방수공사에서 있어서 실림공법의 효율적 활용을 위한 개선
- 전적을 중심으로 -

A Study on the Effective Utilization of Sealing Methods for Waterproofing

김종원* 이규현** 최인성***
Kim, Chong-Woen Lee, Kyoo-Hyun Choi, In-Sung

Abstract
The purpose of this study is to present a rational approach for estimating the unit price and the amounts of sealing materials of the sealing works.

This approach, considering field conditions and sealing materials' characteristics, can optimize the cost of the sealing works as well as that of maintenance. For the study, 10 case buildings for 3 years, built by middle size construction firm, were studied in order to investigate the unit price and the amounts of sealing materials.

키워드 : 실림공법, 전적, 방수공사
Keywords : Sealing method, Estimating, Water proof

1. 서 론
1.1 연구의 배경 및 목적
최근 국내의 건설목적물 쿨링면을 살펴보면 전락형 대형화, 고층화, 다양화, 집단화, 조립화 및 Module화 되어가고 있으며, 특히 건축물의 미감공사에 대한 수요자의 요구준수로 인해 모든방수 및 전적 방수공사의 중요성이 효율적이고 경제성이 건축기술으로는 이를 증축할 수 없는 현안에 이르렀다.

이에 따라 수년전까지만 하더라도 건축할 수 있었던 사항이 근래에는 하지로 문제되기도 한다.

한편 건축물의 프리페스트 화재에 따른 건설공법의 적용증가 추세에 따라 국내 건설업체들이 가치공학(VE)기법의 적용과 방수공사의 점증을 시도하고 있으나, 건축공사에서 전적공사 비의 약 0.2% 정도만을 차지하고 있으며 근래 다수를 사용되고 있는 실림공사에 관한 세부적인 기술자료나 시장 및 구체적인 적용기준이 없는 상태이다.

비록 실림공사는 전적공사비에서 차지하는 비중은 작으나 하자 발생시 건축 구조물에 중대한 하자를 발생시킬 수 있으며 공사비의 납부요인이 될 수 있어 그 시공 및 통질관리가 중요하다.

특히 일본의 경우 관련협회의 연구결과 실림공법의 전체

* 정동진설(주) 공학자, 정회원
** 명지대학교 건축공학과 박사과정, 정회원
*** 명지대학교 교수, 정회원

가자는 설치 및 사용자의 부적절한 선정이 각각 30% 정도, 시공 부실로 인한 경우가 약 40% 정도의 비율을 차지하고 있으나 우리 나라의 경우 실림공법에 대한 기본적인 사항에 대해 기준조차 설정하지 못하고 있으며 최초 건적단계에서부터 비현실적인 단가경감으로 인해 근본적인 하자요인을 가지고 있는 실정이다.

1.2 연구방법 및 범위
본 연구에서는 국내 건설업계를 대상으로 조사하였으며 실림공사의 공사단가 및 물량산출량과 건축공사에 대하여 장고(제어, 유리 등) 및 조립식 건축(P.C, 키드릴 등)과 플로크로드 구조(Bed 및 Expansion Joint 등)에 그 범위를 제한하여 단가 및 물량분석을 통해 현재 실림공사 건적에 문제점을 도출하였으며 개선사항을 제시하였다.

2. 실림재 공사 건적의 일반적 고찰
2.1 실림재공사의 건적기준
일반적으로 유성코팅공사를 포함한 실림공사의 건적은 정부 준공증에 기준하여 산출한다.

주 수밀코팅의 경우 규격에 따라 코팅소요량과 단위노무의
이 산정되어 있는 바 규격 1cm강, 1cm강, 1.5cm강에 코팅량과 노무량은 각각 0.12ℓ, 0.03ℓ 및 0.18ℓ, 0.03ℓ 그리고 0.28ℓ, 0.03ℓ으로 산정되어 있으며 <표 1>의 수밀코팅의 표준품질과 같다.
표 1. 수밀포양의 표준품셈1) (말당)

<table>
<thead>
<tr>
<th>구분</th>
<th>규격</th>
<th>단위</th>
<th>1.0cm각</th>
<th>1.2cm각</th>
<th>1.5cm각</th>
</tr>
</thead>
<tbody>
<tr>
<td>코팅</td>
<td>l</td>
<td></td>
<td>0.12</td>
<td>0.18</td>
<td>0.28</td>
</tr>
<tr>
<td>방수공</td>
<td>A</td>
<td></td>
<td>0.03</td>
<td>0.03</td>
<td>0.03</td>
</tr>
</tbody>
</table>

※ 자료: 건설공사표준품셈 2004, 건설연구원

또한 이에 대항 2004년 12월 기준 공사비용(재료비+노무비)는 규격 1cm각, 1.2cm각, 1.5cm각에 따라 각각 면적 4,317원, 5,285원, 6,898원으로 산출된다.

이와 양스텐선 조인트, Construction Joint 및 Control Joint에 대한 공사비용은 다음과 <표-2>과 같다.

표 2. 코팅류의 공사비용2)

<table>
<thead>
<tr>
<th>구분</th>
<th>규격 단위</th>
<th>공사비용(원) 비고</th>
</tr>
</thead>
<tbody>
<tr>
<td>수밀포양</td>
<td>1cm각</td>
<td>1,935 2,382 0 4,317</td>
</tr>
<tr>
<td></td>
<td>1.2cm각</td>
<td>2,903 2,382 0 5,285</td>
</tr>
<tr>
<td></td>
<td>1.5cm각</td>
<td>4,516 2,382 0 6,898</td>
</tr>
<tr>
<td>양스텐선 조인트</td>
<td>안료</td>
<td>881 1,061 0 1,942</td>
</tr>
<tr>
<td></td>
<td>방향</td>
<td>1,971 4,131 0 6,102</td>
</tr>
<tr>
<td>양스텐선 조인트</td>
<td>플록체</td>
<td>834 1,132 0 1,966</td>
</tr>
<tr>
<td></td>
<td>기존 조인트</td>
<td>1,144 2,330 0 3,747</td>
</tr>
</tbody>
</table>

그러나 이러한 정부조품셈과 공정평가 물가조사품셈에서의 품셈 공사비용 기준은 사회적현장에서 소요되는 품셈이나 공사비용과는 허전한 격차가 있어 활용되지 못하고 있다.

2.2 실질재 견적 실태 조사

국내건설협의회의 실질재 공사관련 시공단가 및 물량에 관한 견적장비를 파악하기 위해 국내건설협의회에서 서울, 경기 지역 공사의 시공단가를 대상으로 선정하여 부가가치를 조사하였다.

사례대상 건축물은 총 10건으로 그 유형별로 분해 공공주택시설(고층지하주택), 사무실건물, 판매-업무용시설물이 있고, 그 규모는 공공주택시설이 공공공사 3건(약 1,600평당), 민간주택공사 2건(약 1,000평당), 사무실건물이 2건(연면적 약 3,000평), 판매-업무용시설물이 3건(연면적 약 20,000평)이다.

조사방법은 시공기간 동안 현장방문을 통한 실사와 관련공사기간을 참조하였고 더이상 견적헌장의 견적 optic공사비조사를 조사

3. 실질재 견적 현황 및 문제점

3.1 시공단가 산출

사례대상 건축물의 시공에 사용되고 있는 실질재의 종류별 단가를 조사하여 본 결과 각종 실질적 종류별에 따른 시공단가 대비 2004년 12월 기준 공사비용과 다른 실질재를 사용하고, 경제공사 기준은 도급단가를 기준으로 공사비용을 하고 있음을 알 수 있었다. 이들 건축물 유형별로 건축공사비용에서 차지하는 실질공사비의 비율 및 단가를 조사하여 본 결과 공사비용의 경우 도급단가가 4.2258, 도급단가는 1.678원/㎡로 실

3.2 경제공사 비율 및 단가 3)

<table>
<thead>
<tr>
<th>공사비용 비율</th>
<th>(10×10)장단가 (원/㎡)</th>
<th>단가 (원/㎡)</th>
</tr>
</thead>
<tbody>
<tr>
<td>기존 조인트</td>
<td>0.225 0.125 1.678 958</td>
<td>57.1</td>
</tr>
<tr>
<td>방수공</td>
<td>0.836 0.773 1.426 1.140</td>
<td>79.9</td>
</tr>
<tr>
<td>판매사업</td>
<td>0.085 0.218 1.750 1.980</td>
<td>108.6</td>
</tr>
<tr>
<td>평균</td>
<td>0.382 0.372 1.618 1.360</td>
<td>81.9</td>
</tr>
</tbody>
</table>

특히 공공주택시설(고층지하주택)의 경우 공공공사(대완주택공사)의 경우를 대상으로 실질재공사 제도공사 비율 및 실질공사비용 측면에서 고찰하여 본 결과 생성공사비가 차지하는 공사비용의 도급단가 비율도 공공공사비용의 경에 도급단가의 0.2058, 지역공사의 0.15%, 총공사비용의 0.082% 공급공사 비율에 차지하고 있음을 알 수 있었으며 이를 도입화하여 <표-4>과 같다.

또한 이와 유형별 규격비율로 비교하여 본 결과 도급단가가 1,678원/㎡에 반해 실질단가가 958원/㎡임을 알 수 있으며, <표-5>과 같다.

그러나 실제 실질재 공사에서 소요되는 비용은 일제적공사 비율을 산출하여 보면 도급단가 및 실질단가가 비현실적인 견적임을 알 수 있다.

1) 본 품셈은 공구순료 및 소문화품이 포함되어 있다. 재료비는 정비수량에 적용될 20%를 가산하여 산출한다.
2) 수밀포양의 재료는 1박형 실리콘 재료로 제조되었다(크레이 SL801 단가 16,120원/ℓ)
3) 공사비용 비율은 경비, 설비 및 도크공사비용을 제외한 순수건축공사에서 실질공사비용 차지하는 비율
表 4. 공종별 실험대 공사비 비율(공공공사 공동주택)

<table>
<thead>
<tr>
<th>구분</th>
<th>도급</th>
<th>실험</th>
</tr>
</thead>
<tbody>
<tr>
<td>코팅공사비</td>
<td></td>
<td></td>
</tr>
<tr>
<td><아파트 창호공사></td>
<td></td>
<td></td>
</tr>
<tr>
<td>코팅공사비 (도장)</td>
<td>1,082,280</td>
<td>696,000</td>
</tr>
<tr>
<td>코팅공사비 (TC-10x10)</td>
<td>194,040</td>
<td>118,800</td>
</tr>
<tr>
<td>코팅공사비 (TC-10x10)</td>
<td>1,327,357</td>
<td>776,800</td>
</tr>
<tr>
<td>실리콘계실린트공사비 (TC-10x10)</td>
<td>8,290,944</td>
<td>4,318,200</td>
</tr>
<tr>
<td><아파트 창문공사></td>
<td></td>
<td></td>
</tr>
<tr>
<td>코팅공사비 (도장)</td>
<td>1,137,016</td>
<td>639,800</td>
</tr>
<tr>
<td>코팅공사비 (TC-10x10)</td>
<td>2,695,724</td>
<td>1,380,400</td>
</tr>
<tr>
<td>저층공사장체공사 (18x10)</td>
<td>310,692</td>
<td>158,100</td>
</tr>
<tr>
<td><아파트 창문공사></td>
<td></td>
<td></td>
</tr>
<tr>
<td>코팅공사비 (도장)</td>
<td>106,884</td>
<td>68,800</td>
</tr>
<tr>
<td>코팅공사비 (TC-10x10)</td>
<td>276,134</td>
<td>181,800</td>
</tr>
<tr>
<td>저층공사장체공사 (5x5)</td>
<td>824,363</td>
<td>552,800</td>
</tr>
<tr>
<td><부대공사></td>
<td></td>
<td></td>
</tr>
<tr>
<td>코팅공사비 (도장)</td>
<td>519,460</td>
<td>304,000</td>
</tr>
<tr>
<td>실리콘계실린트공사비 (도장)</td>
<td>51,840</td>
<td>27,000</td>
</tr>
<tr>
<td>코팅공사비 (TC-10x10)</td>
<td>37,520</td>
<td>24,000</td>
</tr>
<tr>
<td>코팅공사비 (TC-10x10)</td>
<td>25,973</td>
<td>17,100</td>
</tr>
<tr>
<td>코팅공사비 (TC-20x20)</td>
<td>44,996</td>
<td>25,200</td>
</tr>
<tr>
<td>저층공사장체공사 (5x5)</td>
<td>97,826</td>
<td>65,600</td>
</tr>
<tr>
<td><창가공사></td>
<td></td>
<td></td>
</tr>
<tr>
<td>코팅공사비 (도장)</td>
<td>146,296</td>
<td>85,600</td>
</tr>
<tr>
<td>코팅공사비 (TC-10x10)</td>
<td>188,646</td>
<td>124,200</td>
</tr>
<tr>
<td>코팅공사비 (TC-20x20)</td>
<td>6,328</td>
<td>4,400</td>
</tr>
<tr>
<td><창문변공사></td>
<td></td>
<td></td>
</tr>
<tr>
<td>코팅공사비 (도장)</td>
<td>21,872</td>
<td>14,400</td>
</tr>
<tr>
<td>코팅공사비 (TC-10x10)</td>
<td>17,385,391</td>
<td>9,583,000</td>
</tr>
<tr>
<td>건축공사비</td>
<td>7,703,164,475</td>
<td></td>
</tr>
<tr>
<td>(긴축+도로공사+도장)</td>
<td>0.225%</td>
<td>0.124%</td>
</tr>
<tr>
<td>(긴축+도로공사+도장)</td>
<td>11,567,547,697</td>
<td></td>
</tr>
<tr>
<td>(긴축+도로공사+도장)</td>
<td>0.150%</td>
<td>0.083%</td>
</tr>
<tr>
<td>총공사비</td>
<td>13,335,881,000</td>
<td></td>
</tr>
<tr>
<td>흔적공사비/창문공사비</td>
<td>0.130%</td>
<td>0.072%</td>
</tr>
</tbody>
</table>

表 5. 재료별 규격별 실험대 공사비 단가(공공공사 공동주택)

<table>
<thead>
<tr>
<th>구분</th>
<th>단가(원/㎡)</th>
<th>비율(%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>도급</td>
<td>실험단가</td>
<td>도급단가실링</td>
</tr>
<tr>
<td>코팅공사비 (도장)</td>
<td>1,250</td>
<td>800</td>
</tr>
<tr>
<td>코팅공사비 (TC-10x10)</td>
<td>1,470</td>
<td>900</td>
</tr>
<tr>
<td>코팅공사비 (TC-10x10)</td>
<td>1,370</td>
<td>800</td>
</tr>
<tr>
<td>실리콘계실린트공사비 (TC-10x10)</td>
<td>1,730</td>
<td>900</td>
</tr>
<tr>
<td>저층공사장체공사 (도장)</td>
<td>3,050</td>
<td>1550</td>
</tr>
<tr>
<td>저층공사장체공사 (도장)</td>
<td>1,915</td>
<td>800</td>
</tr>
<tr>
<td>평균</td>
<td>1,678</td>
<td>958</td>
</tr>
</tbody>
</table>

즉 국내 현장에서 그 사용량의 대부분을 차지하고 있는 실리콘 실린트의 경우 2004년 12월 기준 물가정보에 근거하여 일위대가 산출하되 360㎡에 3,360원으로 산정되어 있다. 따라서 1 달 약 9,334원이 되고 m당 0.12 달로 소요되기 때문에 추가비용은 1,120/4m이 되며 Back-up개의 경우 100원, 양성 태어 1/2 달의 경우 100/3m이 된다. 또한 용접 및 기타는 50원
m당, 시공비는 56,597원/㎡x0.03원/㎡=1,698원(전기), 경비는 285
원이 소요되기 때문에 총액은 3,353원이 된다.

다시말해 국내 공공공사 공동주택의 경우 일위대가 기준도
같을 것이 50.0%, 실험단가는 28.6%에서 지나치지 않아 경제적
손실을 감안하였을 때 실험을 수행하는 전문 하도급업체
로서는 적절한 수준의 품질을 생산하기가 사실상 불가능하다
고 할 수 있다.

이와 변성실리콘 실린트, 폴리-실리콘 실린트, 폴리우레
탄 실린트, 아크릴 실린트 등에 대한 일위대는 다음 <표-6>와 같다.

3.2 시공률량 산출

실현내 공사에 있어서 가장 많이 소요되는 재료인 프라이
머와 실관계를 현장 시공시 설계 분석하여 본 결과, 프라이더
의 경우 국내 현장에서는 8x8mm(줄거리=8mm, 줄둘레=10mm)의
주로는 다공질(폴리, 콘크리트, ALC 제거 등)에는 거의 사용
되지 않고 있었으나 평활제재류(유리, 금속 등)에는 사용되고
있다.

또한 그 소요량에 있어서는 평활제재류의 경우 6x6mm는
800/㎡, 8x8mm의 경우 500/㎡, 10x10mm의 경우 400/㎡
 정도 소요되고 있었다.

이에 대한 구체적인 내용은 <표-7>와 같다.

표 7. 국내현장의 프라이더 단위 소요량별 시공률량

<table>
<thead>
<tr>
<th>단위(㎡)</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
</tr>
<tr>
<td>줄무늬 길이(㎡)</td>
</tr>
<tr>
<td>5</td>
</tr>
<tr>
<td>6</td>
</tr>
<tr>
<td>8</td>
</tr>
<tr>
<td>10</td>
</tr>
<tr>
<td>12</td>
</tr>
<tr>
<td>15</td>
</tr>
<tr>
<td>20</td>
</tr>
<tr>
<td>25</td>
</tr>
</tbody>
</table>

※ 1) 사이트의 선반매찰제재(유리, 금속 등)
2) 사이트와 하단사중재재(폴리, 콘크리트, ALC제거 등)

한편 이에 반해 일반의 경우, 평활제재료에서는 6x6mm는
표 6. 실리콘 종류별 실제공단가산출 일시대가표

<table>
<thead>
<tr>
<th>구분</th>
<th>자체충돌</th>
<th>실적목표</th>
<th>실적목표에</th>
<th>실적목표에</th>
<th>실적목표에</th>
<th>실적목표에</th>
<th>실적목표에</th>
<th>실적목표에</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>외부용</td>
<td>내부용</td>
<td>실적목표</td>
<td>실적목표</td>
<td>실적목표</td>
<td>실적목표</td>
<td>실적목표</td>
<td>실적목표</td>
</tr>
<tr>
<td>수량</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>소재</td>
<td>1.973원/m</td>
<td>1.769원/m</td>
<td>2.232원/m</td>
<td>1.706원/m</td>
<td>1.782원/m</td>
<td>1.036.5원/m</td>
<td>900원/m</td>
<td></td>
</tr>
<tr>
<td>사용량</td>
<td>79,407/0.03%</td>
<td>2,382건</td>
<td>79,407/0.03%</td>
<td>2,382건</td>
<td>79,407/0.03%</td>
<td>2,382건</td>
<td>79,407/0.03%</td>
<td>2,382건</td>
</tr>
<tr>
<td>지하철 지반이 (부로의 3%)</td>
<td>357건</td>
<td>357건</td>
<td>357건</td>
<td>357건</td>
<td>357건</td>
<td>357건</td>
<td>357건</td>
<td>357건</td>
</tr>
<tr>
<td>합계</td>
<td>2,739건</td>
<td>2,739건</td>
<td>2,739건</td>
<td>2,739건</td>
<td>2,739건</td>
<td>2,739건</td>
<td>2,739건</td>
<td>2,739건</td>
</tr>
<tr>
<td>비고</td>
<td>(1) 매일 Silicone 기준</td>
<td>(2) Structure glazing 기준</td>
<td>(3) 2백5% 기준</td>
<td>(4) 실제 미작업 계외 실적손실율</td>
<td>(5) 1백5% 기준</td>
<td>(6) Glazing 제외</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

표 9. 국내선정의 실정제 단위소요량별 시공률

<table>
<thead>
<tr>
<th>(단위 : m/ℓ)</th>
</tr>
</thead>
<tbody>
<tr>
<td>출문길</td>
</tr>
<tr>
<td>4</td>
</tr>
<tr>
<td>5</td>
</tr>
<tr>
<td>6</td>
</tr>
<tr>
<td>8</td>
</tr>
<tr>
<td>10</td>
</tr>
<tr>
<td>12</td>
</tr>
<tr>
<td>15</td>
</tr>
<tr>
<td>20</td>
</tr>
</tbody>
</table>

표 10. 국내단장의 실정제 단위소요량별 시공률

<table>
<thead>
<tr>
<th>(단위 : m/ℓ)</th>
</tr>
</thead>
<tbody>
<tr>
<td>출문길</td>
</tr>
<tr>
<td>4</td>
</tr>
<tr>
<td>5</td>
</tr>
<tr>
<td>6</td>
</tr>
<tr>
<td>8</td>
</tr>
<tr>
<td>10</td>
</tr>
<tr>
<td>12</td>
</tr>
<tr>
<td>15</td>
</tr>
<tr>
<td>20</td>
</tr>
</tbody>
</table>

4. 실정제 건적의 함리화

준수 건적공사의 약 0.13-0.21%, 충분공사의 약 0.07-
0.73% 정도 차지하는 실장공사 공사는 공사비 절약율은 다른
많은 하자가 발생하고 이에 따른 피해점도 및 유지보수비용
은 상당히 위대하다고 할 수 있다.

건축물의 하자는 그 유형 및 부위에 따라 원도로 다양할
수 있었으나 실장공사의 경우 그 무형보다도 기본적인 품
질확보를 위한 고려된 기준 즉, 기술자료나 시방기준, 적절성
보증기준 등이 마련되지 않은 상황에서 설계와 시공이 시행되
고 있고 시장 및 적절기준이 없는 상황에서의 특정 제조품을
사용하며, 건축성에도 이 특별제품에 대한 공사단가만큼 적용
한다는 것 등은 이미 사례에서 조사된 바에서 대한 체계적
인 개선책이 강구되어야 한다.

이렇게 비현실적인 공사비 적용 및 물량측면의 비정상적으
로 인하여 발생하는 과급효과를 최소화하기 위한 합리적인
물량결제체계 또한 마련되어야 한다.

즉 이를 위해서는 각종 제조품, 공정별로 표준품의 제작
적으로 작성하여야 하고, 업무적인 단가작용은 지정부와 공정
및 작업의 난이도에 따른 노무비 적용계에 수렴이 이루어져야
시공한다.

따라서 공사의 부위별 난이도에 따라 재료소모 할증율을
계산하여 시공장소, 위치, 공법 등에 따른 경우별 산출기준이
 마련되어야 한다.

또한 시공사의 입장에서는 실장공사 건축 및 시공시 시
공환경으로서의 기상조건에 대한 고려를 해야하고 이에
바탕은 예산정산은 이를 반영해야만 한다.

즉 여름철의 고온하층에서는 슬럼프, 우레타계 실장제의
혈포상, 사용가능시간의 단축, 변절 및 설계 내부하의 현
상등이 문제가 되므로 이에 대한 사전검정 및 확인사항을 함
목록하여 견적에 반영할 수 있도록 하여야 한다.

이와 마찬가지로 겨울철 저온하층에서는 먼저부착, 혼합불
량, 충전시가, 열전달방식에의 통합성, 건조성장 및 접착
불량 등의 문제가 따른 사전검정 및 확인사항 등에 대해
반영하고 복수한 기상조건, 즉 강수시의 접착불량, 열전달방
의 유실상, 우레타계의 혈포상, 강공시의 멜링, 모래
등의 부착 및 주름현상 등의 문제점에 대한 사전검정 및 확
인사항 또한 견적시 반영되어야 한다.

5. 결론

본 연구에서는 국내 건설설계법률 대상으로 10건의 건축
공사 사례를 중심으로 실장공사의 공사단가와 물량적용 현황
및 시공실태를 분석한 결과 다음과 같은 결론을 얻었다.

첫째, 실장재 중 국내현장에서 가장 많이 사용되고 있는 실리
콘 석란트의 공사단가는 공공공사 공공부담의 경우 실제
근거가 될 수 있는 일례일가(약 3,353원/㎥)를 기준하였을
때 수급원의 평균킬로공급단가는 약 50.0%(약 1,678원/㎥)
에 하수공급의 실정단가는 약 28.6%(약 958원/㎥)로 집행되
여 비현실적임을 알 수 있다.

둘째, 국내 건설현장 실장재공사의 단위사용량(m) 당 표지
면 소요량(L)은 일반건설현장에 비해, 평균질제료의 경
우 약 50-140%, 다공질제료의 경우 약 20-50% 정도 더 소
요되고 있었으며, 실장재 또는 약 5.7-6.7% 정도 더 소요되
여 재료사용량측면에서 생산성이 현저히 낮음을 알
수 있다.

이러한 비현실적인 단가정책과 물량측면의 생산성 저하는
실장재 공사의 종류에 근본적인 원인을 제공하며 설계적
으로 실장재 관련 하지 및 오염현상은 특별부위에 국한되지
않고 실장재 사용부위 전반에 광범위하게 나타나 전체적인
공사 품질에 영향을 미치며 사후 관리에 큰 비용적비를 초래
한 가능성을 가지고 있는 것이다.

따라서 실장재 공사의 기본품질검토를 위해서는 시공부위
별 시방사항과 등록기준이 제정되어야 한다. 이에 따른 설
계, 재료특성별 선정, 시공기준의 설정과 합리적인 일체대가에 근거한 공사단가와 물량산출의 현실적 적용이 우선되어야 할 것이다.

참 고 문 헌

1. 설계서의 설계와 시공, 고려화학주식회사, 1995
2. 정확성, PC 기술 고도화를 위한 방향 연구과제, 공업화주론 기술 및
 상술 취한 심포지움 발표책, 대한건축학회, 1993
3. 건설자료, 한국철거협회, 2004
4. 시리밍성 HAND BOOK, 일본시리밍공업협회, 1993