Preparation of Waterborne Polyurethane-Acrylic Hybrid Solutions from Different Types of Acrylate Monomers

Byung Suk Kim, Min Gi Hong, Byung Won Yoo**, Myung Goo Lee***, Woo Il Lee* and Ki Chang Song*

Department of Chemical and Biochemical Engineering, Konyang University, 26 Nae-dong, Nonsan-si, Chungnam 320-714, Korea
*Department of Pharmaceutics and Biotechnology, Konyang University, 26 Nae-dong, Nonsan-si, Chungnam 320-711, Korea
**Technical Research Institute, Hanyin Chemical Co., LTD, 333 Goecheon-dong, Uwang-si, Gyeonggi 437-801, Korea
***K.L. Tech Co., LTD 68 Yu-ri, Bongdam-eup, Hwasong-si, Gyeonggi 445-872, Korea

(Received 26 October 2011; accepted 30 November 2011)

요 약

Isophorone diisocyanate (IPDI), polycarbonate diol (PCD), dimethylol propionic acid (DMPA)로 구성된물로 하여 수 분산 폴리우레탄(waterborne polyurethane dispersion, PUD)을 합성하였다. 이 PUD에 아크릴 단량체인 HEMA (2-hydroxethyl methacrylate), MMA (methyl methacrylate), HEMA:BA (butylacrylate), HEMA:HEMA:BA (butyl methacrylate), HEMA:HEA (2-hydroxethyl acrylate), HEMA:2P3T (pentaerythritol triacrylate) 혼합물을 참가하여 수분산 폴리우레탄-아크릴 혼성 용액을 제조하였다. 또한 아크릴 단량체의 종류가 수분산 폴리우레탄-아크릴 혼성 용액의 내합성과 내

Abstract – Waterborne polyurethane dispersions (PUD) were synthesized from isophorone diisocyanate (IPDI), polycarbonate diol (PCD) and dimethylol propionic acid (DMPA) as starting materials. Subsequently, polyurethane-acrylic hybrid solutions were prepared by reacting the PUD with different types of acrylate monomers, such as HEMA (2-hydroxyethyl methacrylate), MMA (methyl methacrylate), HEMA:BA (butylacrylate), HEMA:HEA (2-hydroxethyl acrylate), HEMA:2P3T (pentaerythritol triacrylate) mixture. Also, the effects of acrylate types on the chemical resistance and the abrasion resistance of polyurethane-acrylic hybrid solutions were investigated. The test results showed that the HEMA:MMA mixture had the strongest chemical resistance, while the HEMA:2P3T mixture had the strongest abrasion resistance among several types of acrylate mixtures.

Key words: Waterborne Polyurethane, 2-hydroxyethyl Methacrylate, Methyl Methacrylate, Pentaerythritol Triacrylate, Waterborne Polyurethane-acrylic Hybrid Solutions

1. 서 론

1930년 말에 Otto Bayer에 의해 발명된 폴리우레탄은 내마모성, 유연성, 접착성, 내화성, 내착성, 크리스탈성, 루보성 등의 우수한 성

*To whom correspondence should be addressed.
E-mail: songkc@konyang.ac.kr

성으로 인하여 탄성체, 섬유, 합성개인, 도료, 목재 등의 많은 분야 에서 사용되고 있으며, 이의 사용에 대한 관심이 점점 높아지고 있 다[1-4]. 최근에는 환경에 대한 관심이 증대되면서 유기용제를 사용한 폴리우레탄이 점차 제한을 받고 있다. 이에 대한 대안으로 인체 와 환경적으로 무해한 물을 사용한 친환경적인 수분산 폴리우레탄 (waterborne polyurethane dispersion, PUD)의 연구와 용액에 대한
관심이 중대되고 있는 주제이다. PUD는 물에 대한 수용성과 녹는 성질을 중대시키기 위하여 플라우레탄의 폴리에 이르기까지 다양하게 중대되는 방법이 주로 사용되고 있다[5,8]. 그러나 이와 같은 방법은 기계적 인 기간과 편익은 우수하려면 이온들이 천수성적인 특성을 갖게 되어 몇 분량과 같은 용량에 대한 저항력이 발생하지 않는 문제가 있다[9].

이런 물성 특징의 문제는 해결하기 위해 저려하여 가스류 강도, 내수성, 내부화, 내화력성, 탱크, 안전성, 온화성 등이 우수한 아크릴 단백질을 PUD 수지 중에 도입하는 연구가 진행되고 있다[7]. 그러나 아크릴 단백질은 PUD 수지의 단순히 잘 점가할 경우에 물리 중합법에 따라 편익되는 물질들이 잘 발현되지 않는 경우가 많다[10]. 이러한 결과는 PUD와 아크릴 단백질 사이의 상 관계에 의한 불균일성 때문일 것으로 추정되고 있으며, 본자료 즉 저자분 수준의 편익은 물리학적 조치를 보이지 않는 것으로 알려져 있다[10]. 이러한 서로 다른 두 용액의 상 관계를 극복하기 위해 core-shell 형태의 중합이나, 서드 중합(seeded polymerization) 또는 inter-penetrating network (IPN) 중합 등의 다양한 연구가 수행되고 있다[10].

Shin 등[11]은 isophorone diisocyanate (IPDI), polycarbonate diol (PCD), dimethyl propionic acid (DMPA)를 수지물질로 하여 NCO terminated prepolymers로 제조하였다. 그 후 이 prepolymers에 다양한 아크릴 단백질인 2-hydroxyethyl methacrylate (HEMA), 2-hydroxyethyl acrylate (HEA), pentacyrthritol triacrylate (PETA)를 점가하여 주체 매탄산의 관에 NCO 기를カップ싱시켜 acrylated terminated prepolymers를 제조하였다. 이 용액은 연속적으로 저온 고수용성 및 사용 연장 과정을 거쳐 acrylated terminated waterborne polyurethane를 합성하였다. 그 결과는 제조된 용액으로부터 얻어진 고무막의 연장성 및 내마모성은 수수한 PUD보다 우수하였으며, 아크릴 단백질 중에서 PETA가 가장 우수한 편익을 보였다고 보고하였다.

본 연구에서는 PUD와 아크릴 단백질 사이에 분자 수준에서의 혼합이 이루어진 수분산 플라우레탄아크릴 혼성 중합체를 합성하기 위하여 Shin 등[11]의 연구와 달리 먼저 순수한 PUD를 제조한 후 이것을 아크릴 단백질과 반응시켰다. 즉, prepolymers의 수분산 및 사용 연장 과정을 거쳐 PUD를 먼저 편합한 후 이것을 서드 중합 시드로 하여 여기에 아크릴 단백질인 2-hydroxyethyl methacrylate (HEMA)와 methyl methacrylate (MMA), butyl methacrylate (BMA), butyl acrylate (BA), 2-hydroxyethyl acrylate (HEA), pentacyrthritol triacrylate (PETA)를 각각 혼합한 아크릴 혼합물을 중합함으로써 혼합에 의해 최종의 수분 산 플라우레탄아크릴 혼성 용액을 제조하였다. 이 용액 속으로부터 제조된 고무막의 연장성, 내마모성 및 내내장성 등의 물성에 미치는 아크릴 단백질의 중류 변화의 영향을 조사하였다.

2. 실험

2.1. 사작

본 연구에서는 isophorone diisocyanate (IPDI, 98%, Aldrich), 플라우레탄 아크릴 폴리에 diol (PCD, Mw: 1000, Asahi Kasei)를 사용하였다. 또한 주체 중에는 고수용성과 도입하기 위해 dimethyl propionic acid (DMPA, 98%, Aldrich)를 사용하였으며, DMPA의 용액으로서 1-methyl-2-pyrrolidinone (NMP, 99%, Aldrich)를 사용하였다. 촉매로는 dibutyltin dilaurate (DBTDL, 95%, Aldrich) 중합체는 triethylamine (TEA, 95.9%, Aldrich) 사용하였다. 슬연장체로서 1,4-butanediol (1,4-BD, 99%, Aldrich) 각각 사용하였다. 한편 플라우레탄아크릴 혼성 안전면을 합성하기 위한 아크릴 단백질로는 2-hydroxyethyl methacrylate (HEMA, 97%, Aldrich), methyl methacrylate (MMA, 97%, Aldrich), 2-hydroxyethyl acrylate (HEA, 96%, Aldrich), butyl acrylate (BA, 97%, Aldrich), butyl methacrylate (BMA, 97%, Aldrich) 및 pentacyrthritol triacrylate (PETA, Miswon Commercial, Korea)를 사용하였다. 또한 개성제로는 potassium persulfate (KPS, 97%, Aldrich)를 사용하였고 폴리에 diol을 발수하려면 조성 산성 완전에 따라 최소수수(2자 중류수)를 사용하였다. PCD는 30℃ 건조기에 보관 후 사용하였으며, 나머지 사항은 계열 및 약성 처리과정 없이 그대로 사용하였다. 또한 경사 시간 단축과 편익 향상 목적으로 볼 릿와 경주 체력 Cymel 327 (CYTEC, USA)를 사용하였다.

2.2. 합성 방법

본 연구에서는 PCD, IPDI, PCD를 출발물질로 하여 PUD를 합성하였다. 고수용성 그룹을 가진 DMPA를 NMP에 용해시켜 PCD, IPDI, DBTDL과 같은 75℃의 3hr 동안 교반하면서 중합하여 NCO terminated prepolymers을 제조하였다. Prepolymer 합성 후 75℃로 유지하면서 사상장내의 1,4-BD를 반응시켜 사상장산물로 75℃ 편합시켜서 1hr 동안 반응시켜서 형성된 COOH 그룹을 중합시켰다. 이 용액에 중류유를 서시히 투입할 1,000 rpm으로 교반하여 수분산 용액을 수지용 편합모에 PUD를 합성하였다. 제조된 플라우레탄아크릴 혼성 코팅액을 합성하기 위하여 먼저 합성된 PUD에 아크릴 단백질인 HEMA 0.0025부, HMA, BA, PETA를 각각 0.0058 부 혼합한 아크릴 용액을 투입하여 10 min 동안 교반하였다. 아크릴 단백질의 중합이 편업하기 위한 온도는 80°C로 승은지 주고 수용성 계기성 KPS 엽결로 하여 아크릴 단백질의 중합을 형성한 후 이것을 아크릴 단백질과 반응시켰다. 총, prepolymers의 수분성 및 사용 연장 과정을 거쳐 PUD를 먼저 편합한 후 이것을 서드 중합 시드로 하여 여기에 아크릴 단백질인 2-hydroxyethyl methacrylate (HEMA)와 methyl methacrylate (MMA), butyl methacrylate (BMA), butyl acrylate (BA), 2-hydroxyethyl acrylate (HEA), pentacyrthritol triacrylate (PETA)를 각각 혼합한 아크릴 혼합물을 중합함으로써 혼합에 의해 최종의 수분 산 플라우레탄아크릴 혼성 용액을 제조하였다. 이 용액 속으로부터 제조된 고무막의 연장성, 내마모성 및 내내장성 등의 물성에 미치는 아크릴 단백질의 중류 변화의 영향을 조사하였다.

2.3. 분석 방법

2.3-1. 화학적 구조분석

FT-IR (FTIR-8400S, Shimadzu) 을 이용하여 제조된 NCO terminated prepolymer의 구조 분석을 하였다. 시료는 KBr 판에 고체 도포한 다음 분광계로 제조한 후 주요 하영기 기록하였고, 구조분석을 통해 prepolymers 내에 존재하는 미량의 NCO 기의 반응 진행 여부를 확인하였다.

2.3-2. 연령도

연령도는 연령도 측정기(CORE TECH, Korea)에 연령도 측정용 연령도를 45° 각도로 가우고, 하중 (1kg)을 가하여 5-8회 정도 면이 분명하도록 하여 측정하였다. 연령도는 Mitsubishi 연령도 사용하였는데, H-9H, F, HB, B-68 등의 강도를 나타내는 연령도

Table 1. Recipe for the preparation of waterborne polyurethane-acrylic hybrid solutions

<table>
<thead>
<tr>
<th>Sample code</th>
<th>PCD mol</th>
<th>IPDI mol</th>
<th>DMPA mol</th>
<th>TEA mol</th>
<th>HEMA mol</th>
<th>MMA mol</th>
<th>BMA mol</th>
<th>HEA mol</th>
<th>BA mol</th>
<th>PETA mol</th>
<th>1,4-BD mol</th>
<th>Water g</th>
</tr>
</thead>
<tbody>
<tr>
<td>PUD</td>
<td>0.0245</td>
<td>0.0585</td>
<td>0.0205</td>
<td>0.0205</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.0135</td>
<td>90</td>
</tr>
<tr>
<td>HEMA:MA</td>
<td>0.0245</td>
<td>0.0585</td>
<td>0.0205</td>
<td>0.0205</td>
<td>0.0285</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.0135</td>
<td>90</td>
</tr>
<tr>
<td>HEMA:BA</td>
<td>0.0245</td>
<td>0.0585</td>
<td>0.0205</td>
<td>0.0205</td>
<td>0.0285</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.0135</td>
<td>90</td>
</tr>
<tr>
<td>HEMA:HEA</td>
<td>0.0245</td>
<td>0.0585</td>
<td>0.0205</td>
<td>0.0205</td>
<td>0.0285</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.0135</td>
<td>90</td>
</tr>
<tr>
<td>HEMA:PETA</td>
<td>0.0245</td>
<td>0.0585</td>
<td>0.0205</td>
<td>0.0205</td>
<td>0.0285</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.0135</td>
<td>90</td>
</tr>
</tbody>
</table>

Fig. 1. Overall reaction scheme to prepare waterborne polyurethane-acrylic hybrid solutions.

사용하였다.

2-3-3. 접착력

ASTM D 3359[12]에 근거하여 강화된 코팅 중에 cutter로 박판
모양의 홈을 냄 후 그 위에 3 M 테이프를 잘 밀착시키고 난편한
로 수확 메이내이 코팅 중과 기계의 남작정도를 관찰하였다. 코팅
된 지질의 표면이 1 mm 강직이 11×11로 삼각형으로 갈집을 나며
100개의 정방형을 만들고, 그 위에 테이프(GM Tune)를 부착한 후 접
착력을 약 1 hour 받은 표면을 평가하였다. 이때 남은 눈의 수가 1개
면 5B, 95개 이상은 4B, 85개 이상은 3B, 65개 이상은 2B, 35개 이상
은 1B, 그 이하는 0B로 나타내었다.

2-3-4. 두화용

개체의 유리 기판 위에 코팅 된 도막의 두화용을 측정하기 위하여
UV-Visible spectrometer (UV-2450, Shimadzu)를 사용하여 200
부터 800 nm의 범위에서 두화용을 관찰하였다.

2-3-5. 내마모성

코팅된 도막의 내마모성을 측정하기 위하여 Taber abraser
(QM600T, Qmesys, Korea)를 사용하여 5000 회의 하중 하에서 70 rpm의
속도로 100회 마모시킨 후 UV-Visible spectrometer (UV-2450),
Shimadzu를 사용하여 600 nm의 파장에서 두화용 손상을 측정하
여 코팅 도막의 내마모성을 비교 판찰하였다.

2-3-6. 내약성

코팅된 도막의 내약성을 측정하기 위하여 Rubbing Tester (SPG
Korea)를 사용하여 회전 속도 40 rpm 조건에서 1 kg 하중 하에서 측정
하였다. Rubbing 후 지우는 공업용 고무지우기(Munbangsawoo,

아크릴 단량체의 종류 변화에 의한 수분산 폴리우레탄-아크릴 혼성 용액의 제조

2-3-7. 절도
제조된 용액의 절도는 회전 절도측정기(LVDV-II+P, BROOKFIELD, USA)를 사용하여 측정하였다. 이때 spindle은 62를 사용하였으며, 6, 12, 30, 60 rpm의 조건에서 절도를 측정하였다.

2-3-8. 고형분 함유량
고형분 측정은낭머리 호일관에 의해 시료 3 g을 두입하여 120℃의 건조기에서 1 hr 동안 건조시켜 용액을 증발시킴에 의해 고형분 함량을 측정하였다.

2-3-9. 반응율 및 전환율
PUD에 아크릴 단량체를 참가하여 폴리우레탄-아크릴 혼성 용액의 제조 시 반응되는 반응율의 측정을 위해 삼구 폴라스코 에 온도계를 장착하여 반응시점 변화에 따른 용액의 온도를 측정하였다. 또한 수분산 폴리우레탄-아크릴 혼성 용액의 중합시 PUD에 아크릴 단량체를 두입하는 시점부터 반응은 진행되며 시료를 세척하여 반응물의 고형분 함량을 측정하여 이와 같은 식에서 계산한 전환율을 계산하였다.

전환율\(\frac{W_f}{W_i} \times 100\% \)
여기에서 \(W_f \)은전조 시료 질량(g)
\(W_i \)은처분 시료 질량(g)

2-3-10. 임도
여러 조건으로 제조된 용액의 임도를 light scattering을 이용한 임도분석기(Nicomp, model 380, USA)를 사용하여 측정하였다.

2-3-11. 코딩 도막 두께
코딩 도막의 두께 측정은 게이지 미터(Model-S112, JAPAN)를 사용하여 기계 자체의 두께로 초기 값을 둔 뒤 코딩 도막의 두께를 측정하여 도막의 두께를 측정하였다.

3. 결과 및 토론

3-1. 화학적 구조 분석

Fig. 2는 Fig. 1의 수분산 폴리우레탄-아크릴 혼성 용액의 혼성 공정에서 촬영된 IR, PDI, PCD, DMPA를 혼합하여 폴리우레탄 prepolymere의 혼합 시 반응시간 변화에 따라 생성된 NCO terminated prepolymere의 FT-IR spectra 측정 결과는. 이 그림 모두에서 3,300 cm⁻¹에서의 NH bending, 1,610-1,560 cm⁻¹에서의 COO stretch가 나타났으며, 1 hr 이상 반응 시 폴리우레탄 prepolymere가 형성됨을 알 수 있었다[5-6]. 또한 반응이 진행됨에 따라 2,260 cm⁻¹ 무균의 NCO stretch 피크의 강도가 점차 줄어드는 것으로부터 반응시간 증가가 prepolymere 내의 NCO 양을 감소시키는 것을 확인할 수 있었다[7]. 또한 Fig. 2d에서 알 수 있듯이 prepolymere 혼합 후 시험연 장재(1,4-BD)를 참가하여 제조된 폴리우레탄에서는 1,4-BD의 참가에 의해 나이 있는 NCO가 거의 모두 반응에 참여해 잔여 NCO가 거의 없음을 확인할 수 있었다.

3-2. 입도분석

Fig. 3은 PUD를 시료로 하여 폴리우레탄 prepolymer 데바이 15 wt%의 아크릴 함량으로 HEMA와 여러 아크릴 단량체(MMA, BMA, HEA, PETA)의 혼합물을 사용하여 중합한 폴리우레탄-아크릴 혼성 용액의 평균입경을 나타낸 그림이다. 순수한 PUD는 32 nm의 평균 입경을 나타내었으나, HEMA:MMA:HEMA:BMA는 105 nm, HEMA:HEA는 150 nm, HEMA:PETA는 230 nm로 순수한 PUD보다는 폴리우레탄-아크릴 혼성 용액의 평균입경이 큼을 알 수 있었다. 이는 PUD를 시료로 하여 편성된 폴리우레탄-아크릴 혼성 용액의 입자 크기가 PUD보다 작았음을 의미한다. 또한 폴리우레탄-아크릴 혼성 용액의 평균입경을 비교하여 보면 HEMA와 혼합되는 아크릴 단량체의 분자량이 큰 순서

![Fig. 2. FT-IR spectra of NCO terminated polyurethanes obtained after reacting with different reaction times. a) 1 hr, b) 2 hr, c) 3 hr, d) waterborne polyurethane after chain extension.](image)

![Fig. 3. Particle size distributions of waterborne polyurethane-acrylic hybrid solutions prepared with different types of acrylate monomers.](image)
3.3. 점도분석

Fig. 4는 Table 1의 다양한 종류의 아크릴 단량체를 사용하여 합성한 폴리우레탄-아크릴 혼성 용액의 점도를 Brookfield 점도계를 사용하여 측정한 결과이다. 모든 용액은 spindle의 회전 속도와 무관하게 점도가 일정한 Newtonian 거동을 보였다. 순수 PUD는 5 cP, HEMA:BA 용액은 96 cP, HEMA:BA:MA 용액은 130 cP, HEMA:HEA 용액은 144 cP, HEMA:MMA 용액은 145 cP, HEMA:PETA 용액은 190 cP의 점도를 나타내었다. 이처럼 순수 PUD와 폴리우레탄-아크릴 혼성 용액의 점도 값에서 큰 차이를 보이는 이유는 PUD를 시드로 하여 중합된 폴리우레탄-아크릴 혼성 에틸렌의 입자 크기가 순수 PUD보다 크기 때문으로 판단된다.

3.4. 반응율과 전환율

Fig. 5와 Fig. 6는 PUD를 시드로 하고 다양한 종류의 아크릴 단량체를 참가하여 폴리우레탄-아크릴 혼성 용액의 합성시 반응조건 변화에 따른 용액의 온도를 측정한 결과이다. 아크릴 단량체의 종류 반응은 발생반응으로 반응시간 경과에 따라 용액의 온도는 높아지며, 모든 경우에 있어 증합 후 2hr에서 가장 높은 반응온도를 나타내었다. 반응온도는 HEMA:MMA의 경우가 가장 높았으며, HEMA:BA, HEMA:HEA, HEMA:HEA는 순서로 반응온도가 낮아졌다.

Fig. 6은 PUD를 시도를 하고 아크릴 단량체를 참가하여 폴리우레탄-아크릴 혼성 용액의 전환율을 측정한 결과이다. 전환율은 그림에서 보는 바와 같이 2hr까지는 상승률이 크지만, 2hr 이후에는 상승률이 나타나지 않았다. 한편 아크릴 단량체 종류에 따른 전환율에 있어서는 HEMA:MMA가 가장 높은 전환율을 보여 3hr 경과시 93.8%를 나타내었다. 그 다음으로는 HEMA:BA가 84.5%, HEMA:HEA가 80.0%, HEMA:PETA가 76.7%, HEMA:BA가 74.1%의 전환율을 보여, Fig. 5의 반응온도와 같은 경향을 보였다.

3.5. 도막의 투과도와 내마모성

Fig. 7은 아크릴 단량체의 종류를 변화시켜 합성된 폴리우레탄-아크릴 혼성 용액을 유리 판재에 코팅하여 형성된 두께 28-30μm 정도의(Table 2 참조) 코팅 도막의 투과율을 측정한 결과로서 모든 시료들이 가시광선 영역(400-800nm)에서 전체적으로 60%의 높은 투과율을 보였다.

Fig. 8은 아크릴 단량체의 종류를 변화시켜 합성된 폴리우레탄-아크릴 혼성 용액을 유리 기체 위에 코팅 도막을 형성하여 내마모도를 측정한 결과이다. 이에 코팅 도막의 내마모도를 측정하기 위하여 Tabor abraser를 사용하여 500g의 내마모 힘으로 70rpm의 속도로 코팅 도막을 100회 마모시킨 후 마모 정도를 UV-Visible spectrometer을 사용하여 600nm의 파장에서 코팅 도막의 투과율을 측정하여 결정하였다. 코팅 도막의 내마모도 정도는 다음과 같이 투과도 손실 % (Transmittance Loss%)를 정의하여 결정하였으며, 투과율 손실 %가 작을수록 코팅 도막의 내마모도가 우수함을 의미한다[14].

투과도 손실 % (Transmittance Loss%)=100(B-A)/B

여기서 A=시료의 내마모 측정 후의 600 nm 파장에서의 투과율(%)
아크릴 단량체의 종류 변화에 의한 수분산 폴리우레탄 아크릴 혼성 응용의 제조

에 코딩 도막의 내구성이 증가하게 된다고 판단된다[11]. 아크릴 단량체 중에서도 HEMA:PETA가 첨가된 코딩 도막의 내마모성이 가장 우수한 것을 알 수 있었는데 이는 PETA는 3성의 아크릴기기로 구성되어 있어 1성의 아크릴기기로 구성된 다른 아크릴 단량체보다 더 화학적 가교합도를 증가시키기 때문으로 판단된다. 반면에 HEMA:BA의 경우에는 BA의 Tg가 낮아 상온에서 연주성이 강해 두께를 80% 이상 63%로 순수한 PUD의 경우와 거의 같은 수치를 보여 내마모성이 증가되며 못했음을 알 수 있었다.

3-6. 도막의 연주성 및 부착성
Table 2: 아크릴 단량체의 종류 변화가 코딩 도막의 연주성 및 부착력에 미치는 영향을 측정한 결과이다. 순수한 PUD의 경우에는 3성의 연주성을 나타내어 좋지 못한 표면연도를 보였다. 그러나 아크릴 단량체를 사용 시에는 대부분의 경우에 있어서 연주성을 향상시켰는데 HEMA:MA와 HEMA:BMA의 경우에는 2성의 연주성도, HEMA:HEA의 경우에는 2성, HEMA:PETA의 경우에는 가장 우수한 5성의 연주성을 나타내었다. 그러나 HEMA:BA를 사용 시에는 연주성도 3 성으로 순수한 PUD와 같은 표면연도를 나타내었는데, 이는 앞 설에서 언급한 바와 같이 BA의 Tg가 낮아 상온에서 연주성을 나타내기 때문으로 판단된다. 이에 따라 실용적 사용에 적합한 단량체의 희석한 결과를 나타내었는데 이는 아크릴 단량체의 고유 특성에 기인할 것으로, 특히 PETA는 아크릴기를 3개 가지고 있으므로 다른 아크릴 단량체 보다 가교합도를 증가시키므로 F의 가장 높은 연주성을 나타내었다.

부착력은 모든 시료의 경우에 5성으로 우수한 결과를 나타내었는데 이는 DMPA와 polyol의 배합 비율이 적합하며, 기계와 폴리우레탄을 같이 가교합함에 잘 이루어졌으며 높은 부착력을 나타낸다고 판단된다.

3-7. 내마모성
PUD는 용제형 폴리우레탄보다 내마모성이 뛰어나는 문제점이 있 다. 그 이유는 순수성 이온기인 DMPA가 첨과 와축성의 성분을 동시에 나타내므로 폴리우레탄 액체형의 수분진을 가능하게 하지만 코딩 도막의 경화 후에 물 또는 알콜과 같은 극성용매에 접촉시켜 되면 DMPA의 첨수성으로 인해 도막이 쉽게 용해되는 문제점이 발생하기 때문이다. 따라서 본 연구에서는 내마모성을 향상시키기 위해 PUD의 아크릴 단량체를 도입하였으며, Rubbing Test에서 사용하던 독장액을 놓고 도막의 양을 두배로 높여서 코딩 도막을 벗겨 테스트에서 주 무 intervening 수를 측정함에 의해 코딩 도막의 내마모성 향상 정도를 측정하였다.

Table 3은 아크릴 단량체의 종류를 알아보며 코딩 도막의 내마모성을 측정한 표로, 메탄올과 에탄올 내마모성 측정을 위한

<table>
<thead>
<tr>
<th>Sample code</th>
<th>The number of revolution</th>
</tr>
</thead>
<tbody>
<tr>
<td>PUD</td>
<td>43</td>
</tr>
<tr>
<td>HEMA:MA</td>
<td>645</td>
</tr>
<tr>
<td>HEMA:BMA</td>
<td>390</td>
</tr>
<tr>
<td>HEMA:HEA</td>
<td>345</td>
</tr>
<tr>
<td>HEMA:BA</td>
<td>21</td>
</tr>
<tr>
<td>HEMA:PETA</td>
<td>240</td>
</tr>
</tbody>
</table>

서로를 사용하였다. 그 결과 순수한 PUD는 메탄을 43회, 메탄을 80
회로 낮은 내압증상을 나타내었다. 그러나 HEMA와 중합하는 아크
릴 단량체의 종류를 MMA, BMA, HEA, BA, PETA로 각각 변화시
켜 내압증상을 측정한 결과 MMA, BMA, HEA, PETA의 경우에는
 내압증상의 향상을 나타내었으며 그 중 MMA의 경우 메탄을 645
회, 메탄을 711회의 가장 우수한 내압증상을 나타내었다. 그러나 BA
의 경우에는 메탄을 21회, 메탄을 39회로 순수한 PUD 보다 내압증
상이 좋지 못했다.

4. 결 론
본 연구에서는 IPDI, PCD, DMPA를 이용하여 물에 분산시킨
PUD을 제조한 후 이것을 시도로 하여 다양한 아크릴 단량체를 함
가하여 수분산 폴리우레탄-아크릴 혼성 용액을 합성하여 다음과 같
은 결론을 얻을 수 있었다.

(1) 순수한 PUD는 32 nm의 평균입경을 나타내었으며, 아크릴 단
량체인 HEMA:MMA의 참가로 인하여 폴리우레탄-아크릴 혼성 용
액은 70 nm, HEMA:BMA는 105 nm, HEMA:HEA는 150 nm, HEMA:
PETA는 230 nm으로 순수한 PUD 보다는 폴리우레탄-아크릴 혼성 용
액의 평균입경이 줄을 알 수 있었다. 이는 수분산 폴리우레탄을 시
드로 하여 중합된 폴리우레탄-아크릴 혼성 용액 내의 입자 크기가
PUD 보다 경향졌음을 의미한다.

(2) 아크릴 단량체 종류에 따른 전환율에 있어서는 HEMA:MMA
가 가장 높은 전환율을 보이 3hr 경과 시 93.8%를 나타내었다. 그
다음으로는 HEMA:BMA가 84.5% HEMA:HEA가 80.0% HEMA:
PETA가 76.7%, HEMA:BA가 74.1%의 전환율을 보이며, 반응온도와
같은 경향을 보였다.

(3) HEMA와 혼합되는 아크릴 단량체의 종류를 각자 MMA, BMA,
PETA로 하여 합성된 코팅 도막은 순수한 PUD 보다 향상된 내암증상과 영양경도를 나타내었으며 그중에서도 PETA가 가장 우
수하였고, 아크릴 단량체의 종류가 BA인 경우에는 순수
PUD 보다 낮은 염결점과 내압증상을 나타내었다.

(4) HEMA와 중합하는 아크릴 단량체의 종류를 각자 MMA, BMA,
HEMA, HEA, BA, PETA로 변화하여 내압증상을 측정한 결과 MMA,
HEMA, HEA, PETA의 경우에는 내압증상의 향상을 나타내었으며 그
중 MMA의 경우 메탄을 645회, 메탄을 711회의 가장 우수한 내암증
상성을 나타내었다. 그러나 BA의 경우에는 메탄을 21회, 메탄을
39회로 순수한 PUD 보다 내압증상이 좋지 못했다.

감 사
본 연구는 지식경제부의 산업기원기술개발 사업의 일환으로 연
구되었습니다.

참고문헌
Separation of Water-Borne Polyurethane Based on Poly(ethyl-
(2000).
Performance of 4HBA Modified High Solid Acrylic Polyurethane
Polyurethane Ionomer Acrylates,” Polymer, 37(11), 2251-2257
(1996).
5. Shin, Y. T., Hong, M. G., Choi, J. J., Lee, W. K., Lee, G. B., Yoo,
B. W., Lee, M. G. and Song, K. C., “Preparation and Properties
of Aminosilane Terminated Waterborne Polyurethane,” Korean
B. W., Lee, M. G. and Song, K. C., “Preparation of Silylated
Waterborne Polyurethane/Silica Nanocomposites Using Colloidal
7. Shin, Y. T., Hong, M. G., Choi, J. J., Lee, W. K., Yoo, B. W., Lee,
M. G. and Song, K. C., “Effect of Addition of Pentaerythritol
Triacrylate on the Properties of Waterborne Polyurethane,” ibid.,
and Composition in Segmented Polyurethane Ionomers,” Polymer
(Korea), 16(5), 604-608(1992).
Silicon and Phosphorus on the Degradation of Polyurethanes,”
10. Han, S. H. and Park, D. W., “A Study on the Curing Character-
istics and the Synthesis of Polyurethane Acrylate Hybrid Emul-
11. Shin, Y. T., Hong, Kim, B. S., Lee, W. K., Yoo, B. W., Lee, M.
G. and Song, K. C., “Effect of Types of Acrylate Monomers on
the Properties of Waterborne Polyurethane Dispersion,” Korean
12. ASTM D 3359, “Standard Test Methods for Measuring Adhe-
13. Kim, H. T. and Lee, M. C., “Study on the Preparation and Prop-
Organic-Inorganic Hybrid Hard Coatings Using Alumina Sols