T. Battumur, Wooseung Yang, S. B. Ambade and Soo-Hyoung Lee†

Division of Chemical Engineering, Chonbuk National University, 664-14, Duckjin-dong, Duckjin-gu, Jeonju-si, Jeonbuk 561-756, Korea

Received 30 April 2011; accepted 19 July 2011

요 약

본 연구에서는 TiO2, 필름에 그래핀나노시트(graphenernanosheet, GNS)의 양을 다르게 함으로써 혼합성 태양전지의 전도성을 높였다. TiO2-GNS 혼합물 전극은 단순한 혼합방식에 의해 제작되었고, GNS는 염료로 사용하여 태양전지의 효율을 향상시켰다. TiO2-GNS 혼합물 전극은 사용한 염료감응형 태양전지의 전도층 경도를 GNS의 양에 의존하여 작았으며, TiO2에 GNS가 0.01 wt% 혼합된 전극을 사용하여 제작한 염료감응형 태양전지가 가장 높은 효율인 5.73%를 나타내었다. 이는 GNS를 혼합하지 않은 전극을 사용한 태양전지보다 26% 높은 효율이었다. 이와 같은 효율 증가의 원인으로는 GNS의 질량수 증가, 전자 재결합(electron recombination) 및 백야 교환전도(back transport reaction) 감소, 전자 수송의 증가로부터 기인한 것으로 생각된다. 본 연구에서 TiO2, (anatase)의 GNS의 존재는 소밀도전도형 전시공기(Thin-Film-Scanning Electron Microscopy)에 의한 확인하였으며, 휘석된 염료의 양은 자기부분방정(UV-vis Spectroscopy) 전자 재결합의 감소 및 전자 수송에 대한 분석은 전기화학적 인피던스분광법(Electrochemical Impedance Spectroscopy)을 이용하였다.

Abstract – Dye-sensitized solar cells(DSSCs) based on TiO2, film photo anode incorporated with different amount of graphene nanosheet(GNS) are fabricated and their photovoltaic performance are investigated. The TiO2-GNS composite electrode has been prepared by a direct mixing method. The DSSC performance of this composite electrode was measured using N3 dye as a sensitizer. The performance of DSSCs using the TiO2-GNS composite electrodes is dependent on the GNS loading in the electrodes. The results show that the DSSCs incorporating 0.01 wt% GNS in TiO2 photo anode demonstrates a maximum power conversion efficiency of 5.73%, 26% higher than that without GNS. The performance improvement is ascribed to increased N3 dye adsorption, the reduction of electron recombination and back transport reaction as well as enhancement of electron transport with the introduction of GNS. The presence of both TiO2 (anatase) and GNS has been confirmed by Field Emission Scanning Electron Microscopy(Fe-SEM). The decrease in recombination due to GNS in DSSCs has been investigated by the Electrochemical Impedance Spectroscopy.

Key words: Dye Sensitised Solar Cell(DSSC), TiO2, Graphene, Composite Electrode

1. 서 론

염료감응형 태양전지(Dye-sensitized solar cells, DSSCs)는 Gritzel 그룹이 태양전지의 working electrode에 나노구조의 TiO2를 도입한 이후 낮은 가격과 높은 전력변환효율의 장점으로 인하여 높은 관심을 받고 있다[1]. 염료감응형 태양전지는 11%의 전력변환효율(power conversion efficiency)을 얻어도 불구하고, 더욱 높은 효율을 얻기 위한 노력이 진행 중이다[2,3]. 염료감응형 태양전지의

†To whom correspondence should be addressed.
E-mail: shlee66@chonbuk.ac.kr
‡이 논문은 전북대학교 김기주 교수님의 장년을 기념하여 부정되었습니다.

주된 문제점으로 전하의 재결합이 일어남 가능성이 있는데 이는 TiO2-nanoparticles 사이의 photogeneration된 전자 수송 때문이다. 전하의 재결합을 억제시키고 전자의 이동을 억제시키기 위한 몇 가지 방법인 연구 있는데 (1) 판드 점이 다른 반도체 산화 금속(metal oxide) 혼합물의 사용[4,5] (2) 전도성 기판에 의해 다양한 형성]='

Graphite의 단원자의 이용도 그래핀(graphene)은 특수한 특성과 다양한 사용 가능성을 가진 접합, 반사 방향이 알려져 있으며(거제적인 빛, 적층 성장, graphene의 화학적 전기화학적 환원 그리고
bottom-up 방식의 유기합성 등) 중에서, 낮은 가격과 반복 가능한 생산 방법에 바탕한 graphene oxide(GO)를 활용하여 graphene nanosheet (GNS)을 제조하는 것이 가장 효과적이며, 밀도 반복 방식으로 응용되었다[15]. 최근 graphene을 기반으로 한 합성 프로세스는 두 개 이상의 기능성ă更多미나리 효과를 발휘하고 다양한 용도가 가능해지면 더욱 많은 관심을 끌고 있다. 그러나 독립적인 하나의 시트로서의 graphene을 얻고 그것을 원시화 상태로 유지하려고 위해서는 많은 노력이 필요하다. 본 연구에선 GNS가 균일하게 만들어지기 위하여, quantum dots[16], metal nanoparticles[17], 금속 산화물[18], 그리고 전도성 고분자[19] 등의 다양한 영역에서의 응용이 연구되어 왔다. 특히, mesoporous 탄소[20], 탄소나노튜브(carbon nanotube)[21]와 같이 다양한 탄소 제품의 이용은 광범위하게 연구되어 있다.


2. 실험

2-1. Graphenematerials(GNS의 합성)

GNS의 합성은, 본 연구에 참여한 다른 연구자들의 방법을 사용하였다 [24,25]. 먼저 Graphite flakes (3 g 측면 크기 2-5 mm)를 H_2SO_4(98%, 12 mL) 용액에 넣고 고온에서 300도 4시간 동안 유지하였다. 용액을 상온까지 식힌 후, 수십 마이크로미터의 Graphite flakes를 치수와 같은 배율의 H_2SO_4에 넣어 증발시킨 후, 회전하고 세척을 반복하였다. 조건과 제도 시험은 GOsheet의 크기를 결정하는 매우 중요한, 많은 조건과 제도 시험은 다른 GOsheet를 만들었다. 그 다음 용액을 0.51 대-ionized(DI)water에 회합시키고, 하루동안 반응하였다. 200 mM의 Nylon Millipore 필터를 사용하여 용액을 필터링하고 부피로 채워진 pre-oxidized graphite powder로 얻었다. pre-oxidized graphite powder를 단층의 GO sheet로 밀도 필터링하여, ice bath에서 powder(2g)와 10.0-15.0 g의 KMnO_4를 125 mL의 용액에 넣어 중합한 후 2시간 동안 전반적으로 증거. 그 다음, 증류수(250 mL)의 용액을 샵에서 GOsheet를 침면시킨 후, 20 mL의 H_2SO_4(30%)를 상온에서 철거하였다. 12시간 동안 침면시킨 후에, 완부분의 supernatant를 수혈하여 원시분리시킨 후, GO powder로의 원시분리시킨 후, GO powder에 남아있는 금속 이온을 제거하기 위해서, HCl 용액 (HCl: H_2O = 1:10)에 흡수시킨 후, 원심분리시켜 주었다. 그 정전동력에서 얻어진 GNS는 증류수를 사용하여 HCl을 제거하기 위해서 다시 원심분리시켜 주었다.

2-2. 탄배반응의 제작

영업감각성 탄배반응자인 working electrode를 준비하기 위해서, 가전용기반의 fluoride-doped tin oxide (FTO) 유리판(10 Ω/cm^2, Plintkong)을 중류용(de-ionized water), 아세톤(acetone), 이소프로필 알코올(isopropyl alcohol)을 이용하여 15분간 초음파세척 후, 300-500 대으로 세척을 위한 건조시킨다. TiO₂-GNS 복합재료 working electrode로 이용하기 위한 실험방법은 다음과 같으며 TiO₂-GNS 복합 전극의 조성은 Table 1과 같다.

<table>
<thead>
<tr>
<th>Table 1. Composition of TiO₂-GNS composite electrodes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Samples</td>
</tr>
<tr>
<td>TiO₂</td>
</tr>
<tr>
<td>TiO₂-GNS 0.01%</td>
</tr>
<tr>
<td>TiO₂-GNS 0.02%</td>
</tr>
<tr>
<td>TiO₂-GNS 0.03%</td>
</tr>
<tr>
<td>TiO₂-GNS 0.06%</td>
</tr>
<tr>
<td>TiO₂-GNS 0.2%</td>
</tr>
</tbody>
</table>

calibrated at NREL, Colorado, USA를 이용하여 100 mW/cm² 조건에 측정하였다. 각각에서의 전자의 이동을 분석할 수 있는 Electrochemical Impedance spectra(ES)는 alternative signal을 10 mV로 동고 Automah, Versastar-3 장비에 의해 측정하였다. 삼전극법을 사용하는 conventional 셋은 EIS 측정을 위해 지자 전계조절로서 2.5 mM Fe₃[Fe(CN)₆]K₃[Fe(CN)₆](1:1) 용액을 사용하였으며 다른 바이오에서 만들어진 TiO₂-GNS 복합체 전극을 Working electrode로, Pt는 counter electrode로, Ag/AgCl는 reference electrode로 사용하였다.

3. 결과 및 논론

Fig. 1은 서로 다른 조성에서 만들어진 TiO₂-GNS 복합체 전극의 SEM 이미지이다. TiO₂에 분산된 GNS가 함량에 따라 서로 다른 morphology를 보임을 알 수 있으며 GNS의 양이 증가함에 따라 sheet 형태의 GNS가 두드러짐이 관찰되었다. GNS의 양이 0.01 wt%인 경우 (Fig. 1b) GNS가 TiO₂ 내에 비교적 잘 분산되어 있는 것을 알 수 있으며 이는 GNS와 TiO₂nanoparticle 사이에 접촉이 잘 이루어졌음을 의미한다. GNS의 양이 0.03 wt% 이상 증가시킬 때 (Figure 1d) GNS가 TiO₂ 내에서 접착 분리되며 0.06-0.2 wt%까지 증가하였을 때 서로 동작된 GNS로 인해 TiO₂와의 접착 및 TiO₂nanoparticle가의 접촉이 감소되며 이는 TiO₂-GNS 복합체 전극 내에서의 전자의 운반압이 영향을 줄 것으로 생각된다. 또한 GNS의 양을 높임에 따라 N3 염료가 흡착할 수 있는 TiO₂의 표면적이 감소할 것이다. 즉 GNS의 양을 높일수록 GNS로 둘러싸인 TiO₂로 인하여 TiO₂ 표면에 N3 염료의 흡수는 감소하게 되며 이는 소자전류밀도를 낮추는 요인일 것으로 생각된다. 더욱이 만약 TiO₂ 필름이 많은 양의 GNS를 포함하고 있다고 하면, 염료가 충분히 담겨있지 않은 GNS의 표면은 전자가 이동하는 것을 제공하는 대신 working electrode 표면에 전자의 재결합을 증가시키고, 이는 Voc을 감소시키는 요인이 된다. 특히 0.06 wt% 이상 GNS가 포함된 경우 (Fig. 1e-f) 다층형 TiO₂ 전극의 표면에서 크랙의 수가 증가하는 것을 관찰하였으며 이는 short circuit이 쉽게 발생한 것으로 고하효율의 감소를 유도할 것이다.

TiO₂-GNS 복합체 전극을 24시간 동안 N3 염료 약에 담근으로써 흡착된 염료의 양을 자외선분광기(UV-vis Spectroscopy)로 측정하여 Fig. 2에 나타내었다. GNS가 0.01 wt%가 함량된 TiO₂의 경우 N3 염료의 흡수 파장이 535 nm에서 가장 높은 흡수도를 보였고, 이는 0.01 wt% GNS를 포함하는 TiO₂가 GNS를 포함하지 않는 TiO₂의 다른 조성의 GNS를 포함하는 TiO₂-GNS 복합체보다 N3 염료를 흡수하기에 유리한 morphology를 가지고 있기 때문으로 생각된다. 특히 높은 함량의 GNS를 포함하는 TiO₂-GNS 복합체의 경우 SEM 결과에서 알 수 있지만, 첨가된 GNS가 서로 동작하지 GNS로 둘러싸인 TiO₂로 인하여 TiO₂ 표면에 N3 염료가 흡수되는 양이 감소하기 때문에 흡수도가 감소하는 것으로 보인다.

GNS 양을 낮추어 형성된 TiO₂-GNS 복합체를 working
Table 2. Solar cell performance of DSSCs with different GNS-TiO2 composite electrodes

<table>
<thead>
<tr>
<th>Samples</th>
<th>Jsc (mA/cm²)</th>
<th>Voc (V)</th>
<th>FF</th>
<th>PCE (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>TiO2</td>
<td>8.67</td>
<td>0.76</td>
<td>0.68</td>
<td>4.53</td>
</tr>
<tr>
<td>TiO2-GNS0.01%</td>
<td>11.28</td>
<td>0.74</td>
<td>0.69</td>
<td>5.73</td>
</tr>
<tr>
<td>TiO2-GNS0.02%</td>
<td>10.01</td>
<td>0.70</td>
<td>0.68</td>
<td>5.21</td>
</tr>
<tr>
<td>TiO2-GNS0.03%</td>
<td>8.4</td>
<td>0.76</td>
<td>0.70</td>
<td>4.31</td>
</tr>
<tr>
<td>TiO2-GNS0.06%</td>
<td>8.0</td>
<td>0.69</td>
<td>0.67</td>
<td>3.72</td>
</tr>
<tr>
<td>TiO2-GNS0.2%</td>
<td>3.17</td>
<td>0.72</td>
<td>0.60</td>
<td>1.37</td>
</tr>
</tbody>
</table>

electrode로 사용하여 태양전지 소자를 제작하고 태양전지의 상대적인 광전율 성능을 평가하였다. Fig. 3는 각 소자에서 얻어진 전류밀도전압 그래프(current density-voltage, J-V curve)를 그래프로 표시하여 각 소자의 캐캐전압(open circuit voltage, Voc), 단락전류(short circuit current, Jsc), 전원효율(power conversion efficiency, PCE) 값을 나타낸다. GNS를 포함하지 않는 소자에서는 4.53%의 효율을 나타내었으며 GNS: 0.01% w/t가 첨가된 경우 소자의 효율이 증가함을 알 수 있었다. 즉 TiO2-GNS 0.01%의 working electrode를 사용한 전류밀도전압 그래프는 TiO2 전극을 사용한 소자에 비해 PCE 값이 약 27% 증가하여 5.73%를 보였으며 이는 8.67 mA/cm²에서 11.28 mA/cm²까지 약 30% 증가한 Jsc와 기인한 것이다. 이러한 Jsc의 큰 증가는 GNS을 침면함으로써 증가한 TiO2의 전도도 및 엠코를작용에 의한 것으로 생각되며 이 결과는 Fig. 1과 2에서 언급한 결과와 잘 일치함을 알 수 있었다. TiO2-GNS0.02%의 경우 GNS를 첨가하지 않은 소자에 비해 높은 Jsc와 효율을 나타내었으나 TiO2-GNS 0.01%보다는 감소된 성능을 보였 다. 또한 GNC 계열의 경우는 TiO2-GNS0.03% 소자로부터는 증가하여 Jsc가 감소하기 때문에 소자 효율이 저하됨을 알 수 있었다. 이는 결과를 참가된 GNS의 쩔임에 의한 TiO2와의 접촉 전도의 증가 및 전자 이동의 감소 그리고 제한된 온도의 증가로 기인한 것으로 해석된다.

Fig. 4는 1 Hz에서 100 kHz까지의 전류밀도영역에서 측정한 TiO2 및 TiO2-GNS 복합체 electrode의 임피던스 결과이다. Nyquist plot으로부터 알 수 있듯이 GNS의 참가함으로써 plot 안의 반원의 크기가 작아지게 되며 이는 고체 양액의 채널 저항 및 표면에서의 전하 이동 시 저항의 감소를 나타내는 것이다. 이러한 저항의 감소 또한 GNS를 참가함으로써 전자 재결합(electron recombination)과 back transport reaction의 감소에 기인한 것으로 생각된다.

4. 결 론
본 연구에서는 TiO2 nanoparticle와 GNS를 다른 농도로 혼합하여 FTO 코팅 유리 기판 위에 달리 붇게된 방법으로 고형화한 후에 제작한 working electrode의 DSSC 소자 특성을 평가하였다. GNS의 함량이 0.01~0.2 w/t로 변화하여 서로 다른 morphology 특성을 보였으며 0.01 w/t의 GNS가 포함된 TiO2가 침면 계열에 있어 저항을 줄이 수 있는 최적의 morphology를 보임을 알 수 있었다. 또한 이러한 morphology에서 N3 염료 농도가 증가하여 품질도가 좋 아졌음을 알 수 있었으며 이는 소자 특성에 직접적인 영향을 주었다. 태양전지 소자 특성에 있어 GNS가 참가되지 않은 TiO2 전극을 사용한 소자에 비해 0.01 w/t의 GNS가 참가된 소자의 경우 Jsc가 약 30%가 증가하여 전체 효율이 27% 증가함을 확인할 수 있었다. 이러한 소자 효율의 증가는 참가된 GNS의 온도의 증가 효과, 전자 재결합과 back transport reaction의 감소, 전자 수송의 증가로부터 기인한 것으로 생각된다.

감 사

참고문헌


