Identification Characteristics of Irradiated Dried Red Pepper during Storage by the Analysis of Electron Spin Resonance and Hydrocarbons

Byeong-Keun Kim¹, Jungeun Lee¹, Tusneem Kausar¹, Dong-Ho Kim², Jae-Seung Yang², Myung-Woo Byun² and Joong-Ho Kwon¹

¹Dept. of Food Science & Technology, Kyungpook National University, Daegu 702-701, Korea
²Korea Atomic Energy Research Institute, Daejeon 305-600, Korea

Abstract

Electron spin resonance (ESR) and hydrocarbon characteristics were analyzed to establish identification conditions for irradiated dried red pepper. The ESR spectroscopy for 4 different parts (powder, pericarp, seed, stem) of the samples showed that irradiated samples signaled (g = 2.024, 2.006, 1.987) a pair of peaks from a cellulose radical at intervals of 6 mT, which were not found on the non-irradiated samples. The ESR signals increased in directly proportion to the irradiation doses, which were still detectable after 12 weeks of storage at room temperature. The GC–MS analysis of hydrocarbons after fat extraction and separation by florisil column chromatography revealed that hydrocarbons, such as 1-tetradecene (14:1), 1,7,10-hexadecatriene (16:3), 1,7-hexadecadiene (16:2), 1-hexadecene (16:1), 6,9-heptadecadiene (17:2), and 8-heptadecene (17:1), were detected only from the irradiated samples immediately after irradiation and 8 months of storage. They linearly increased with the dose of irradiation, suggesting them as radiation-induced markers for irradiated dried red pepper.

Key words: electron spin resonance, hydrocarbon, irradiation, dried red pepper

서 론

고추는 우리나라의 대표적인 향신료로 주로 건조된 상태로 보관되며, 분말 형태로 고추가루로 가공되어 유통 또는 소비되고 있다. 최근, 세계적으로 식품위생에 대한 품질관리 및 국제교역에서의 경제기술이 엄격해짐에 따라 우리나라 건조 향신료의 비밀을 기존의 "대장군 육성"으로 규정되어 있으나(1) 기존의 살균방법으로는 이 기술을 충족시키기 어려운 문제점이 있다. 특히 고추나 고추가루는 미생물 오염도가 비교적 높은 향신료이므로(2-4) 보다 적절한 살균기술의 적용이 필요하다. 한편, 방사선 조사기술(food irradiation technology)은 해충이나 미생물의 사멸뿐만 아니라 농산물의 방부자재, 식품의 저항성 향상, 조성기술의 문제 개선 등에 효과가 인정되고 있고(5-7) 그 안전성과 기술적 타당성이 국제기구(FAO/IAEA/WHO)에 의해 보증되고 있는(8) 중국, 일본, 미국 등 세계 40여 개국에서 이미 상업적으로 방사선 조사기술의 생산, 유통이 본격화되고 있다(9). 특히, 건조향신료는 세계적으로 가장 대표적인 방사선 처리 대상 식품으로, 현재 30여 개국에서 1~30 kGy의 조사량이 허용되어 있으며 국제교역 관행의 대부분이 방사선 조사 처리되어 있는 것으로 알려지고 있다(9). 이러한 결과는 방사선품의 안전성에 사용되어 온 엽질육식사가 환경독성 및 잔재 독성으로 식품에 대한 사용이 금지되어 그 대체기술로써 방사선 조사 기술이 활용되고 있기 때문이다(10). 그러나 아직도 방사선 조사기술의 신뢰성과 안전성 확보와 소비자의 수용성 제고를 위해서는 많은 노력과 시간이 필요한 실정이다(5, 6, 11).

방사선 조사기술의 소비자 수용도를 높이기 위한 여러 요건 중에서 조사기술의 품질관리 및 품질보증을 위한 조사기술의 표시제도(labeling)와 이를 허락받을 수 있는 조사기술(irradiated food)의 검정방법(identification method)에 관한 연구가 가장 시급한 과제로 판단된다(5, 13). 특히, 중
국과의 식품교역량이 급증하고 2004년 현재 중국의 산업적 감마선 조사시험이 이미 70여 가에 이르고 있는 상황에서 (12), 방사선 조사시험의 검지 방법 정립은 국제교역에서의 결정과 제품의 품질관리뿐 아니라 자국의 경제적 이익을 위해서도 필수적이다. 지금까지 세계적으로 다양한 방사선 조사시험에 대한 물리적, 화학적 및 생물학적 검지방법들이 개발되어 실용가능성을 보여주고 있으며 EU를 비롯한 선진국에서는 이미 이를 표준화된 시험법으로 제정하여 시행하고 있(9).

한편, 먹이상 오염도가 비교적 높은 건조고추고추장류의 위생 환경에 방사선 조사시험의 적용이 불가피한 현실에서 방사선 조사를 이용한 고추의 위생화에 대한 연구는 이미 수행된 바 있으나(2-4) 아직까지 방사선 조사 고추장류의 검지방법에 대한 연구는 미흡한 실정이다. 이에 본 연구에서는 감마선 조사 건조고추의 부분별(복부, 좌부, 정 중기) ESR 분석 및 분말 건조고추의 hydrocarbon 류분석하여 건조고추 1차 가공품의 방사선 조사 여부 확인에 필요한 marker들을 찾고자 하였다.

재료 및 방법

재료

본 실험에 사용된 건조고추(Capsicum annum L)의 고추가루 시료는 2003년 경북 무안에서 생산된 제품으로 종사자에게 구입하여 사용하였으며 통고추(whole)는 파리(percipar), 씨(seed) 및 즙기(stem)로 각각 분리하여 부위별로 실정에 사용하였다.

감마선 조사

건조고추 시료의 감마선 조사는 한국자원연구소(Daejeon, Korea)의 60Co 감마선 조사시설(AECL, IR–79, MDS Nordidion International Co., Ltd., Ottawa, ON, Canada)을 이용하여 국제적으로 허용한 10 μGy/시간 밸러 밸러 내에서(9, 2.5, 5.0, 7.5, 10.0 μGy/시간) 총 흡수선량을 알고 하였다. 감마선 조사 후, ESR 분석에는 5.0 μGy의 감마선 조사 시료를 사용하였으며 hydrocarbon의 분석에서 2.5, 5.0, 7.5, 10.0 μGy/kg의 감마선 조사 고추가루를 시료로 사용하였다. 감마선의 전체 흡수선량은 ceric cerous sulfate dosimeter를 이용하여 측정하였으며 이 때 흡수선량의 오차범위는 ±5% 수준이었다.

Electron spin resonance (ESR) 분석

고추가루 및 통고추로부터 분리한 파리(percipar), 씨(seed), 즙기(stem)를 30 mesh 수준으로 분쇄한 후 50℃로 음지시건 dry oven에서 24시간 건조시켜 ESR 측정을 시료로 사용하였다. 준비된 분말시료 0.5 g을 ESR sample tube에 담고 ESR spectrometer(JES-TE200, Jasco Co., Tokyo, Japan)을 이용하여 microwave power 400 mw, modulation 100 kHz, amplitude 6.3×10⁻⁶, time constant 0.03 sec, sweep time 30 sec의 조건에서 peak을 확인하고 signal intensity를 3회 반복 측정하였다.

Hydrocarbon 분석

감마선 조사 건조고추의 hydrocarbon 분석은 고추가루를 시료로 하였으며 지필의 추출은 Choi와 Hwang의 방법(17)에 준하여 실시하였다. 즉, 시료의 지방 추출을 위해 100 g의 시료에 650℃에서 5시간 이상 희석한 NaSO₄ 및 10배량의 n-hexane(Merck, Germany)를 가하여 균질화한 후 12시간 shaking(150 rpm)하였다. 추출된 음액을 원심분리(10,000 rpm, 4℃, 20 min)하여 상층액을 채취한 후 rotary vacuum evaporator를 사용하여 35℃에서 압축을 해서 제거한 후 청소가사로 간은 용액을 완전히 환방사시 청정 보관함에서 시료로 사용하였다.

Hydrocarbon의 분리는 600℃에서 12시간 회사시 분 봉분을 제거한 florisil에 3% 용 희석하여 분자상화시킨 후 중전한 glass column (23 cm × 2 cm)에서 실시하였다. 추출된 시료의 지질 1g에 internal standard (n-eicosane, 4 μ/ mL, n-hexane) 1 mL을 첨가하여 n-hexane용 희액으로 하여 3 mL/min의 유속으로 hydrocarbon을 분리하였다. 분리된 시료액은 상온에서 능가하여 이물 Gas chromatography/mass spectrometer(Hewlett-Packard 5890II, HP Co., Wilmington, DE, USA)에서 분석하였다(16,18). GC/MS 분석조건은 ionization voltage 70 eV, ion source와 injector온도는 각각 250℃로 하였다. Capillary column는 DB-5(J&W, 30 m × 0.25 mm i.d., 0.25 μm film thickness: J&W Scientific, Folsom, CA, USA)를 사용하였고, carrier 가스는 N₂ flow rate 는 1.0 mL/min으로 하였다. Oven 온도는 60℃에서 25℃/min 속도로 170℃까지 승온시켰고, 다시 2℃/min으로 205℃까지, 그 후 10℃/min 속도로 270℃까지 승온시켰다. 분리된 각 peak은 표준품질의 retention time과 mass spectrum을 비교하여 확인하였고, internal standard을 이용하여 hydrocarbon의 생성량을 정량하였다.

결과 및 고찰

건조고추의 ESR 분석 특성

건조고추의 방사선 조사 여부 검지에 필요한 ESR signal 특성을 확인하기 위하여 방사선 조사시험을 담당한 시료로 고추가루 파리, 씨 및 즙기로 분리하여 ESR를 측정하였다. 비교조사 고추가루의 10 kg로 조사된 고추가루의 전형적인 ESR spectra는 Fig. 1과 같다. Fig. 1에 나타난 바와 같이
ESR spectra에 의하여 고출력 방사선 조사 여부의 관점이 가능하였으며 이 때 10 kGy의 감마선을 조사한 고출력의 g-value는 각각 2.024, 2.006, 1.987이었다. 고출력 방사선은 감마선과 부위별(과피, 셰 및 죽기) 분석에서도 비조사 시료와는 달리 감마선 조사 시료(5, 10 kGy)에서 cellulose radical(19)에 의해 생성되는 한 방의 peak가 6 mT의 간격을 두고 signal을 보여주었다(Fig. 1). 전고추의 부위별(과피, 셰 및 죽기) g = 2.024 ~ 2.025와 1.988에서 radical 특유의 ESR signal이 나타났으며 전고추의 경우 모든 부위에서 방사선 조사 여부의 확인이 가능하였다. 한편 저장기 점에 따른 ESR radical의 안정성을 확인하기 위하여 방사선 조사 후 실험시 시료를 보관하면서 4주 간격으로 12주 동안 전고추와 부위별 ESR signal intensity의 변화를 측정하였 다. Fig. 2에 나타낸 바와 같이 전고추의 부위별 ESR signal intensity는 과피>또한>채>죽기의 순으로 높게 나타났다. 감마선 조사 4주 후에는 free radical의 농도가 크게 감소하였고 이 같은 현상은 조사간양이 높음수록 현저하였다. 이 같은 경우는 감마선 조사된 되는 ESR 측정에서도 보고된 바 있으며(20), 측정시료의 수분활성도는 유리기의 농도변 화에 영향을 미치는 것으로 보고되어(21) 본 실험의 결과와 관련성을 시사하였다. 또한 유리기 농도는 모든 시료에서 조사 후 저장 12주까지도 변화가 완만하여 ESR 측정이 가능하였으며, 그 이후에도 상당기간 측정이 가능할 것으로 예상되었다. 이상의 연구결과는 전조 체소류의 방사선 조사 여부

Fig. 1. Typical ESR spectra of gamma-irradiated dried red peppers irradiated at different doses (A: Powder, B: Pericarp C: Seed, D: Stem).
Fig. 2. Stability of ESR signal intensity of gamma-irradiated dried red peppers during storage (A: Powder, B: Pericarp, C: Seed, D: Stem).

고추가루의 hydrocarbon류 분석 특성
고추가루의 지방에는 linoleic acid, oleic acid, palmitic acid, stearic acid 등이 함유되어 있다(26). 이는 지방산을 함유한 증상 지방은 방사선 조사로 인해 carbonyl group의 \(\alpha\) 탄소와 \(\beta\) 탄소 위치에서 결합이 끊어져 초기의 지방산보다 탄소수가 1개 \((C_{n-1})\) 적거나, 2개 \((C_{n-2})\) 적으면서 첫 번째 탄소 위치에 새로운 이중결합을 가진 hydrocarbon류가 생성되므로 (27) hydrocarbon을 분석하게 되면 지방산이 함유된 식품의 방사선 조사 여부를 판별할 수 있다. 감마선 조사된 고추가루의 hydrocarbon류의 변화 양상을 Fig. 3 및 Table 1에 나타내었다. 비조사구에는 1-tetradecene(14:1), 1,7,10-hexadecatriene(16:3), 1,7-hexadecadiene(16:2), 1-hexadecene(16:1), 6,9-heptadecadiene(17:2), 8-heptadecene(17:1) 등의 hydrocarbon류가 검출되지 않았으나 감마선 조사전단이 증가함에 따라 이 같은 hydrocarbon류는 증가하는 경향을 나타내었다. 그러나 비조사구에서 소량으로 검출된 150(n-pentadecane), 160(n-hexadecane), 170(n-heptadecane) 등의 hydrocarbon류는 고추가루로 분석되는 과정에서 적절한 분석이 가능되어야만 아들 을 조사 여부를 위한 \textit{marker}로 사용하기는 곤란한 것으로 판단되었다. 이와 같은 결과는 Hwang 등(28)의 수입 유류 및 어류에 대한 hydrocarbon 연구결과와 유사한 경향이 있었다. 따라서 15:0, 16:0 및 17:0을 제외한 14:1, 16:3, 16:2, 16:1, 17:2, 17:1 등의 hydrocarbon류는 고추가루 및 건고추 의 방사선 조사여부 확인을 위한 \textit{marker}로서 사용될 수 있을 것으로 사료되었다.

고추가루에 함유된 palmitic acid로부터 생성된 pentadecane과 1-tetradecene의 비교에서는 1-tetradecene보다 n-pentadecane에서 높은 함량을 보였고, 조사전단이 높아짐에 따라 증가하는 경향을 보였으며, 이 때 조사전단과 검출량의 상관관계 \((R^2)\)는 각각 0.914, 0.971이었다. Stearic acid에서 생성되는 heptadecane과 1-hexadecene의 경우에는 heptadecane에서 높은 함량을 보였으며 \((R^2)\)는 각각 0.856과 0.833이었다. 또한 oleic acid에서 생성되는 8-heptadecene과 1,7-hexadecadiene에서는 그 함량에서 큰 차이를 보이지 않았으며, \((R^2)\)는 각각 0.988, 0.950의 상관관계를 나타내어 조사전단 이 증가함에 따라 생성량도 거의 비례적으로 증가함을 알 수 있었다. Linoleic acid로부터 생성되는 6,9-heptadecadiene
Fig. 3. GC/MS chromatogram of radiation-induced hydrocarbons in gamma-irradiated red pepper (A: Control, B: 5 kGy, C: 10 kGy).

<table>
<thead>
<tr>
<th>Hydrocarbon</th>
<th>Storage period (month)</th>
<th>Irradiation dose (kGy)</th>
</tr>
</thead>
<tbody>
<tr>
<td>14:1</td>
<td>0</td>
<td>1.84<sup>1</sup></td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>0.97</td>
</tr>
<tr>
<td>15:0</td>
<td>0</td>
<td>9.94</td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>6.79</td>
</tr>
<tr>
<td>16:3</td>
<td>0</td>
<td>6.39</td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>3.90</td>
</tr>
<tr>
<td>16:2</td>
<td>0</td>
<td>2.63</td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>2.07</td>
</tr>
<tr>
<td>16:1</td>
<td>0</td>
<td>1.03</td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>0.77</td>
</tr>
<tr>
<td>16:0</td>
<td>0</td>
<td>11.63</td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>3.85</td>
</tr>
<tr>
<td>17:2</td>
<td>0</td>
<td>3.12</td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>1.94</td>
</tr>
<tr>
<td>17:1</td>
<td>0</td>
<td>1.50</td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>1.13</td>
</tr>
<tr>
<td>17:0</td>
<td>0</td>
<td>14.82</td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>5.11</td>
</tr>
</tbody>
</table>

¹Mean of triplicate determinations.

Table 1. Hydrocarbons identified in gamma-irradiated red pepper (Unit: μg/g fat, d.b.)
과 1,7,10-hexadecatriene 또한 생성량에서 차이가 크지 않으며, R²는 각각 0.974, 0.960으로 조사성분 증가에 따른 함량의 비례적 증가가 관찰되었다. 이라 같은 결과는 Lee 등(29)의 건조 유황의 방사선 조사에 따른 결과와 유사하였다. 결과로보기로 후추의 감사선 조사에서 특정 hydrocarbon류의 생성이 조사성분에 비례하여 증가하였으며 해당 hydrocarbon류는 후추의 방사선 조사 여부를 확인할 수 있는 marker로 사용될 수 있을 것으로 생각되었다. 또한 저장 기간에 따른 변화에서는, 감사선 조사 직후에 비하여 8개월 이후에는 모든 시료에서 다소 감소하는 경향을 보였지만 조사성분에 따른 marker hydrocarbon류의 생성량에 있어 14:1 (R²=0.923), 16:3(0.946), 16:2(0.966), 16:1(0.911), 17:2(0.976), 17:1(0.906) 등이 각각 높은 상관관계를 보이며 저장 8개월 이후에도 방사선 조사 여부의 확인이 가능한 것으로 사료되었다.

요 약

간조주의 방산성 조사 여부 판별법을 연구하고자 부위별(분량, 과피, 죽기) 전자스핀공명(ESR)을 분석한 결과, 조사시료에서는 비조사 시료에서 볼 수 없었던 cellulose radical 에 의해 생성된 적 내 에이를 나타내는 두 고신signal을 보여주었다(μ=2.024, 2.006, 1.987). ESR signal은 조사성분의 증가에 따라 크기가 비례적으로 증가하였다. ESR signal은 산출 저장 12주 후에도 축정이 가능하였다. GC-MS에 의해 고정가수 농양종질로부터 hydrocarbon류를 검출 한 결과, 조사 시료에서는 비조사 시료에서 검출되지 않은 1-tetradecene(14:1), 1,7,10-hexadecatriene(16:3), 1,7-hexadaecadiene(16:2), 1-hexadecene(16:1), 6,9-heptadecadiene(17:2), 8-heptadecene(17:1) 등의 hydrocarbon류가 검출되 었다. 또한 저장 8개월까지도 증가가 가능하나 방산성 조사 marker로써의 활용가능성을 확인하였다.

감사의 글

본 연구는 과학기술부의 원자력연구개발사업의 일환으로 수행되었으며, 연구비 지원에 감사드립니다.

문헌

11. Joint FAO/IAEA division of nuclear techniques in food and agriculture. 1998. Report of the project review committee meeting of the asian regional cooperation project on food irradiation. (RAS/0/22), 7-9 April, Bangkok, Thailand.