% neutral melting point agarose 50 μL를 굽히하게 도포한 후 실온으로 30분간 건조시켰다. 이렇게 완성된 precoated agarose slide는 slab 상태에 오랫동안 있어서 실시에 사용하였다. 제조된 세포 현탁액의 상층액 100 μL를 취하여 45℃로 유지된 0.8% low melting point agarose 1 mL와 혼합하였다. 혼합 용액 100 μL를 취하여 앞서 준비한 precoated 슬라이드 위에 도포하고 공기방울이 생기지 않도록 빠른 속도로 cover glass slide(24×25 mm)를 담아주었다. 이 슬라이드를 ice-bath상에 놓고 세포 젊이 형성되었다가 이를 lysis buffer(25% SDS in 5 mM Tris-borate, 1 mM EDTA, pH 8.4)에 첨져서 세포의 핵과 단백질을 용해시켰다. 각 시료의 단백 용해 시간은 시료에 따라 다름 10분, 오렌지는 45분, 배는 15분으로 하였다.

단백 용해 용액에 용해된 슬라이드는 SDS가 배제된 TBE buffer(45 mM Tris-borate, 1 mM EDTA, pH 8.4)에 5분 동안 담근 후 가려서 도기로 제거하고 슬라이드의 agarose end가 건조될 때까지 위에 (+)쪽으로 항하도록 후에 용액을 냉장용 보관한 TBE buffer를 슬라이드 위에 약 2-4 mm 정도 올려도록 체위를 옮겨 2 V/cm로 1 분 동안 전기영동을 실시하였다. 전기영동 후 슬라이드를 중류수로 5분 동안 씻어 세척하고 상온에서 1시간 동안 건조시킨 후 ethidium bromide(20 μg/mL) 75 μL로 염색하여 현미경으로 DNA comet을 관찰하였다.

DNA comet의 히마리경 검사
Ethidium bromide로 염색된 슬라이드상의 DNA comet을 측정 현미경(DMLB, Leica, Germany) 상에서 배를 200배로 관찰하였으며, CCD video camera(KP-Ⅰ, Hitachi, Japan)를 통해 보이면 각각의 세포에 이는 comet image analyzing system(Komet 4.0, Kinetic Imaging Ltd, UK)이 설치된 컴퓨터 상에서 분석하였다. 본 실험에서는 각 시료마다 총 2개의 슬라이드에서 각각 50과씩 총 100개의 세포를 무작위로 선정하여 관찰하였으며, 각 조사방사량까지의 이상 반응 실험하였다. DNA의 손상도는 항로로부터 이동한 DNA 파편의
거리인 tail length와 tail length에 tail % DNA를 곱한 값인 tail moment로 나타내었다.

통계처리
본 연구의 모든 실험결과는 최대용 SPSS(version 10.0)를 사용하여 각 시료별 및 조사선량별로 평균치와 표준오차를 구하였으며, 조사선량간의 tail length 및 tail moment의 유의성을 인원계산분석(one-way ANOVA)에서 LSD test를 이용하여 검증하였다. Pearson's correlation coefficient를 사용하여 조사선량과 DNA 손상지표들 간의 상관관계를 알아봤다.

결과 및 고찰

각 시료에 대해 0.1, 0.3, 0.5, 0.7, 1.0 kGy의 선량으로 방사선 조사한 직후 실시한 comet assay 결과, 모든 시료에서 비 조사 시료의 경우 원형 모양의 핵이 많이 관찰되었고 조사 시료는 대부분 핵이 손상된 것으로 나타나 비 조사 시료와 조사 시료간의 tail length 차이는 두드러하게 구분되었다(Fig. 1). 키위 셀의 경우 핵 전체 크기가 다른 시료들보다 크고 일정하게 나타났으며 조사 시료의 tail length도 오랜지, 배에 비해 비교적 컸다 (Fig. 1). 키위 셀의 경우 비 조사 시료에 비해 조사선량이 증가함수록 유의적으로 DNA 손상도가 증가하는 것을 볼 수 있었다(Fig. 2). 오랜지 셀의 경우도 마찬가지로 선량이 증가할수록 tail length가 유의적으로 증가하였고(Fig. 3), 배 셀도 선량 증가에 따라 tail length가 유의적으로 증가하였다(Fig. 4). 조사선량과 tail length간의 상관관계를 Pearson's correlation coefficient로 살펴본 결과, 상관계수 값이 키위 셀의 경우 r= 0.570(p<0.01), 오랜지 셀 r = 0.568(p<0.01), 배 셀 r = 0.615

![Fig. 1. DNA comets from fruits seeds.](image1)

Etahidium bromide staining (microscope objective×20).

![Fig. 2. Effect of irradiation doses and storage (0~4℃) on DNA damage in kiwi seeds.](image2)

Results are expressed as mean and standard error (bars). Values within the same line with the same superscript are not significantly different at p<0.05.

![Fig. 3. Effect of irradiation doses and storage (0~4℃) on DNA damage in orange seeds.](image3)

Results are expressed as mean and standard error (bars). Values within the same line with the same superscript are not significantly different at p<0.05.

![Fig. 4. Effect of irradiation doses and storage (0~4℃) on DNA damage in pear seeds.](image4)

Results are expressed as mean and standard error (bars). Values within the same line with the same superscript are not significantly different at p<0.05.
(p<0.01)으로 나타나 조사 시간이 tail length에 상당한 영향을 미치는 것을 알 수 있었다.

Oh 등(13)은 silver staining으로 DNA를 염색한 후 표준 부
과한 유전자를 통해 유전자 comet 양상을 판정할 경우 유전자
적인 단일세포 세포사에서의 독립적 실험 tin 과 일치하는

Table 1. Tail moment

<table>
<thead>
<tr>
<th>Dose (kGy)</th>
<th>Kiwi</th>
<th>Orange</th>
<th>Pear</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>11.67±0.46<sup>a,b</sup></td>
<td>3.74±0.35<sup>b</sup></td>
<td>17.29±0.58<sup>b</sup></td>
</tr>
<tr>
<td>0.1</td>
<td>10.21±0.48<sup>b</sup></td>
<td>2.93±0.26<sup>b</sup></td>
<td>21.27±0.67<sup>b</sup></td>
</tr>
<tr>
<td>0.3</td>
<td>14.29±0.53<sup>b</sup></td>
<td>4.63±0.34<sup>b</sup></td>
<td>26.62±0.84<sup>b</sup></td>
</tr>
<tr>
<td>0.5</td>
<td>14.15±0.53<sup>b</sup></td>
<td>4.65±0.37<sup>b</sup></td>
<td>26.82±0.73<sup>b</sup></td>
</tr>
<tr>
<td>0.7</td>
<td>15.38±0.96<sup>b</sup></td>
<td>4.61±0.35<sup>b</sup></td>
<td>26.88±0.91<sup>b</sup></td>
</tr>
<tr>
<td>1.0</td>
<td>18.00±0.74<sup>b</sup></td>
<td>17.44±0.76<sup>b</sup></td>
<td>30.65±1.18<sup>b</sup></td>
</tr>
</tbody>
</table>

^{a,b}Tail moment = tail length (μm) × % DNA in tail.
^{c,d}Mean±standard error. Values with the same superscripts within column are not significantly different at p<0.05 (one-way ANOVA and the least-significant-difference test).
DNA 손상 정도를 tail length와 tail moment로 측정하였다. 과일의 DNA를 형광 염색하여 미세 분석기를 이용하여 comet 양상을 관찰한 결과, 모든 사료에서 비교 사료보다 조사 사료의 tail length가 더 길었으며 조사 사료의 증가함수록 tail length가 유의적으로 길게 나타났다. Tail moment로 나타난 결과도 이와 비슷하였으나 전체적으로 tail length에 비해 그 민감도가 높았다. 방사선 조사한 과일을 저온에서 3개월 동안 저장한 후에도 저장 전과 마찬가지로 모든 사료에서 비 조사 사료보다 조사 사료의 tail length가 더 길었으며, 조사 사료의 증가함수록 tail length가 길게 나타나, 저장 후에도 comet assay를 이용해 조사 사료와 조사 사료의 방사선 조사여부를 감지할 수 있었다. 따라서 본 연구결과 comet assay는 신선한 과일과 일정기간 저장한 과일의 방사선 조사여부 판별에 유용하게 사용될 수 있음을 알 수 있었다.

감사의 글
본 연구는 2000년 과학기술부 원자력연구개발사업 중장기 연구과제의 위탁과제로 수행된 것으로 연구비 지원에 감사 드립니다.

문헌

(2002년 3월 27일 접수; 2002년 7월 30일 재배)