Effect of Mycelia Extracts of Mushroom-Cultured Ginseng By-product on Proliferation in Cancer Cell Lines

Eun-Mi Park1, Soo-Jung Kim1, Eun-Ju Ye1, Man-Jong Bae2 and Kyeong-Cheol Jo3
1Efficacy and Safety Research Center for Traditional Oriental Medicine, Daegu Hanny University, Kyoungbuk Technopark, Daegu 706-060, Korea
2Dept. of Oriental Medicine Biofood Science, Daegu Hanny University, Gyeongsan 712-715, Korea
3Korea Bio Ginseng, Daegu 706-060, Korea

Abstract

This study was conducted to investigate the effect of mycelia extracts of mushroom-cultured ginseng by-product on electron donating ability and proliferation of hepatic cancer cell (Hep3B) lines and sarcoma 180 (S-180). The ginseng by-product was obtained from ginseng residues generated in processing of ginseng water extract. Mushroom strains used for preparation of mushroom mycelia culture with ginseng residue were Phellinus linteus, Ganoderma lucidum, Coriolus versicolor and Lentinus edodes. The electron donating abilities of the test samples were increased in a dose-dependent manner in the range of 500 ppm to 10,000 ppm, and Coriolus versicolor extract showed the most potent activity among mycelia extracts. In an anti-cancer test using Hep3B cells, ethanol extract showed higher antiproliferating effect than water extract. Ethanol extract of Lentinus edodes showed growth-inhibitory effect of 99.1% at 5,000 ppm. All of mycelia extracts of mushroom showed the tumor suppressive effect in mice injected with S-180 cells. The growth-inhibitory rates against tumor cells were 59% for Phellinus linteus, 61% for Ganoderma lucidum, 65% for Coriolus versicolor, 56% for Lentinus edodes. In conclusion, these results suggest that mycelia extracts of mushroom cultured with ginseng by-product have an antiproliferating effect against Hep3B cell and S-180 tumor cells.

Key words: mycelia extracts, ginseng by-product, electron donating ability, hepatic cancer cell (Hep3B), sarcoma-180

서 론

인삼(Parax ginseng C.A. Meyer)은 우리 나라의 대표적인 생약제로서 예로부터 질병치료와 건강증진의 목적으로 널리 이용되어 왔으며, 최근 인삼의 다양한 효능과 전연품을 선호하는 추세에 따라 그 수요가 증가하고 있다(1,2). 인삼은 탄수화물, 아미노산, 지방, 무기질 등의 영양소와 인삼의 주된 약리 작용 성분인 인삼 사포닌을 함유로 함으로써 인삼 효능이 50~60% 정도 되며 인삼의 주성분으로 알려진 조사포닌 이제 3.96% 함유되어 있다(7). 그러므로 인삼약으로부터도 인삼의 효과가 기대되나 극히 일부의 인삼뿐만이 사료 멤버 검의 효과가 있는 실험을 시도할 때 인삼에 기능성과 강화된 식품 개발에 많은 관심이 모여지고 있다(8,9).

한편 기능성 식품 및 의약품 소재로 크게 주목받고 있는 버섯은 기호성 높을 뿐 아니라 신장, 고혈압, 당뇨병 등의 성인병에 대한 예방과 억제효과와 면역증강 효과가 보고되고 있다(10~12). 또한 버섯 균주에서도 항암작용, 면역증강효과, 항산화효과, 혈 중 플레스테롤저하 작용 등의 것으로 알려져 있으며(13~15) 우리 식생활에 이용하는 부분은 매우 미지한 편으로 식품산업에 보다 다양한 이용할 필요가 있다.

*Corresponding author. E-mail: empark128@yahoo.co.kr
Phone: 82-53-770-2253, Fax: 82-53-752-1203
따라서 본 실험에서는 인삼박에 상향버섯(Phellinus linteus), 영지버섯(Ganoderma lucidum), 운지버섯(Orlius versicolor) 및 표고버섯(Lentinus edodes)의 균사이를 접종·배양하여 얻어진 인삼박 균주를 추출하여 인삼유래 간암세포(HepG2)에 미치는 영향을 세포흡수 억제율과 허삼성적 관찰을 통해 조사해 보았고 sarcoma 180(S-180) 고형양의 성장 억제율도 추정하여 인삼박의 효과적인 활성방면이 모색해 보았다.

재료 및 방법

인삼박 균주배양
본 실험에서 사용된 인삼박은 동기 우경인삼 폭드한 말린 인삼박을 사용하였으며 상향버섯(Phellinus linteus), 영지버섯(Ganoderma lucidum), 운지버섯(Orlius versicolor), 표고버섯(Lentinus edodes)의 균주배양은 한국농촌공학원 로봇센터(KACC)에서 분양받아 사용하였다. 인삼박은 1시간을 취한 후 10분당 60분까지 자동수분충성기(7639-32967, Precisa, Switzerland)수분을 측정하였고 이것은 121℃의 병균에서 20분간 면균한 후 상황, 영지, 운지, 표고 균주배양을 임시하여 22℃에서 25~30일 간 배양하면서 생육상태를 관찰하였다. 최적상태의 균주배양을 60℃에서 건조 후 보관하여 60% 에탄올로 추출한 후 동결건조하여 인삼균주 억제와 억제효과(HepG2) 증식 억제 실험에 사용하였고 S-180 고형양 실험에서는 건조한 각 인삼균주배양에 10배 수를 가하여 80℃, 2시간 추출하여 이를 2배 회석하여 사용하였다.

전자공여능 측정
인삼균주배양의 전자공여능은 Blos(16) 및 Choi와 Oh(17)의 방법에 따라 각 시료의 1,1-diphenyl-2-picryl hydrazyl (DPPH)에 대한 전자공여효과로서 활성산소를 측정하였다. 각 소장 농도의 시료에 0.4 mM DPPH 용액 1 mL을 가하고 10조간 vortex mixing 후 37℃에서 30분간 반응시킨 후 수용액을 분광광도계(DU 530, Beckman, USA)를 사용하여 517 nm에서 흡광도를 측정하였다.

알세포주에 대한 직접적인 효과
본 실험에서 사용한 세포주는 간암세포주인 Hep3B(KCLB 58064)를 한국 세포주은행에서 분양 받아 사용하였다. 알세포주 배양재에 사용한 DMEM(high glucose, Gibco, USA)배지에는 11.5 mM DMEM, 13.5 g/pL, sodium bicarbonate (Sigma, USA) 3.7 g을 희석하여 pH 7.2~7.4로 맞춘 후 porous 0.2 μm filter를 이용하여 세균시킨 후 10X antibiotic-antimycotic(Gibco, USA)를 1% 및 FBS(fetal bovine serum, Promega, USA)를 10% 되도록 첨가하여 사용하였다.

인체유래 간암세포주인 Hep3B는 5×10⁶ cells를 cell culture plate(NUNC, 60 mm)에 부주하고 37℃, 5% CO₂ incubator(3154 S/N 32504-1811, Forma Scientific Inc., USA)에 24시간 배양한 후 각 시료 수분당을 최소 농도가 2,500 ppm과 5,000 ppm이 되도록 첨가하여 24시간 동안 다시 배양시켰다. 배양된 세포는 정확한여정(NICON TMS, Japan) 100배율으로 관찰하고, 0.4% trypan blue assay로 세포 중식 억제율을 계산하였다.

S-180 고형양 실험
S-180 고형양 성장 억제 실험은 Jo(18)의 방법을 변형하여 실시하였다. S-180 세포는 한국 세포주은행에서 분양받았으며 S-180 세포를 8~12주령 ICR 마우스의 복강에서 계제 배양하였다. 즉 복수암이 있더라도 복부가 평판만 마우스의 복강 측으로 인화용 1 mL 주사기로 젊은 노란색의 복부에 1 mL을 접종한 후, 그 원위용 0.1 mL씩 ICR 마우스의 복강 측에 접종하고 배양하면서 13일마다 계제 배양하였다. ICR 마우스의 복강에 in vivo 계제 중인 S-180 세포를 면막된 주사기로 계체하고 MEME 배지로 회석하여 S-180 세포의 농도가 4×10⁶ cells/mL가 되게 하였다. 이와 같이 회석한 S-180 세포용액은 50 μL(2×10⁵ cells/mL)씩 소켓 ICR 마우스(6주령, 28±2 g)의 우측 서대부에 피하 접종한 후 4종류의 실험 시료로 즉 상황, 영지, 운지, 표고 균주배양 재료의 성장 억제율을 두께게 측정한 후 종양 성장 체계 배양용(tumor growth inhibition ratio, I.R.%)을 계산하였다.

통계학적 분석
실험결과는 mean±SE로 나타내었고, 각 그룹간의 측정치에 대한 자료 분석은 SPSS 통계프로그램을 이용하여 p< 0.05 수준에서 유의성을 판단하였다.

결과 및 고찰
전자공여능 측정
인삼균주의 전자공여능은 Fig. 1과 같다.

![Fig. 1. Electron donating activities of extracts from mushroom mycelia cultured with ginseng by-products. A: Phellinus linteus, B: Ganoderma lucidum, C: Coriolus versicolor, D: Lentinus edodes. ■: 500 ppm, □: 1,000 ppm, △: 5,000 ppm, ▽: 10,000 ppm.](image-url)
전자공여능은 산화성 활성 radical에 전자를 공여하여 산화물 억제시키는 것으로서 항산화 효과를 측정하는 척도로 이용되는데 본 실험에서는 500~10,000 ppm까지 농도가 전할 수록 전자공여능이 높게 나타났고, 특히 1,000 ppm에서 상황은 60.75%, 온치는 50.00%, 온치는 71.33%, 표고는 22.10%로 나타났으며 10,000 ppm에서는 상황, 온치, 온치 및 표고의 전자공여능이 각각 92.25%, 85.08%, 96.88%, 74.53%로 나타났다.

이상의 결과는 늑리버섯 군사체 추출물의 에탄올 품액이 항산화성이 높았다는 Jung 등(19)의 보고와 유사한 경향이며, 군사 식물체에는 항산화 비타민류와 free radical의 제거를 촉매하는 superoxide dismutase, catalase, glutathione peroxidase, glutathione reductase 등의 효소가 풍부하게 함유되어 있다는 Jung 등(20)의 보고와 같이 군사체 추출물에 의한 효소적·비효소적 방어계에 의해 항산화작용이 나타난 것으로 사료된다.

간암 세포의 형태변화
인삼박 군사체를 불과 60% 에탄올로 추출한 후 간암세포에 처리했을 때 세포 모양의 형태변화는 Fig. 2~5와 같다. 상황은 불 추출물보다 에탄올 추출물에서 간암 세포모양이 심하게 변화된 것으로 관찰되었다(Fig. 2). 염지는 물과 에탄올 추출물 각각 2,500 ppm에서 미미한 형태변화를 관찰할 수 있었고, 5,000 ppm에서는 사멸된 세포가 배양액 상층부로 부유되어 세포의 밀도가 감소된 것을 관찰할 수 있었다(Fig. 3).

Fig. 2. Morphology of Hep3B cells treated with extract from Phellinus linteus mycelia cultured with ginseng by-product. A: Control, B: 60% ethanol extract 2,500 ppm, C: 60% ethanol extract 5,000 ppm, D: Water extract 2,500 ppm, E: Water extract 5,000 ppm.

Fig. 3. Morphology of Hep3B cells treated with extract from Ganoderma lucidum mycelia cultured with ginseng by-product. A: Control, B: 60% ethanol extract 2,500 ppm, C: 60% ethanol extract 5,000 ppm, D: Water extract 2,500 ppm, E: Water extract 5,000 ppm.
운지는 에탄올 추출물 2,500 ppm, 5,000 ppm에서 세포 형태 변화가 뚜렷하게 나타났는데 특히 5,000 ppm에서는 형태의 변화가 심한 것을 볼 수 있었다. 그에 비해 물 추출물에서는 대조군과 비교했을 때 2,500 ppm에서는 형태의 확인한 차이

을 관찰되지 않았고 5,000 ppm에서 약간의 형태변화를 관찰 할 수 있었다(Fig. 4). 표고는 물 추출물 2,500 ppm, 5,000 ppm

에서 모두 뚜렷한 세포형태 변화는 관찰되지 않았으나 에탄

올 추출물에서는 두 농도 모두 대조군에 비해 심한 세포의

파괴가 나타나 세포의 밀도가 감소되면서 변형이 뚜렷하게 나타

는 경향을 띠며 심한 형태 변화가 나타났다(Fig. 5).

대체적으로 4종류의 표고 군사체 모두 에탄올 추출물이

물 추출물보다 Hep3B cell의 형태변화에 더 많은 영향을 준

것으로 사료된다.

간암 세포 증식 억제능

간암세포에 각 인삼박 군사체의 물과 60% 에탄올 추출물

은 처리하여 24시간 배양한 후 암세포 증식 억제율은 Fig.

6 9에 나타낸 바와 같다.

상황의 경우 물 추출물 2,500 ppm에서는 13.6%, 5,000 ppm

에서 16.1%의 매우 낮은 억제율을 나타냈으며 60% 에탄올 추출

물 추출물 2,500 ppm에서는 10.8%, 5,000 ppm에서 14.7%로서

간암세포 증식 억제능이 미미하였으며 농도에 따른 차이도

 거의 나타나지 않았다(Fig. 6).

Fig. 4. Morphology of Hep3B cells treated with extract from Coriolus versicolor mycelia cultured with ginseng by-product. A: Control, B: 60% ethanol extract 2,500 ppm, C: 60% ethanol extract 5,000 ppm, D: Water extract 2,500 ppm, E: Water extract 5,000 ppm.

Fig. 5. Morphology of Hep3B cells treated with extract from Lentinus edodes mycelia cultured with ginseng by-product. A: Control, B: 60% ethanol extract 2,500 ppm, C: 60% ethanol extract 5,000 ppm, D: Water extract 2,500 ppm, E: Water extract 5,000 ppm.
영지의 경우 물 추출물에서는 2,500 ppm에서 50%, 5,000 ppm에서 72.8%로 상황, 음지, 표고 물 추출물에 비해 간암 세포 증식 억제율이 가장 높게 나타났으며 농도가 높음수록 그 억제효과가 있다. 60% 에탄올 추출물 2,500 ppm에서는 21.9%, 5,000 ppm에서는 82.8%로서 상황과 음지에 비해 높은 세포증식 억제 효과를 나타내었다(Fig. 7).

환지는 물 추출물 2,500 ppm에서 9.9%, 5,000 ppm에서 8.4%, 60% 에탄올 추출물 2,500 ppm에서는 22.5%, 5,000 ppm에서는 41.7%로서 낮은 억제효과율을 보였다(Fig. 8).

표고는 물 추출물 2,500 ppm에서 19.4%, 5,000 ppm에서 18.3%로 낮은 억제효과율을 나타내었으나 60% 에탄올 추출물 2,500 ppm은 31.8%, 5,000 ppm은 99.1%로 강한 세포증식 억제 효과를 확인할 수 있으며 5,000 ppm으로 처리함에 따라 에탄올 추출물이 물 추출물에 비하여 80.8% 정도의 세포증식 억제 효과가 더 높았다(Fig. 9).

이상의 결과는 영지비섯이 암세포 억제효과가 있다는 Kim 등(21)과 Kang 등(22)의 보고와 유사하며 표고버섯의 억제효과가 암세포 억제효과가 있는 보고(23-25)와는 상이하게 음지는 낮은 억제효과율을 나타내었다. 또한 표고의 암세포 증식 억제 효과는 표고버섯의 CAS 수용성 다양성과 암세포 증식 억제 효과가 있다는 보고(26)의 보고와는 다소간 다른 추출물보다 에탄올 추출물에서 암세포 증식 억제 효과가 더 높은 결과를 보였다. 한편, 간암세포의 증식 억제 효과는 표고버섯이 간암세포인 H22에 대해 항암효과가 있으며 버섯청가량이 증가함수록 암세포 억제율이 증가하였다. Park 등(13)의 보고에서도 같이 균사체 추출물의 농도가

![Fig. 6. Growth inhibition of Hep3B cells by ethanol and water extracts from *Phellinus linteus* cultured with ginseng by-product.](image)

![Fig. 7. Growth inhibition of Hep3B cells by ethanol and water extracts from *Ganoderma lucidum* cultured with ginseng by-product.](image)

![Fig. 8. Growth inhibition of Hep3B cells by ethanol and water extracts from *Coriolus versicolor* cultured with ginseng by-product.](image)

![Fig. 9. Growth inhibition of Hep3B cells by ethanol and water extracts from *Lentinus edodes* cultured with ginseng by-product.](image)
줄기단수록 간암세포 증식 억제 효과가 커진다.

S-180 고혈압 억제효과

S-180 세포를 ICR 마우스의 우측 시각부 외부에 접종한 후 2일째에 마우스로부터 절제한 고혈압의 두께는 Table 1과 같다.

대조군에 대해 인삼박 근사체의 고혈압 억제효과는 운지가 65%로 가장 컸으며 상황 59%, 영지 61%, 표고 56%의 고혈압 억제효과를 나타내었다.

S-180 세포에 대한 표고버섯의 종호양억제 효과는 표고버섯의 자실체색 lentinan에 의한 것일 수 있다(27)가 있으나 본 실험에서는 표고가 나머지 버섯 근사체에 비해 가장 낮은 고혈압 억제효과를 나타내었다. 또한 S-180 세포에 대한 사황(28), 영지(29) 및 운지(30)의 항종양 효과가 보고된 바 있으며, 많은 당자균류의 근사체는 항암효과 및 면역성 증강 효과가 있는 것으로 보고되고 있다(31).

요 약

인삼박의 가용성 추출물을 응용시킨 후 남은 잔여물인 인삼박에 성장비교, 양세비교, 운지비교, 표고버섯 근사체를 접종·배양하여 얻어진 인삼박 근사체 추출액의 전자공명 및 간암세포(HepG2)와 고혈압(S-180)의 증식에 미치는 영향을 조사하였다. 인삼박 근사체 추출액의 500~10,000 ppm 범위에서 동도가 첫단수록 높아 나타났으며 운지가 4종류의 근사체 추출액 중 가장 높았다. 간암세포의 형태변화 및 증식 억제에 미치는 영향은 암반을 추출물이 물 추출물보다 효과적이었으며, 60% 암반 추출물을 5,000 ppm에서 성장, 양지, 운지에 비해 표고가 99.1%로 가장 높은 세포증식 억제 효과를 나타냈다. S-180 고혈압 억제효과는 대조군에 비해 운지가 65%로 가장 컸으며 영지 61%, 표고 56%, 향고 59%의 고혈압 억제효과를 나타내었다. 따라서 인삼박 을 이용하여 배양된 버섯 근사체가 간암세포의 고혈압의 증식 억제에 효과적인 것으로 판찰되므로 인삼박물질의 차원으로 그 활용성이 기대된다고 하겠다.

문헌

