Effect of Gamma Irradiation on Physiological Activity of Citrus Essential Oil

Hyun Joo Kim¹, Cheorun Jo¹, Na Young Lee¹, Jun Ho Son², Bong Jeon An², Hong Sun Yook³ and Myung Woo Byun⁴

¹Radiation Food Science & Biotechnology Team, Advanced Radiation Technology Institute, Jeonbuk 580-185, Korea
²Dept. of Cosmeceuticals Science, Daegu Hany University, Gyeongsan 712-715, Korea
³Dept. of Food and Nutrition, Chungnam National University, Daejeon 305-764, Korea

Abstract

Physiological activity of citrus essential oil (CEO) was determined to examine possible use of the food processing by-product as a functional material for food and cosmetic composition. The effect of gamma irradiation on the change of physiological activity also investigated at 0, 10 and 20 kGy. Limonene contents of CEO was 88.3±1.30%. Electron donating ability of CEO was 69%. Lipid oxidation was retarded by CEO. CEO showed antimicrobial activity against 1 yeast, 4 molds and 4 bacteria species tested. More than 80% of inhibition of cancer cell growth was presented by CEO using A549, HT29, HepG2, B16F10 and G361 cells at a 500 ppm level. Irradiation of CEO did not affect any physiological functions. A Salmonella mutagenicity assay indicated that the 20 kGy irradiated CEO did not show any mutagenicity. Therefore, CEO, which is a major by-product in citrus processing, could be used as a functional material in various application.

Key words: citrus essential oil, physiological activity, gamma irradiation

서 콘

식품을 가공하는 데 있어 얻어지는 다양한 부산물은 경제적 인 만과 생물학적 산소요구량 때문에 부산물 처리여부가 문제시 되고 있으며, 특히 식품에서 얻어지는 부산물 중에는 다양한 제품화합물을 함유하고 있어 환경에도 부정적기지 않은 영향을 주고있다. 제품화합물은 항암효과 뿐만 아니라 항알레르기, 항바이러스, 항염 등 다양한 생리활성을 가지고 있는 것으로 알려지면서 이에 대한 연구가 증가되고 있는 추세이다(1-2).

감귤류는 기능성이나 약효 성분이 많이 함유되어 있는 과일로서 우리나라라는 기상적, 지리적으로 감귤 재배지 중 최북단에 위치하고 있어 내한성이 강한 국내면역의 온수일감이 감귤 생산의 주종을 이루고 있다. 감귤류에 함유된 성분으로는 시냅핀, 브로니돈, 림도노이드, 카로테인과 등의 다양한 화합물들이 알려져 있으며, 감귤류의 품종은 극히 많아 화학적으로 검토되지 않은 성분들이 많다. 또한 검토가 이루어진 것들 중에서도 기능성분의 확실한 평가가 매우 빠르고 있다(3).

감귤 정유는 감귤 점착 flavedoc은의 유산(oil glands)에서 함유되어 있는 방향성분으로, 동일 감귤 종(species)에서 도, 기후, 종료, 과실의 주도, 저장기간 등에 따라 성분의 변화가 있다고 하였으며(4), 살균(5), 살충(6,7)과 같은 다양한 생물활성을 가지고 있어 세균제, 식품항균, 의약품 등에 첨가제로 이용되고 있다. 정유의 주 성분은 d-limonene는 Aspergillus parasiticus의 생성과 aflatoxin 생성을 억제한다. 보고(7)와 흰귤 오일이 식물 병원균인 Collototrichum falcatum, Fusarium moniliforme, Ceratocystis paradoxa 등에 항균성을 나타낸다는 보고가 있다(8). 또한 최근 Jo 등(9)은 무중류와 비등류의 생장억제에 감귤 정유가 효과적으로 식품 및 풍중보전제의 소재로 적합하다고 발표하였다.

감귤과 조사기술은 식품의 저장 중 영양 및 관능적인 품질과
의 저항이 림원섬 및 부패성 미생물을 없애는 가장 유효적
인 방법으로 알려져 있고(10), 전세계적으로 그 사용이 증가
하고 있다. 최근에는 세كيف사를제거할 수 있는 phylic acid와 감
마선 조사물 함유의 phylic acid 수준은 저하화되고, 동시에
허전화 작용을 증가시킨다는 연구가 보고된 바 있다(11).
Jo 등(12)은 독자추출물을 감마선 조사물 함유의 갯이
개선하고 기능성을 유지 또는 상승시켰으며, Jeon 등(13)은
오미자 추출물이 감마선을 조사함으로써 항산화 및 항균 작
용을 증가시었다고 보고하였다.
따라서 본 연구에서는 체중을 1등한 기능성 신소재 개
발 연구를 위해 감마 음료 가공 중 생성되는 부산물인 감마
파우를 추출, 정제하여 얻은 감마 폭의 생리적 특성과 효과
을 알아보았으며, 더불어 감마선 조사에 의한 감마 폭의
생리적 특성에 변화가 일어나는지도 살펴보았다.

제료 및 방법

감마 폭 유충 추출
감마 폭 유충 추출하기 위한 감마 균과는 제주도지방개발
공사(Jeju Provincial Development Co., Jeju, Korea)에서 감
마 가공 중 얻어진 감마 파우 부산물을 이용하였다. 격과
6차 필터 제거과정을 통해 압착하여 감마 추출물을 얻었다.
이를 4년간에 걸쳐 상온 및 낮간을 한 후 분리징류를 하여
감마 폭을 얻었으며 이를 실험에 사용하였다.

감마선 조사
감마선 조사는 한국원자력연구소(Daejeon, Korea) 내 선
원 10만Ci, Co-60 감마선 조사시설(point source AECI,
IR-79, MDS Nordion International Co., Ltd., Ottawa, ON,
Canada)를 이용하여 실온(14±1°C)에서 분당 83.3 Gy의 선
량을 약속 0, 10, 20 kGy의 중 흡수선량을 연도로 하였고,
흡수선량 확인은 alanine dosimeter (5mm, Bruker In-
struments, Rheinstanden, Germany)를 사용하였다. Dosim-
etry 시스템은 국제원자력기구(IAEA)의 규격에 준하여
표준화한 후 사용하였으며, 중 흡수산량의 오차는 ±2% 이내
였다. 조사된 균 질수는 screw-bottle에 담여서 실온에 보
관하여 실험에 사용하였다.

감마 폭의 limonene 함량 분석
감마 폭 및 감마선 조사된 폭의 limonene 함량을 기계
크로마토그래프(Agilent GC 6890, Palo Alto, CA, USA)를
이용하여 분석하였다. Limonene 분석은 UNINOX 캡리리
(30.0m×0.25μm×0.25μm)를 사용하였고, 캡리리 온도는 60°C에서 5분간 유지하고 이어
서 210°C까지 분당 10°C 승온한 후 10분간 유지하였다. 중
속기에는 Flame Ionization Detector(FID)를 사용하였고, 주입구
의 온도는 250°C였으며 격류기의 온도는 208°C로 유지하였
다. 분반기는 절소가스(0.9 μl/min)를 사용하였고 시료의
주입량은 1 μl였으며 split mode(split ratio=20:1)로 분석
하였다.

감마 폭의 항산화 효과 측정
감마 폭의 항산화 활성은 전자공여능(electron donating
ability)과 지질산제도(2-thiobarbituric acid reactive sub-
stance value, TBARS)를 이용하여 측정하였다.

감마 폭의 전자공여능은 Blois(14)의 방법을 이용하여
측정하였다. 감마 폭 1 ml에 0.2 mM 1,1-diphenyl-2-picryl-hydrazyl (DPPH) 2 ml을 넣고 교반한 후 30분 동안
실온에 점착한 다음 반응용액을 분광광도계(UV 1600 PC,
Shimadzu, Tokyo, Japan)를 이용하여 517 nm에서 흡광도
을 측정하였다. 전자공여능은 다음과 같은 계산식에 의해
환산되었다.

전자공여능(%)=[1-(시료절각소의 흡광도-무시료각소의 흡광도)]×100

지질산제도(TBARS)의 측정은 분해물의 5 g을 15 ml 중
류수와 감마 폭 유충 1 ml과 함께 굽기(DIAX 900, Heidolph
Co., Ltd., Germany)를 사용하여 굽기하였다. 굽기된 시
료를 37°C 탕온수호에서 저장하면서 0, 60, 120 및 180분 후
에 시료 1 ml을 취하여 2-thiobarbituric acid(TBA)/tri-
chloroacetic acid(TCA) 용액(20 mM TBA in 15% TCA)
2 ml과 50 μl BHA를 혼합한 후 90°C수조에서 15분간 가열
한 후 약물에서 10분간 냉각하였다. 반응용액은 원심분리
기(VS-5500, Vision scientific Co., Ltd., Seoul, Korea)를 이
용하여 600×g에서 20분 동안 원심분리한 후 그 상등액을
분광광도계(UV 1600 PC, Shimadzu, Tokyo, Japan)를 이용
하여 532 nm에서 측정하였다. 측정치는 감마 폭 대신 중
류수를 사용하였다. 측정된 흡광도를 기준으로 표준근선에
따라 TBARS값을 mg malondialdehyde/kg sample로 계산
하였다.

감마 폭의 항균 효과 측정
감마 폭의 항균효과는 paper disc를 이용한 agar dif-
fusion법 및 최소저해농도(Minimum Inhibition Concentra-
tion; MIC)를 이용하여 측정하였다.

감마 폭의 생육 저해측정 측정을 위해 밀균판 각각의 생육
배치를 petri dish에 15 μl씩 묻어 생고스킨 후 군 배양
액 0.1 ml을 접종한 후 고르게 위치하도록 하였다. 그 다음 밀균
판 paper disc를 경피배지 표면에 밀착시킨 후 군 평균 50
μl을 청취하여 각 군주의 배양관에서 배양하여 paper disc
주변에 생성된 저해반(hm)의 직경을 나타낸으며 실험은 2
회 반복하여 평균값으로 나타낸다.

감마 폭의 최소저해농도 측정을 위해 밀균판 배치에 일
정농도의 군 폭을 접종한 후 환경장치 미생물 배양액을
각각의 배치에 1%(v/v)씩 접종하였고, 72시간 동안 배양하
여 표준균활성시험법을 이용하여 측정하였다. 효도, 금량 및
세균의 생균수를 계산하는 데 사용하는 균주의 최적 배치 및 최적온도는 72시간 배양한 후 결과를 계산하였으며, 그 결과는 시료 1 mL 당 colony forming unit(CFU)으로 계산하였다. 이 때 군
정량을 특이기 위해 사용한 10% dimethyl sulfoxide(DMSO)
채의 항균성 배치하기 위하여 처리된 대교과 동일하게
10% DMSO만을 첨가한 대조군을 설정하였다.

김철 정유의 양세포 증식 억제 효과 측정
김철 정유의 양세포주에 대한 증식 억제 효과는 Char-
michael 등(15)의 방법에 따라 3-[4,5-dimethylthiazol-2-yl]-
2,5-diphenyltetrazolium bromide(MTT) assay를 실시하였
다. 본 실험에 이용한 세포 A549(tang cancer), HT-29(colon
cancer), HepG2(liver cancer), C331(melanoma), B16F10
(melanoma) 등은 Korean Cell Line Bank(KCLB)로부터 구입하였다. 각 세포의 배양은 10% fetal bovine serum(FBS)
과 100 unit/ml의 penicillinn/streptomycin을 1% 첨가한 RPMI
1640(Gibco BRL Co., Grand Island, NY, USA) 배지를 사용
하였으며, 37°C, 5% CO₂ incubator에서 배양하였다.
배양된 양세포주 96 well plate에 1×10⁴ cells/well이 되게 분주하고 시료를 20 µL 첨가한 후 37°C, 5% CO₂ in-
cubator에서 48시간 배양하였고, 대조군은 시료와 동량의
DMSO를 첨가하여 동일한 조건으로 배양하였다. 여기에 5
mg/mL 농도로 제조한 MTT 용액 20 µL를 첨가하여 4시간
배양한 후 배양액을 제거하고 각 well 당 DMSO: ethanol(1:
1) 150 µL을 가하여 30분간 고온한 후 ELISA reader로 550
nm에서 흡광도를 측정하여 양세포주의 성장억제효과를 측정
하였다. 양세포 증식 억제율은 다음 계산식에 의해 환산되었다.
양세포 증식 억제율(%)=[1-(시험체개구의 흡광도/무작가
구의 흡광도)]×100

김아산 조사 감귤 정유의 동연변이원성 실험
시험방법은 Maron and Ames(16)의 방법에 준하여 실시하
였다. 시험에 사용된 균주는 Salmonella Typhimurium LT2
을 친증으로 하는 S. Typhimurium TA98와 TA100으로 한국
화학연구소 안전성센터에 분양받아 혜질을 확인 후 사용
하였다. 대사물을 위한 간균체(S9 fraction)은 Sprague-
Dawley rat의 간으로부터 분리한 것으로 Oriental Yeast
Co.(Tokyo, Japan)에서 구입하였으며, 5%(v/v)의 S9 mix-
ture를 첨가하여 사용하였다. S9 mixture는 0.5 mL/plate로
처리했으며, 그의 활성은 2-aminoanthracene(2-AA)의 동
연변이 유발을 확인하였다. 응성대조조절은 시험물질의
조제에 사용한 DMSO를 사용하였으며, 양성대조조절은
4-nitroquinoline-1-oxide(4-NQO), sodium azide(SA) 및
2-AA를 Sigma사(Louis MO, USA)로부터 구입하여 이용하였다.
시험물질의 처리는 대사항성계 적용(+S) 및 미적용(-S)
하여 direct plate incorporation 방법으로 하였으며, 각 농도
군당 2개 plate를 사용하였다. 시험물질 0.1 mL와 S9 mix-
ture(또는 S9분획유수) 0.5 mL에 nutrient broth에서 12시간
배양시켜 대수기(약 2×10⁸ cells/mL) 상태에 이르도록 한 군
의 배양액 0.1 mL을 top agar에 혼합하여 minimal glucose
agar plate에 부어 고화시킨 다음, 37°C에서 48시간 배양한
후 복부동연변이가 판찰될 수 있었던 대조군의 배양
중에 대조군의 2배 이상이면서 음성외존성을 갖는 경우
를 양성으로 하였다.

통계 분석
모든 실험은 3회 반복 실시하였으며, 얻어진 결과들은 SPSS
software(17)에서 프로그레임된 general linear model proce-
dure, least square 평균값을 Duncan’s multiple range test
법을 사용하여 평가하였다.(p<0.05).

결과 및 고찰
감귤 정유의 limonene 함량
감귤 정유의 수분 풍의 limonene의 함량비율을 분석한 결
과 88.3±1.30%로 나타났다. 0, 10 및 20 Kgy는 감귤 조사
한 limonene의 함량은 유의적으로 차이가 없는 것으로 확인
하였다.(p>0.05). Dugo 등(18)은 파일에 함유된 limonene
의 함량이 레몬, 오렌지 및 포도에서 각각 50%, 93% 및 97%
항공하였다고 보고하였다. Kim 등(19)은 운수밀감 정유를
분석한 결과 limonene 함량이 68.69%로 나타났고, 외국에서
생산된 감귤의 limonene 함량은 큰 차이가 없다고 보고하
다. Moussaid 등(20)은 2 Kgy로 감귤 조사하였을 때
오렌지의 limonene 함량이 증가하였으나 유의적인 차이는
없다고 보고하였으며 본 실험 결과와 유사하였다.

감귤 정유의 항산화 효과
감귤 조사한 감귤 정유의 전자공여동 측정 결과는 Fig.
1에 제시하였다. 자우라디칼을 소거하는 능력은 지방산화
억제력과 같은 상관관계가 있으며 본 실험에서 사용한 1,1-
diphenyl-2-picryl-hydrazyl(DPPH) 라디칼 소거 능력은
전연료 특이 식물체에 존재하는 성분의 라디칼 소거능을
확정하는 데 광범위하게 사용되고 있다. 결과 요인에 대한
전자공여능은 약 66%로 나타났다. 그러나 감귤 조사에
의한 변화는 유의적인 차이가 없었다.
Kang 등(21)은 추출방법을 달리한 결과 추출액의 전자공
여능이 33%로 나타났으며 감귤 조사에 의한 차이는 없는
것으로 보고하였다. Jeong 등(22)의 보고에서는 감귤 과피에
유용결합되어 존재하는 췌물 함량이 원자력이 절단하
여 유리하여 췌물 함량이 증가하면서 DPPH 라디칼 소거능
의 증가에 영향을 준다고 하였다.
감귤 정유가 저질산페에 미치는 영향을 알아보기 위해 본
세균을 이용하여 저장시간에 따른 지질산태도를 측정하여 Fig. 2에 나타내었다. 대조군과 같은 조건에서 동일 경지선단은 감귤 정유 청가(5%) 시 대조군보다 높게 나타나 지질산태가 역체되었음을 확인하였다. 그러나 감귤 선조가 이에 따른 변화는 유의적인 차이가 없는 것으로 확인되었다. Jo 등(23)은 감귤 외부 경과 추출물 분말(0.1%) 이 적고, 대처고기, 닭고기, 연어 팁리 등의 육제품의 지방 산화를 억제하였다고 보고하였다. 또한 Kulicic 등(24)의 연구에서도 oregano 정유(500 ppm)가 낙농의 지방산화를 억제하였다고 보고하였다. 본 연구 결과에서 보듯이 감귤 정유를 식용에 첨가 시 지방산화 억제 효력이 있는 것으로 판단된다.

감귤 정유의 항균 효과

감귤 정유의 항균효과 측정을 위해 세균 5종, 효모 1종 및 곰팡이 4종에 대한 disc법을 이용한 생육 억제학 측정 결과를 Table 1에 나타내었다. 이 중 효모인 Pichia sub-

Table 1. Antimicrobial activity of citrus essential oil measured by paper disc diffusion method

<table>
<thead>
<tr>
<th>Microorganisms</th>
<th>0 kGy</th>
<th>10 kGy</th>
<th>20 kGy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bacteria</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Salmonella Typhimurium</td>
<td>16.5</td>
<td>14.5</td>
<td>17.5</td>
</tr>
<tr>
<td>Escherichia coli</td>
<td>13.5</td>
<td>14.5</td>
<td>11.5</td>
</tr>
<tr>
<td>Listeria ivanovii</td>
<td>14</td>
<td>13</td>
<td>12.5</td>
</tr>
<tr>
<td>Staphylococcus aureus</td>
<td>10</td>
<td>11.5</td>
<td>12.5</td>
</tr>
<tr>
<td>Pseudomonas aeruginosa</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Yeast</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pichia subpelliculosa</td>
<td>44</td>
<td>43.4</td>
<td>43.1</td>
</tr>
<tr>
<td>Mold</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aspergillus flavus</td>
<td>20.9</td>
<td>19.6</td>
<td>20.9</td>
</tr>
<tr>
<td>Aspergillus usami</td>
<td>20.3</td>
<td>20.3</td>
<td>20.3</td>
</tr>
<tr>
<td>Penicillium verruculosum</td>
<td>14.4</td>
<td>18.3</td>
<td>14.4</td>
</tr>
<tr>
<td>Muco hiemalis</td>
<td>29.4</td>
<td>14.4</td>
<td>26.2</td>
</tr>
</tbody>
</table>

1) Clear zone diameter (disc diameter: 8.0 mm).
2) No inhibition effect.

*pelliculosa*에 대한 생육저해력이 43~44 mm로 나타났으나, 곰팡이에 대한 생육저해력은 14~30 mm로 나타났다. 세균에 대한 생육저해력은 *Pseudomonas aeruginosa*를 제외하고 10~18 mm 정도로 감귤 정유는 대부분의 미생물의 생육을 억제시키는 것으로 확인되었다.

감귤 정유의 최소저해농도 측정을 위해 생육 저해학 측정 결과를 도대로 항균활성을 보인 세균 4종, 효모 1종 및 곰팡이 4종에 대한 생육저해학 결과를 Table 2-4에 나타냈다. Paper disc법에서 감귤 정유에 민감한 것으로 나타난 효모 *Pichia subpelliculosa*에 대한 시험에서 농도법

Table 2. Inhibition of yeast growth by citrus essential oil with different concentrations

<table>
<thead>
<tr>
<th>Sample</th>
<th>Concentration (ppm)</th>
<th>Microorganisms (log CFU/mL)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Pichia subpelliculosa</td>
</tr>
<tr>
<td>Initial</td>
<td></td>
<td>4.50</td>
</tr>
<tr>
<td>Control</td>
<td></td>
<td>7.12h</td>
</tr>
<tr>
<td>0 kGy</td>
<td>10</td>
<td>6.50h</td>
</tr>
<tr>
<td></td>
<td>100</td>
<td>4.65b</td>
</tr>
<tr>
<td></td>
<td>250</td>
<td>ND<sup>11</sup></td>
</tr>
<tr>
<td></td>
<td>500</td>
<td>ND<sup>2</sup></td>
</tr>
<tr>
<td></td>
<td>SEM<sup>3</sup></td>
<td>0.02</td>
</tr>
<tr>
<td>10 kGy</td>
<td>10</td>
<td>5.94h</td>
</tr>
<tr>
<td></td>
<td>100</td>
<td>ND<sup>2</sup></td>
</tr>
<tr>
<td></td>
<td>250</td>
<td>ND<sup>2</sup></td>
</tr>
<tr>
<td></td>
<td>500</td>
<td>ND<sup>2</sup></td>
</tr>
<tr>
<td></td>
<td>SEM<sup>3</sup></td>
<td>0.07</td>
</tr>
<tr>
<td>20 kGy</td>
<td>10</td>
<td>6.03h</td>
</tr>
<tr>
<td></td>
<td>100</td>
<td>2.40b</td>
</tr>
<tr>
<td></td>
<td>250</td>
<td>ND<sup>2</sup></td>
</tr>
<tr>
<td></td>
<td>500</td>
<td>ND<sup>2</sup></td>
</tr>
<tr>
<td></td>
<td>SEM<sup>3</sup></td>
<td>0.06</td>
</tr>
</tbody>
</table>

1) Viable not detected at detection limit <10⁵ CFU/mL.
2) Standard errors of the mean (n=8).
3) Means with the same letter in each sample are not significantly different (p<0.05).

Fig. 2-2-thiobarbituric acid reactive substance value (TBARS) of meat homogenate containing citrus essential oil (5%) during storage at 37°C.
Table 3. Inhibition of bacterial growth by citrus essential oil with different concentrations

<table>
<thead>
<tr>
<th>Sample</th>
<th>Concentration (ppm)</th>
<th>Microorganisms (log CFU/mL)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>S. Typhimurium</td>
</tr>
<tr>
<td>Initial</td>
<td>1,000</td>
<td>6.38</td>
</tr>
<tr>
<td>Control</td>
<td>1,000</td>
<td>8.30</td>
</tr>
<tr>
<td></td>
<td>1,000</td>
<td>8.26^</td>
</tr>
<tr>
<td></td>
<td>2,500</td>
<td>ND^</td>
</tr>
<tr>
<td></td>
<td>5,000</td>
<td>ND^</td>
</tr>
<tr>
<td></td>
<td>10,000</td>
<td>ND^</td>
</tr>
<tr>
<td></td>
<td>SEM^</td>
<td>0.02</td>
</tr>
<tr>
<td>0 kGy</td>
<td>1,000</td>
<td>8.48^</td>
</tr>
<tr>
<td></td>
<td>2,500</td>
<td>ND^</td>
</tr>
<tr>
<td></td>
<td>5,000</td>
<td>ND^</td>
</tr>
<tr>
<td></td>
<td>10,000</td>
<td>ND^</td>
</tr>
<tr>
<td></td>
<td>SEM^</td>
<td>0.01</td>
</tr>
<tr>
<td>10 kGy</td>
<td>1,000</td>
<td>8.29^</td>
</tr>
<tr>
<td></td>
<td>2,500</td>
<td>ND^</td>
</tr>
<tr>
<td></td>
<td>5,000</td>
<td>ND^</td>
</tr>
<tr>
<td></td>
<td>10,000</td>
<td>ND^</td>
</tr>
<tr>
<td></td>
<td>SEM^</td>
<td>0.04</td>
</tr>
</tbody>
</table>

1^Viable not detected at detection limit <10^3 CFU/mL.
2^Standard errors of the mean (n=8).
3^Means with the same letter in each sample are not significantly different (p<0.05).

Table 4. Inhibition of fungal growth by citrus essential oil with different concentrations

<table>
<thead>
<tr>
<th>Irradiation</th>
<th>Aspergillus flavus</th>
<th>Aspergillus usami</th>
<th>Mucor hiemalis</th>
<th>Penicillium verruculosum</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 kGy</td>
<td>10,000 (1)</td>
<td>5,000</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>10</td>
<td>1,000</td>
<td>1,000</td>
<td>5,000</td>
<td>5,000</td>
</tr>
<tr>
<td>20</td>
<td>5,000</td>
<td>1,000</td>
<td>10,000</td>
<td></td>
</tr>
</tbody>
</table>

1^Concentration (ppm) of CEO for inhibition of fungal growth.
2^No inhibition effect.
MTT assay에서 감귤 졸유의 양세포 증식억제 효과

MTT 검사법은 96-well plate를 사용하여 검사결과를 ELISA reader(Multiwell microplate reader)를 이용하여 많은 시료를 간단하게 관찰할 수 있어 세포독성 및 세포증식 검색법으로서 sulforhodaminb(SRB) 검색법과 더불어 널리 사용되고 있는 방법 중 하나이다(29).

감귤 졸유의 양세포에 대한 세포증식 억제율은 Fig. 3에 나타났다. 감귤 졸유 500 ppm 치가 A549(lung), HT-29 (colon), HepG2(liver), B16F10(melanoma) 및 G361(melanoma) 세포에 대한 증식 억제율은 각각 90, 95, 92 및 91%로 높은 세포 증식 억제율을 보였다. 감마선 조사에 의한 차이를 없는 것으로 확인되었다.

Kim 등(30)은 솔잎 추출물이 패암 세포인 A549에 대하여 85.99%, 78.59%의 증식억제 효과를 보였다고 보고하였으며, Lee 등(31)은 골항 추출물 및 졸유의 항암 효과는 ED50 1.24 ± 0.68 μg/mL의 범위에서 증식억제 효과가 있다고 보고하였다.

감마선 조사 감귤 졸유의 독립변이성 유무 검증

에비시험결과에 따라 모든 시료는 200 μg/plate를 최고농도로 설정하여 복귀독연변이 시험을 수행하였다. 감마선 조사한 군 경우에는 A549와 HT-29의 독연변이가 발생하였고, TA98와 TA100에 대한 복귀독연변이가 발생하였다. Table 5가 같다. 우선 대사활성 부재시의 경우, 감마선 조사한 군에서는 모든 시험군에서 시험 적용 농도인 50~200 μg/plate의 범위에서 복귀독연변이가 발생하였다고 본과 비교하였을 때 유의적인 차이가 없는 것으로 나타났다. 또한 대사활성계(S-9 mixture)를 도입하였을 때 시험틀에 대해 Salmonella Typhimurium을 이용한 복귀독연변이 시험 결과에서도 지식한 모든 군에서는 적용 농도에서 복귀독연변이가 감지할 수 없었다. 일반적으로 독연변이성의 판정은 응성대조군 복귀독연변이의 2배 경 우를 양상으로 하며 끝으로 굵음체를 위한 시험절차 농도에서 복귀독연변이를 유발하지 않는 것으로 보아 감마선 조사에 의한 독립변이성은 없는 것으로 나타났다.

정유 중에서 세포 성장억제효과 및 항균효과를 나타낸다는 보고(32)가 있었으나 limonene 자체가 대부분의 미생물에 대하여 독성을 지닌다고 한다(27). 또한 Park(32)은 많은 정유가 acetaminophen으로 유도된 지질파산화를 저해한다는 보고를 하였지만 생리활성 성질의 개발을 위해서는 물질과 관련하여 독립변이성에 대한 연구가 필요하다고 보고하였 다. 따라서 200 μg 이하 감귤 졸유는 독성을 일으킬지 않으며 유용하게 쓸 수 있는 식품 및 화장품 소재라 사료된다.

<table>
<thead>
<tr>
<th>Table 5. Revertant colonies in the Salmonella Typhimurium reversion assay of the citrus essential oil</th>
</tr>
</thead>
<tbody>
<tr>
<td>Irradiation dose (kGy)</td>
</tr>
<tr>
<td>0</td>
</tr>
<tr>
<td>10</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>20</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Negative control</td>
</tr>
<tr>
<td>Positive control</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

Abbreviations: 4-NQO, 4-nitroquinoline-1-oxide; SA, sodium azide; 2-AA, 2-aminoanthracene.
¹Values are the mean±SD (p<0.05).
이상의 결과를 종합한다면 감귤 정유는 항산화, 항균, 항세포 생성 억제 등의 기능을 가진 한편 소재로 활용이 가능할 것으로 판단된다.

요 약

체저 manhã 이용한 항균성 신소재 개발 연구를 위해 감귤 익류 가공 중 생성되는 부산물인 감귤 가드를 추출·정제하여 얻어진 감귤 정유의 생리활성 효과를 검증하고 감마산에 의한 영향도 확인하였다. 감귤 정유의 limonene의 함량은 88.3±1.30%로 나타났으며 감마산 조사된 개요에서도 limonene의 함량의 차이가 없는 것으로 나타났다. 감귤 정유의 전자공급은 약 70%로 나타났으며 품목에 감귤 정유 성과 관련성을 지정헌가해 억제되는 것을 확인할 수 있었다. 감귤 정유에 대한 항균 활성은 paper disc diffusion test 결과를 바탕으로 농도에 따른 생육저해효과를 측정한 결과 yeast의 250 ppm에서, bacteria는 2,500~5,000 ppm에서, mold는 5,000~10,000 ppm에서 생육이 억제되면서 yeast에 대한 항균성이 가장 우수한 것으로 나타났다. MT assay를 이용한 세포독 성질결과 대부분의 안세포에서 약 90% 이상의 억제율을 보였으며 Ames test를 이용한 폐기물연예의 실험에서는 200 µg/plate이하일 때 감귤 정유의 잔여건물이 생기는 것으로 확인되었다. 전체적인 시험 결과 감마산 조사에 의한 생리활성 변화의 차이는 없는 것으로 나타났다. 따라서 식품 및 기공질보건제 소재로서 가공부작용인 감귤 정유는 경제적이면서 효과적으로 사용될 수 있으리라 기대된다.

감마산의 과

본 연구는 과학기술원자력증강기연구개발사업으로 수행되었으며 이에 감사드립니다.

문 현

(2005년 4월 11일 접수; 2005년 6월 15일 채택)