Sumizyme™을 이용한 쌀 증체주의 누룩취 저감화

곽한섭1,2, 김미숙1,2, 이영승1,2, 엄태길1,2, 서유진1, 심형석3, 하상형3, 윤옥현4, 정윤화1,2
1단국대학교 식품영양학과, 2단국대학교 글로벌식품산업연구소, 3배해정보, 4김천대학교 식품영양학과

Reduction of Nuruk Flavor in Korean Rice-Distilled Liquor Using Sumizyme™

Han Sub Kwak1,2, Misook Kim1,2, Youngseung Lee1,2, Taekil Eom1,2, Yoojin Seo1, Hyoungsuk Shin3, Sang-Hyou Ha3, Ok Hyun Yoon4, and Yoonhwa Jeong1,2
1Department of Food Science and Nutrition and 2Institute of Global Food Industry, Dankook University
3BHD Brewery Co., Ltd.
4Department of Food and Nutrition, Gimcheon University

ABSTRACT The objective of this study was to reduce Nuruk flavor in Korean rice-distilled liquor using different ratios of Sumizyme™ and Nuruk. After 9 days of fermentation at 28°C, alcohol contents and pH were 16.0~17.1% and 3.82~4.16, respectively. An increased ratio of Sumizyme™ decreased alcohol content while increased pH of the mash. In alcohol contents, there were no significant differences up to 30% substitution of Nuruk to Sumizyme™. A descriptive analysis was conducted with trained panelists for determining the intensity of Nuruk flavor. The intensities of Nuruk flavor in mashes and distilled liquors brewed by traditional Nuruk, cultured Nuruk, and a mixture of 30% Sumizyme™ and 70% cultured Nuruk were evaluated. The mash and distilled liquor prepared using a mixture of 30% Sumizyme™ and 70% cultured Nuruk showed significantly lower intensities of Nuruk flavor when compared with those of mashes and distilled liquors produced by the traditional and cultured Nuruk.

Key words: Nuruk, distillation, distilled liquor, yeast flavor, alcoholic beverage
연구로 Lee와 Ahn(13)은 누룩원료를 달리한 타종주에서 원료에 따른 누룩취의 차이와 시판 주주에서 누룩취의 차이를 보고하였다(14). 그러나 중류주에 있어서 누룩취에 대한 연구는 아직 보고되지 않았다.

누룩취를 저감하는 방법으로는 누룩취를 적게 발생하는 효소를 전통 누룩에서 분리 동정하여 사용하는 방법과 누룩의 사용량을 상업용 정제효소로 일정 부분 대체하는 방법이 있다. 본 연구에서는 탄 중류주의 누룩취 저감화하기 위하여 전통 누룩 배양 효소 대신 Rhizopus species의 배양물에서 얻어진 정제 효소를 일정 부분 이용하여 중류주를 제조한 뒤 전통누룩, 개량누룩 중류주와 누룩취의 격도를 비교 평가하였다.

재료 및 방법
재료
쌀은 화성시에서 재배되어 2012년에 수확된 추청 쌀을 동신양곡(Ansan-si, Korea)에서 직접 구입하였다. 누룩은 배혜정도가(Hwaseong-si, Korea)에서 제공된 Rhizopus japonicas를 접종한 개량누룩(RHN)과 Aspergillus oryzae를 접종하여 제조한 개량누룩(ASN)을 사용하였다. RHN과 ASN의 최적의 pH는 4.0~6.0이고, 최적의 온도는 50~60°C이다. 정제효소는 glucoamylase인 Sumizyme™(Shin Nihon Chemical Co., Ltd., Aichi, Japan)을 구입하여 사용하였다. Sumizyme™은 Rhizopus sp.의 배양물에서 얻어졌으며, 주로 탁주 및 약주의 제조에 사용되고 최적의 pH는 4.0~8.0, 온도는 50~60°C이다. 효모는 La Parisienne®(S.I. Lesaffre, Normandie, France)를 사용하였다.

당화력 측정
당화력 측정은 국세청 주류분석 규정에 따라 측정하였다(15). 쌀 분말(1.0 g)과 증류주(8.0 mL)를 혼합한 후 효소액(1.0 mL)을 첨가하여 23°C의 배양기에서 10분간 반응시켰다. 효소액은 효소(1.0 g)에 증류수(9 mL)를 가한 후 23°C의 항온 수조에서 40 rpm으로 2시간 교반 후 여과하여 제조하였다. 원심분리(5분, 3,600 rpm, 4°C) 후 상등액 100 µL를 DNS 시약(3,5-dinitrosalicylic acid 7.06 g/L, sodium hydroxide 13.2 g/L, rochell salt 204 g/L, sodium metabisulfite 5.53 g/L, phenol 5.06 mL/L) 300 µL에 가한 후 100°C의 수조에서 3분간 반응시킨 후 냉각하였다. 황Animations은 원심분리기(VS-15000CFN II, Vision Scientific Co., Ltd., Daejeon, Korea)로 13,000 rpm에서 3분간 원심분리 한 후 상등액 300 µL를 96-well plate에 분주 후 황광광도계(Infinite 200 pro, Tecan, Mannedorf, Switzerland)로 550 nm에서 측정하였다. 측정 결과는 포도당을 이용한 표준 곡선(R2=0.989)에 대입하여 계산하였다. 1분 동안 가용성 전분을 분해하여 1 µmole의 포도당을 생성하는 능력을 1 unit으로 하였다.

발효 술덧 제조 및 증류
쌀 증류주 생산을 위한 1차 담금의 발효 술덧의 배합비율은 Table 1과 같으며, 상업적 생산에 사용되는 쌀 증류주 배합비를 이용하였다. 최종 당화력이 동등하도록 RHN의 사용량을 줄이면서 정제효소의 양을 늘려 술덧을 제조하였다. 발효(1,600 g)은 수돗물을 이용하여 5회 세척한 다음 2시간 동안 침지 후 침지수를 제거하였다. 20~25°C의 물에 교반한 후 표준체(125×125 µm)에 걸려 액상 부분을 사용하였다. 이때 사용된 물은 발효 시 사용할 물에서 덜어 사용하였다. 발효 배치에 고두밥, 효소액, 효모를 넣은 후 물을 부어서 1차 담금을 완료하였다. 초기 발효 온도는 23±2°C로 설정하였다. 초기 발효 중류주의 주류분석은 23±2°C의 환경에서 10주간 발효시킨 후 분석하였다.

Table 1. Formula for Korean rice-distilled liquors, and saccharogenic power of Nuruk made by Rhizopus japonica (RHN) and Aspergillus oryzae (ASN), and Sumizyme™

<table>
<thead>
<tr>
<th>Sample</th>
<th>Ingredient</th>
<th>Saccharogenic power</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Rice (g)</td>
<td>Water (mL)</td>
</tr>
<tr>
<td>Control</td>
<td>1,600</td>
<td>3,200</td>
</tr>
<tr>
<td>S10</td>
<td>1,600</td>
<td>3,200</td>
</tr>
<tr>
<td>S20</td>
<td>1,600</td>
<td>3,200</td>
</tr>
<tr>
<td>S30</td>
<td>1,600</td>
<td>3,200</td>
</tr>
<tr>
<td>S40</td>
<td>1,600</td>
<td>3,200</td>
</tr>
<tr>
<td>S50</td>
<td>1,600</td>
<td>3,200</td>
</tr>
<tr>
<td>S60</td>
<td>1,600</td>
<td>3,200</td>
</tr>
<tr>
<td>S70</td>
<td>1,600</td>
<td>3,200</td>
</tr>
<tr>
<td>S80</td>
<td>1,600</td>
<td>3,200</td>
</tr>
<tr>
<td>S90</td>
<td>1,600</td>
<td>3,200</td>
</tr>
<tr>
<td>S100</td>
<td>1,600</td>
<td>3,200</td>
</tr>
</tbody>
</table>

1) S10, S20, S30, S40, S50, S60, S70, S80, S90, and S100 mean the percentages of substitution of Nuruk (RHN) by Sumizyme™.
 strang. 3.2로 맞추었다(16). 2차 담금은 48시간 후 발효 3,200 g로 고두밥을 만들고 물(4,800 mL)로 1차 담금 배치에 넣어 최종적으로 술물 제조를 완료하였다. 1일 2회 교반작업을 진행하여 술물 배치 안에서 구형한 발효가 일어나도록 하였다.

증류는 발효 술물 125×125 µm 표준체를 사용하여 제조한 후 그 원액을 증류에 사용하였다. 수제 체적 20 L 용량의 상압 단식 증류기(Copper Traditional Alembic Still, Cooper Master, Oliveira de Azemeis, Portugal)를 이용하여 1, 2차 증류를 진행하였다. 1차 증류는 중요한 나온 술을 100 mL씩 분획하였으며, 분획물의 알코올 농도가 3%(v/v) 이하가 되면 증류를 중지하고 알코올 농도가 3%(v/v) 이상인 부분을 2차 증류에 사용하였다. 2차 증류 시에도 증류하여 나온 술을 100 mL씩 분획하여 츠 번째 분획을 초로로 간주하고, 두 번째 분획부터 백탁 현상이 나오기 직전까지의 분획물을 본류로 간주하였다. 본류는 증류 수를 이용하여 40%(v/v)의 알코올 농도로 희석하여 최종 증류주를 제조하였다.

알코올 함량 측정
발효 술물의 알코올 함량은 종이필터(pore size: 5 µm)로 여과한 시료 100 mL를 300 mL 수기에 취한 후 알코올램프를 이용하여 가열하였다. 시료가 가열되어 증류된 부분이 70 mL가 되면 증류를 중지하고, 증류수를 첨가하여 100 mL로 맞춘 후 알코올 비중계로 알코올 함량(%)을 3회 반복하여 측정하고 온도 보정표를 이용하여 15°C 상태로 표기하였다 (15).

pH 및 총산 측정
여과된 시료를 잘 섞은 후 pH meter(Thermo Electron Co., Beverly, MA, USA)를 이용하여 3회 측정하였다(15). 총산은 여과된 시료 10 mL에 pH meter(Thermo Electron Co.)를 넣고 0.1 N NaOH 용액을 넣어 주면서 pH가 7.0에 되도록 하여 소비된 0.1 N NaOH 용액의 양으로 구하였다. 총산 함량은 0.05% 초산 상당량으로 표기하였다(15).

가용성 고형분 함량 측정
가용성 고형분 함량은 refractometer(HI 96801, Hanna Instruments, Woonsocket, RI, USA)를 이용하여 3회 반복 측정하여 평균값을 °Brix 단위로 표기하였다(15).

요사 분석
요사 분석은 12명(남 5명, 여 7명, 19~26세)의 단국대학 교 학부 및 대학원생을 훈련하여 요사 분석 패널로 활용하였다. 훈련기간 동안 훈련은 하루 1시간씩 5회에 걸쳐서 진행되었다. 훈련시간 동안 훈련은 다양한 농도(5~15%)의 전통누룩(Songhakgokja, Gwangju-si, Korea)와 개량누룩(BHD Brewery, Hwaseong-si, Korea) 및 경제효소(Sumizyme™) 수용액의 누룩취 강도를 평가하고, 누룩취에 익숙해지도록 하였다. 또한 발효 술물 및 증류주와 누룩취 레퍼런스를 비교 평가하는 훈련을 통해서 레퍼런스의 강도를 설정하였다. 훈련을 통해서 최종적으로 5% 개량누룩 수용액의 강도를 8로 설정하였다. 대조군으로서 개량누룩 및 전통누룩으로 제조된 발효 술물과 증류주를 이용하였다. 발효 술물의 알코올 농도는 16%(v/v), 증류주의 알코올 농도는 40%(v/v)로 증류수를 이용하여 최적화한 후 제공하였다. 시료는 189 mL 용량의 종이컵에 20 mL 제공하였다. 시료 간의 carry-over 효과를 최소화하고 Williams 시료 제시 순서(17)를 이용하였다. 시료의 평가는 독립된 공간의 적색 등 아래에서 이루어졌다. 평가는 16점 척도(0: 누룩취 없음, 15: 누룩취 매우 강함)를 이용하여 적색등 측정기에 노출된 비종류 취급을 하였다. 또한 발효 술물과 증류주와 누룩취 레퍼런스를 비교 평가하는 훈련을 통해서 레퍼런스의 강도를 설정하였다. 평가에 사용된 누룩취는 개량누룩의 농도 10%의 희석액으로 하였다. 평가에 사용한 시료는 대조군으로서 개량누룩 및 전통누룩으로 제조된 발효 술물과 증류주를 이용하였다. 시료와 대조군 간의 훈련을 위해서 상온의 물이 제공되었으며, 물로 입안을 헹군 후 3분이 지난 다음에 시료를 평가하도록 하였다.

통계처리
통계분석은 XLSTAT(version 2012, Addinsoft, Paris, France)를 사용하였으며, 유의수준은 P<0.05에서 검증하였다. 단일화학 분석의 실험 결과는 일원분산분석(one-way ANOVA)을 하였으며, 요사 분석의 결과는 반복, 시료, 패널을 독립변수로 하여 이원분산분석(two-way ANOVA)을 하였다. 통계적으로 유의가 있는 경우 Fisher's least significant difference test를 사용하여 중복변수 간의 유의 차를 확인하였다.

결과 및 고찰
당화력
본 연구에 사용된 전통누룩의 균주를 분리하여 배양한 개량누룩(RHN)의 당화력은 4,320 units/g이고, 정제효소(Sumizyme™)의 당화력은 31,800 units/g이었다. 이는 전통 누룩의 당화력인 429~499(units/g)보다 높았으나(8), 가수량 대비 전통 누룩의 사용량이 본 연구에 사용된 RHN보다 약 10배 많이 첨가되어 발효 술물의 초기 당화력은 기존의 연구와 차이가 있었다. 측정된 당화력을 이용하여 샘플의 RH 사용량을 대조군(100%)에서 10%씩 감소시킴으로 동등한 당화력을 가지도록 경제효소(Sumizyme™)로 대체하여 샘 플 제조의 배합을 하였다(Table 1).

알코올 함량
발효기간 동안 발효 술물의 알코올 함량 변화는 Table 2와 같다. 2차 담금이 완료된 발효 3일차부터 발효 종료일인
Table 2. Alcohol contents of mash during 9 days of fermentation (% v/v)

<table>
<thead>
<tr>
<th>Samples</th>
<th>Day 1</th>
<th>Day 2</th>
<th>Day 3</th>
<th>Day 4</th>
<th>Day 5</th>
<th>Day 6</th>
<th>Day 7</th>
<th>Day 8</th>
<th>Day 9</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control</td>
<td>10.8±0.1</td>
<td>15.1±0.1</td>
<td>8.9±0.2</td>
<td>13.3±0.1</td>
<td>15.6±0.2</td>
<td>16.2±0.1</td>
<td>16.8±0.1</td>
<td>17.2±0.1</td>
<td>17.0±0.1</td>
</tr>
<tr>
<td>S10</td>
<td>11.3±0.1</td>
<td>15.8±0.1</td>
<td>8.5±0.2</td>
<td>13.1±0.2</td>
<td>16.0±0.2</td>
<td>16.5±0.3</td>
<td>16.9±0.2</td>
<td>17.0±0.1</td>
<td>17.1±0.0</td>
</tr>
<tr>
<td>S20</td>
<td>10.6±0.1</td>
<td>15.2±0.1</td>
<td>8.6±0.2</td>
<td>13.0±0.1</td>
<td>15.8±0.2</td>
<td>16.2±0.1</td>
<td>16.6±0.2</td>
<td>16.9±0.1</td>
<td>17.0±0.1</td>
</tr>
<tr>
<td>S30</td>
<td>10.7±0.1</td>
<td>14.9±0.2</td>
<td>8.9±0.2</td>
<td>13.1±0.1</td>
<td>15.2±0.3</td>
<td>16.0±0.1</td>
<td>16.9±0.1</td>
<td>17.0±0.1</td>
<td>17.1±0.1</td>
</tr>
<tr>
<td>S40</td>
<td>10.2±0.1</td>
<td>13.2±0.1</td>
<td>7.3±0.1</td>
<td>13.2±0.1</td>
<td>14.8±0.1</td>
<td>14.3±0.1</td>
<td>15.8±0.1</td>
<td>16.5±0.2</td>
<td>16.0±0.1</td>
</tr>
<tr>
<td>S50</td>
<td>8.5±0.3</td>
<td>12.5±0.3</td>
<td>6.3±0.2</td>
<td>9.7±0.2</td>
<td>13.6±0.3</td>
<td>14.6±0.2</td>
<td>15.9±0.1</td>
<td>16.6±0.1</td>
<td>16.0±0.1</td>
</tr>
<tr>
<td>S60</td>
<td>6.4±0.2</td>
<td>12.6±0.2</td>
<td>6.9±0.2</td>
<td>10.3±0.2</td>
<td>14.4±0.1</td>
<td>15.4±0.1</td>
<td>16.1±0.2</td>
<td>16.2±0.3</td>
<td>16.4±0.1</td>
</tr>
<tr>
<td>S70</td>
<td>6.1±0.1</td>
<td>13.0±0.1</td>
<td>5.3±0.2</td>
<td>9.8±0.1</td>
<td>13.2±0.1</td>
<td>14.3±0.1</td>
<td>15.8±0.1</td>
<td>16.5±0.1</td>
<td>16.0±0.1</td>
</tr>
<tr>
<td>S80</td>
<td>6.2±0.1</td>
<td>12.2±0.1</td>
<td>7.5±0.2</td>
<td>10.5±0.2</td>
<td>13.1±0.1</td>
<td>14.2±0.1</td>
<td>15.5±0.2</td>
<td>16.0±0.2</td>
<td>16.2±0.0</td>
</tr>
<tr>
<td>S90</td>
<td>6.8±0.1</td>
<td>11.8±0.2</td>
<td>6.0±0.3</td>
<td>10.4±0.2</td>
<td>12.9±0.3</td>
<td>14.4±0.1</td>
<td>15.6±0.1</td>
<td>16.0±0.2</td>
<td>16.3±0.1</td>
</tr>
<tr>
<td>S100</td>
<td>5.0±0.1</td>
<td>11.9±0.0</td>
<td>5.5±0.2</td>
<td>10.0±0.1</td>
<td>12.5±0.1</td>
<td>14.0±0.0</td>
<td>15.2±0.1</td>
<td>15.8±0.1</td>
<td>16.0±0.2</td>
</tr>
</tbody>
</table>

1) S10, S20, S30, S40, S50, S60, S70, S80, S90, and S100 mean the percentages of substitution of Nuruk (RHN) by Sumizyme TM.

2) Different letters within a column mean significant differences at P<0.05 by Fisher’s least significant difference test.

Table 3. pH of mash during 9 days of fermentation

<table>
<thead>
<tr>
<th>Samples</th>
<th>Day 1</th>
<th>Day 2</th>
<th>Day 3</th>
<th>Day 4</th>
<th>Day 5</th>
<th>Day 6</th>
<th>Day 7</th>
<th>Day 8</th>
<th>Day 9</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control</td>
<td>3.25±0.03</td>
<td>3.53±0.05</td>
<td>3.33±0.03</td>
<td>3.48±0.11</td>
<td>3.54±0.02</td>
<td>3.66±0.08</td>
<td>3.72±0.02</td>
<td>3.75±0.06</td>
<td>3.83±0.03</td>
</tr>
<tr>
<td>S10</td>
<td>3.28±0.02</td>
<td>3.52±0.02</td>
<td>3.32±0.02</td>
<td>3.45±0.04</td>
<td>3.62±0.03</td>
<td>3.67±0.02</td>
<td>3.77±0.01</td>
<td>3.80±0.02</td>
<td>3.82±0.02</td>
</tr>
<tr>
<td>S20</td>
<td>3.30±0.03</td>
<td>3.50±0.02</td>
<td>3.33±0.01</td>
<td>3.49±0.05</td>
<td>3.61±0.03</td>
<td>3.71±0.04</td>
<td>3.76±0.03</td>
<td>3.83±0.03</td>
<td>3.90±0.04</td>
</tr>
<tr>
<td>S30</td>
<td>3.29±0.02</td>
<td>3.63±0.05</td>
<td>3.38±0.03</td>
<td>3.50±0.04</td>
<td>3.59±0.03</td>
<td>3.68±0.03</td>
<td>3.72±0.03</td>
<td>3.85±0.04</td>
<td>3.90±0.04</td>
</tr>
<tr>
<td>S40</td>
<td>3.35±0.04</td>
<td>3.88±0.03</td>
<td>3.38±0.03</td>
<td>3.60±0.03</td>
<td>3.68±0.01</td>
<td>3.76±0.04</td>
<td>3.89±0.03</td>
<td>4.01±0.03</td>
<td>4.03±0.04</td>
</tr>
<tr>
<td>S50</td>
<td>3.33±0.05</td>
<td>3.69±0.04</td>
<td>3.65±0.02</td>
<td>3.68±0.02</td>
<td>3.70±0.03</td>
<td>3.89±0.01</td>
<td>3.99±0.03</td>
<td>4.08±0.04</td>
<td>4.05±0.04</td>
</tr>
<tr>
<td>S60</td>
<td>3.42±0.03</td>
<td>3.78±0.05</td>
<td>3.58±0.03</td>
<td>3.69±0.01</td>
<td>3.72±0.02</td>
<td>3.95±0.03</td>
<td>4.08±0.02</td>
<td>4.06±0.04</td>
<td>4.11±0.03</td>
</tr>
<tr>
<td>S70</td>
<td>3.38±0.03</td>
<td>3.69±0.01</td>
<td>3.70±0.03</td>
<td>3.72±0.02</td>
<td>3.80±0.04</td>
<td>3.89±0.04</td>
<td>4.06±0.03</td>
<td>4.09±0.05</td>
<td>4.08±0.03</td>
</tr>
<tr>
<td>S80</td>
<td>3.46±0.03</td>
<td>3.76±0.03</td>
<td>3.69±0.03</td>
<td>3.78±0.04</td>
<td>3.81±0.03</td>
<td>3.92±0.03</td>
<td>4.10±0.02</td>
<td>4.12±0.03</td>
<td>4.15±0.04</td>
</tr>
<tr>
<td>S90</td>
<td>3.52±0.01</td>
<td>3.78±0.03</td>
<td>3.82±0.02</td>
<td>3.79±0.03</td>
<td>3.88±0.01</td>
<td>4.12±0.03</td>
<td>4.09±0.02</td>
<td>4.12±0.03</td>
<td>4.11±0.01</td>
</tr>
<tr>
<td>S100</td>
<td>3.60±0.04</td>
<td>3.89±0.04</td>
<td>3.72±0.03</td>
<td>3.85±0.02</td>
<td>3.97±0.03</td>
<td>4.00±0.03</td>
<td>4.11±0.03</td>
<td>4.12±0.04</td>
<td>4.16±0.02</td>
</tr>
</tbody>
</table>

1) S10, S20, S30, S40, S50, S60, S70, S80, S90, and S100 mean the percentages of substitution of Nuruk (RHN) by Sumizyme TM.

2) Different letters within a column mean significant differences at P<0.05 by Fisher’s least significant difference test.
일부의 글자들은 분리되지 않은 채로 나타나 있습니다. 이는 자연어로 읽는 데 어려움이 있을 수 있습니다. 다른 부분은 정확하게 읽어낼 수 있습니다. 자세한 내용은 원문을 참조してください.
Table 6. Intensity of Nuruk flavor from mash and distilled liquors fermented by traditional Nuruk, cultured Nuruk, and 30% Sumizyme19+70% cultured Nuruk

<table>
<thead>
<tr>
<th>Sample</th>
<th>Traditional Cultured Nuruk</th>
<th>Cultured Nuruk</th>
<th>30% Sumizyme+70% cultured Nuruk</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mash</td>
<td>9.0±3.3<sup>a1)</sup></td>
<td>6.8±2.2<sup>b</sup></td>
<td>4.8±2.0<sup>b</sup></td>
</tr>
<tr>
<td>Distilled liquid</td>
<td>12.0±3.3<sup>a</sup></td>
<td>8.0±1.7<sup>b</sup></td>
<td>7.0±3.1<sup>b</sup></td>
</tr>
</tbody>
</table>

¹⁾Different letters within a row meant significant differences at P<0.05 by Fisher's least significant difference test.

누룩의 누룩취 강도는 발효 술득의 누룩취 강도보다 강하다고 평가되었다. 본 연구에서 정제효소(SumizymeTM)로 30% 대체하였을 경우 전통누룩 또는 개량누룩을 사용하였을 때보다 발효 술득과 증류주 모두에서 누룩취의 양이 줄었다. 그러나 개량누룩을 사용한 증류주의 경우 누룩취의 강도는 높았으나 통계적으로 유의미하지 않았다. 누룩취의 향이 줄었다. 그러나 개량누룩을 사용한 증류주의 경우 누룩취의 강도는 높은 향미를 보였으나 통계적으로 유의미하지 않았다 (P=0.124). S30 시료의 표준편차가 커서(표준편차: 3.1), 누룩취의 강도는 높았으나 통계적으로 유의미하지 않았다. 개량누룩과 전통누룩의 경우 7.0으로 평가되었다. 개량누룩과 S30 시료의 경우 37.34, P<0.001). 이는 증류과정 중 누룩취가 증발되지 않음에 따라 누룩취의 강도보다 강하다고 평가되었다(F=37.34, P<0.001).

본 연구에서는 개량누룩을 정제효소로 대체하여 제조한 발효 술득 및 증류주에서의 누룩취의 강도를 비교함으로써 발효 술득 및 증류주의 누룩취를 저감할 수 있음을 나타내었다. 누룩취의 품질 특성을 알아보고, 정제효소의 대체가 누룩취의 품질 특성을 저감에 효과가 있는지를 검증하였다. 정제효소로의 대체량을 정제효소로 대체하였을 때 발효 술득의 품질 변화에 유의한 차이가 없었다. 정제효소(SumizymeSM)로 30% 대체하여 제조된 발효 술득 및 증류주는 누룩취의 강도에 있어서 개량누룩과 전통누룩으로 제조된 발효 술득 및 증류주와 비교해서 통계적으로 낮은 누룩취 강도를 보여주었다. 누룩의 일부분을 정제효소로 대체함으로써 발효 술득의 누룩취를 저감할 수 있을 것이다.

표 6. 니루크 병합 효소와 전통 니루크로 제조한 발효 술득 및 증류주의 누룩취 강도

<table>
<thead>
<tr>
<th>샘플</th>
<th>전통 니루크</th>
<th>배양 니루크</th>
<th>30% 수지까지만 배양 니루크</th>
</tr>
</thead>
<tbody>
<tr>
<td>미 술득</td>
<td>9.0±3.3</td>
<td>6.8±2.2</td>
<td>4.8±2.0</td>
</tr>
<tr>
<td>물 술득</td>
<td>12.0±3.3</td>
<td>8.0±1.7</td>
<td>7.0±3.1</td>
</tr>
</tbody>
</table>

1) 다른 글자 내부의 열은 통계적으로 유의미한 차이를 나타내는 것으로 보인다.

본 연구는 농축산식품보수부가기식품개발사업(과제번호 11216-05-2-HD050)의 지원을 받아 수행되었으며, 이에 감사드립니다.

REFERENCES

