
Jeong Hwan Chun, Dong Hyun Jo, Ji Young Lee and Sung Hyun Kim

Department of Chemical & Biological Engineering, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 136-701, Korea

(Received 14 October 2011; accepted 7 December 2011)

요 약

본 연구에서는 고분자형 연료전지(PEMFC) 내의 기체확산층(GDL)에서의 물질 거동 전산해석을 통하여 GDL 물성이 전지성능에 미치는 영향을 알아보았다. GDL 내에서 기상의 산소와 액상의 물의 거동을 계산하기 위하여 multi-phase mixture(M2) 모델을 사용하였다. GDL의 접촉각, 기공도, 기체투과도, 두께에 변화를 주며 계산을 실시하여 GDL 내에서의 물질 거동의 변화를 확인하였고, GDL 물성이 전지성능에 미치는 영향을 파악하였다. 전산해석 결과, GDL의 접촉각과 기공도가 커지며, 두께가 줄수록 물이 증가하며 GDL과 측면사이의 계면에서의 물포화도가 낮아지고 산소도는 증가하여 전지성능이 향상되는 것을 확인하였다.

Abstract – In this study, the effect of properties of gas diffusion layer (GDL) on the performance of polymer electrolyte membrane fuel cell (PEMFC) was investigated using the numerical simulation. The multi-phase mixture (M2) model was used to calculate liquid water saturation and oxygen concentration in GDL. PEMFC properties, which were contact angle, porosity, gas permeability and thickness, were changed to investigate the effect of GDL properties on the performance of PEMFC. The results demonstrated that performance of PEMFC was increased with increasing contact angle and porosity of GDL, but decreased with increasing thickness of GDL. The liquid water saturation was decreased but oxygen concentration was increased at the GDL-catalyst layer interface, because the mass transfer resistance decreased as the porosity and contact angle increased. On the other hands, as the thickness of GDL increased, pathway for liquid water and oxygen gas became longer, and then mass transfer resistance increased. For this reason, performance of PEMFC decreased with increasing thickness of GDL.

Key words: Polymer electrolyte membrane fuel cell (PEMFC), Gas diffusion layer (GDL), Multi-phase mixture (M2) model

1. 서 론

고분자형 연료전지(PEMFC: polymer electrolyte membrane fuel cell)는 전력 생산 효율이 높고 소음이 적으며 환경오염 물질을 발생시키지 않는 장점으로 인해 가까이 미래에 수용될, 발전을 전환장치로 적용될 가능성이 큰 것으로 예상되고 있다[12]. 박 전진 정책에 의해 PEMFC의 성능에 막대한 영향을 미치는 구성요소로서의 해결책, 압축과 축면층 그리고 기체확산층(GDL: gas diffusion layer)으로 이루어져 있다. GDL은 PEMFC의 원료물질인 수소와 산소, 그리고 전기화학반응을 통해 생성된 물이 배출되는 동로이며, 또한 전지의 이동도가기도 하다. 따라서 GDL은 전기전도성이 우수하고 기공도가 큰 물질이 사용된다. PEMFC 내에서 GDL의 역할은 원료가스를 축면층까지 전달하여 축면층에서 발생하는 물을 제거하는 역할이므로 GDL 내에서의 물질전달은 전지성능에 미치는 영향을 미친다[3-7].

본 연구에서는 GDL 내에서의 물질거동 전산해석을 위하여 multi-phase mixture model[8]을 적용하여 GDL의 다양한 물질 변화가 물질 거동과 PEMFC의 성능에 미치는 영향을 알아보았다. 기존의 연구에서 사용된 물질과 실제 실험을 통해 얻은 물질을 사용하여 전산 해석을 실시하였고, GDL의 기공도, 접촉각, 두께, 기체투과도 등이 전지성능에 미치는 영향을 파악하였다.
2. 전산해석

2-1. 전산해석 모델

PEMFC의 양극 GDL에서는 원료가스이름 산소와 반응생성물인 물이 공존한다. 따라서 기상의 산소와 액상의 물을 동시에 고려한 two-phase 모델을 선택하였다. 그 중에서도 또 양을 하나로 통합하여 상권의 균질한 이동식을 사용하지 않으며, 물상 변량에 따른 반

적용이 유의한 multi-phase mixture(MF) 모델을 사용하여 전산해석을 수행하였다.

Fig. 1은 양극 GDL 내의 물질건전전산해석을 위한 PEMFC의 양

극 구성요소와 계산영역을 나타낸다. 또한 다음과 같은 가정을 통해

이 계산을 좀더 효율적으로 수행하였다. 첫째, GDL의 물성

은 위치에 관계없이 동일한 값을 갖는다(isotropic, homogeneous). 둘

째, 기상품질은 이상기체이며, 액상은 녹지 않는 것이다.셋째, 양극 GDL

계는 높은이로서 정상상태를 유지한다. 넷째, 양극 측방온은 매우 낮아

서 표면에서만 반응이 일어난다.

2-2. 양극 GDL 내의 물질 가동

양극 GDL 내에서 2상 혼합물의 물질 보존식은 다음과 같이 줄 수 있다.

\[
\frac{\partial \rho}{\partial t} + \nabla \cdot (\rho \mathbf{u}) = 0
\] (1)

여기서 \(\rho \)는 기체공, \(\rho \)는 2상 혼합물의 밀도, \(\mathbf{u} \)는 2상 혼합물의 혼합

속도장에서의 속도이다. 동량보존식은 Darcy의 법칙에 따라 식

(2)와 같다.

\[
\mathbf{u} = -k \frac{\nabla P}{\mu_k} (P_f - P_g)
\] (2)

여기서 \(k \)는 기계절도, \(\mu_k \)는 상대공, \(P \)는 점압, \(P \)는 중력력을 나타내고, 아래첨자 \(k \)는 중류를 의미한다.

(1)식에서부터 액상 물과 기상 산소 물질거리를 나타내는 2개의 지하방정식을 얻을 수 있다. 물의 포화도 (liquid water saturation)를 계산하는 물의 보존식은 다음과 같다.

\[
\left(1 + \frac{\rho_s}{\rho_f} \right) \frac{1}{2} \left[\frac{1}{2} \left(1 + \alpha \right) M^{\alpha} + \frac{1}{4} M_f \right] \\
+ \left[\frac{\rho_s}{\rho_f} \right] \frac{1}{2} \left(1 + \alpha \right) M_f = \frac{1}{2} \left(1 + \alpha \right) M_f
\] (3)

\(\alpha \)는 전류밀도, \(\rho \)는 전류전력, \(M \)는 전력 전류, \(R \)는 전력 상수, \(T \)는 점액 온도, 그리고 \(\eta \)는 분압을 나타낸다. 이때의 전력 전

압은 다음과 같이 나타낸다.

\[
V = V_m - \eta
\] (4)

\(V_m \)는 고해밀도의 전압이고, \(\eta \)는 전압전력이다. 전압전력은 전해질 뿌리하면서 생기기 때문에 다음과 같이 표현해 볼 수 있다.

\[
\eta = \frac{H_i}{\sigma_m}
\] (5)

\(H_i \)는 전해질 뿌리의 두께, \(\sigma_m \)는 전해질 뿌리의 이온 전도도이다. 이렇게 계산한 전류전력과 전압을 바탕으로 PEMFC 전자양송을 나타내는 I-V 곡선을 얻을 수 있다.

식 (3)과 (4)는 각각 물포화도(\(\rho \)\(\rho \))와 산소등도(\(\rho_s \))에 대한 1차 미분

방정식으로서 fourth-order Runge-Kutta method를 사용하여 해결될 수 있다.

Table 1. The properties of GDLs

<table>
<thead>
<tr>
<th>Contact Angle (°)</th>
<th>Thickness (m)</th>
<th>Permeability (m²)</th>
<th>Porosity</th>
<th>Pore size (m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>138.5</td>
<td>2.80 x 10⁻⁴</td>
<td>0.3427 x 10⁻⁴</td>
<td>0.84</td>
<td>1.3 x 10⁻⁸</td>
</tr>
</tbody>
</table>

Table 2. Physical properties and parameters

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Property</th>
<th>Unit</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>R</td>
<td>Gas constant</td>
<td>J/mol·K</td>
<td>8.314</td>
</tr>
<tr>
<td>F</td>
<td>Faraday constant</td>
<td>C/mol</td>
<td>96487</td>
</tr>
<tr>
<td>Mw</td>
<td>Water molecular weight</td>
<td>kg/mol</td>
<td>0.18</td>
</tr>
<tr>
<td>Mo</td>
<td>Oxygen molecular weight</td>
<td>kg/mol</td>
<td>0.032</td>
</tr>
<tr>
<td>ρ_l</td>
<td>Liquid water density</td>
<td>kg/m³</td>
<td>983.2</td>
</tr>
<tr>
<td>ρ_g</td>
<td>Gas oxygen density</td>
<td>kg/m³</td>
<td>1.0382</td>
</tr>
<tr>
<td>μ_l</td>
<td>Liquid water viscosity</td>
<td>Pa·s</td>
<td>4.72 x 10⁻⁴</td>
</tr>
<tr>
<td>μ_g</td>
<td>Gas oxygen viscosity</td>
<td>Pa·s</td>
<td>20.3 x 10⁻⁶</td>
</tr>
<tr>
<td>β_{0G}</td>
<td>Gas oxygen diffusivity</td>
<td>m²/s</td>
<td>1.805 x 10⁻⁵</td>
</tr>
<tr>
<td>T</td>
<td>Temperature</td>
<td>K</td>
<td>343</td>
</tr>
<tr>
<td>P</td>
<td>Pressure</td>
<td>Pa</td>
<td>1.013 x 10⁴</td>
</tr>
<tr>
<td>C_{in}</td>
<td>Inlet oxygen mass fraction</td>
<td>–</td>
<td>0.21</td>
</tr>
<tr>
<td>ω_{in}</td>
<td>Inlet velocity</td>
<td>m/s</td>
<td>1</td>
</tr>
<tr>
<td>V_{OC}</td>
<td>Open circuit voltage</td>
<td>V</td>
<td>1.1</td>
</tr>
<tr>
<td>L</td>
<td>Channel length</td>
<td>m</td>
<td>0.05</td>
</tr>
<tr>
<td>H_{G}</td>
<td>Gas channel thickness</td>
<td>m</td>
<td>0.001</td>
</tr>
<tr>
<td>l</td>
<td>Current density</td>
<td>A/m²</td>
<td>12000</td>
</tr>
<tr>
<td>σ_{CM}</td>
<td>Constant in Tafel equation</td>
<td>A/m²</td>
<td>3125</td>
</tr>
<tr>
<td>H_{M}</td>
<td>Membrane thickness</td>
<td>m</td>
<td>2.5 x 10⁻⁵</td>
</tr>
<tr>
<td>α</td>
<td>Ion conductivity of membrane</td>
<td>–</td>
<td>4</td>
</tr>
<tr>
<td>α_T</td>
<td>Net water transport coefficient</td>
<td>–</td>
<td>0.5</td>
</tr>
<tr>
<td>σ</td>
<td>Cathode transfer coefficient</td>
<td>–</td>
<td>1</td>
</tr>
<tr>
<td>σ_s</td>
<td>Surface tension</td>
<td>N/m</td>
<td>0.0625</td>
</tr>
</tbody>
</table>

Fig. 2. Effect of porosity and contact angle of the GDL: (a) on the water saturation in GDL, (b) on the oxygen concentration in GDL.

3.결과 및 고찰

본 연구에서는 전산해석을 통해 GDL의 접촉각, 기공도, 그리고 두께가 전지성능에 미치는 영향에 대해 알아 보았다.

3-1. GDL 물성과 물질거동

Fig. 2에 GDL의 기공도와 접촉각의 변화가 물질거동에 미치는 영향을 나타내었다. Fig. 2(a)에서 알 수 있다면 접촉각이 클수록 촉매층과 GDL 간에의 물 포화도가 작아지는 것을 확인할 수 있다. GDL과 촉매층 사이의 관계에서의 물 포화도가 높을 경우 휘노이스가 촉매층에 도달하는 것을 통해 방해하여 전지성능의 감소를 초래 할 수 있는 이유로 분류한다(water flooding) 현상이라 한다. 또한 낮은 접촉각(91°)에서는 기공도에 따른 물 포화도의 변화가 크게 나타나지만 접촉각이 커질수록 기계적부과에 의한 물 포화도의 변화가 줄어드는 것을 확인할 수 있다. Fig. 2(b)를 보면 GDL의 접촉각이 커 점수록 GDL과 촉매층 간에서의 산소농도는 증가하는 것을 확인할 수 있다. 하지만 물 포화도는 달리 산소농도의 변화가 GDL의 접촉각보다 기공도에 의한 영향이 큰 것을 확인할 수 있다. 이는 기공도의 변화가 유 효 확산계수에 영향을 미치는 것에 직접 적인 영향을 미치기 때문이다.

GDL의 두께 또한 GDL 내에서의 물질 거동에 큰 영향을 미친다. 이는 Fig. 3에 나타나 있다. Fig. 3(a)에서 나타나 있듯이 GDL의 두께 가 두께의 점수록 GDL과 촉매층 사이의 관계에서의 물 포화도가 커 점을 알 수 있다. 특히 낮은 접촉각(91°)에서 GDL의 두께가 400 μm 까지 가질 때 촉매층에서의 물 포화도가 매우 크게 나타났으며 이는 심각한 물 범람을 초래할 수 있다. 또한 GDL의 접촉각이 커짐에 따라 GDL 두께에 의한 영향이 감소하는 것을 확인할 수 있다. 이는 물 전달 구동력과 포화량의 관계로부터 GDL 두께의 변화에 관계 없이 물 포화도가 유속에 영향을 미치기 때문이다. 산소 농도는 역시 두께와 접촉각의 변화에 따라 달라지게 변한다는 것을 Fig. 3(b)를 통해 알 수 있 다. GDL 두께가 증가함에 따라 산소농도가 감소하는 것과는 반대로 산소의 확산이 어려워져 GDL과 촉매층 사이의 관계에서의 산소농도는 급격히 감소하게 된다.

3-2. GDL 물성과 전지성능

식 (7)과 (8)의 재산 결과를 바탕으로 GDL의 물성 변화가 전지성 능에 미치는 영향을 확인하였다. Fig. 4에는 GDL의 기공도 변화가 전지성능에 미치는 영향을 나타내었다. GDL의 기공도를 0.2에서 0.8 까지 변화시켜 두께와 전지성능을 살펴본 결과 기공도가 증가함에

따라 전지성능이 향상되는 것을 확인하였다. 이는 기공도가 증가함에 따라 산소의 유효 확산계수가 증가하고 이로 인해 분산한 전지성능이 향상될 수 있기 때문이다. GDL의 두께를 200 μm에서 400 μm까지 변화시켜 가면서 전지성능을 개선한 결과가 Fig. 5에 나타나 있다. 전반적으로 GDL의 두께가 높을수록 전지성능이 우수한 것으로 확인할 수 있다. 또한 GDL 두께가 전지성능에 미치는 영향을 지원률 밀도 영역에서보다 고전류 밀도 영역에서 확실히 나타난다. 전류 밀도가 커질수록 전기화학 반응이 많아 일어나므로 원활한 원료 가스의 공급이 중요해 진다. 따라서 GDL의 두께가 증가함에 따라 물질 전달 저항이 커지게 되고 이로 인해 고전류 밀도 영역에서 GDL 두께가 클수록 전지성능의 감소가 커지게 된다.

GDL의 접촉각이 전지성능에 미치는 영향을 Fig. 6에 나타나 있다. 그래프에서 알 수 있듯이 접촉각이 증가함수록 전지성능이 향상되는 것을 확인할 수 있다. 그러나 일정 수준(100°) 이상의 접촉각에서는 전지성능의 차이가 거의 발생하지 않았다. 또한 기체투과도가 전지성능에 미치는 영향 역시 다른 물질에 비해 크지 않았다. 기체투과도가 증가함에 따라 전지성능이 증가하는 경향을 나타내고는 하지만 Fig. 7에서 볼 수 있듯이 그 값의 차이가 100배 이상인 때 높은 밸런스 전지성능의 차이를 나타내었다. 이는 본 연구에서 사용된 셀에서 사용된 수준에서 기체투과도는 오타 모세관 압력에만 영향을 미쳤으며, 이 또한 수압 내에서 제곱근의 형태로 사용되기 때문에 기체투과도가 전지성능에 큰 영향을 미치지 않는 것으로 계산되었다.
4. 결론

본 연구에서는 M2 모델을 사용하여 GDL 내에서의 물질전달을 정
산 해석하였고, 이를 통해 GDL 물성과 전지성능에 미치는 영향을
확인하였다. 전산해석 결과 얻은 결론은 다음과 같다.

(1) GDL의 접촉각이 작으면 수족, 기공도가 작으면 수족, 두께가 두꺼운 수족 GDL과 축대중 사이의 계면에서의 물 포화도가 증가하여 물 범
람이 심하게 일어남.
(2) GDL의 기공도가 줄면 수족, 두께가 짧을수록 물질전달 저항이 감
소하여 GDL 내의 산소 농도가 높음.
(3) GDL의 물성변화가 GDL과 축대중 사이의 계면에서의 물 포
화도와 산소농도에 영향을 미치 전지성능의 변화를 가져왔음.
(4) 따라서 GDL과 축대중 사이의 계면에서의 물 포화도가 낮추고
산소농도를 높일수록 전지성능이 향상된다. 따라서 GDL의 접촉각
과 기공도가 크고 두께가 짧을수록 우수한 전지성능을 나타내었음.

실제 기체전산상의 물성을 독립적으로 변화시키기 위해서 제조하는 것
은 불가능하다. 예를 들어 접촉각을 변화시키기 위해서는 수성 고
문자 수지의 양을 조절한 결과 기체전산상의 기공도에 변화가 발생
하게 된다. 따라서 기체전산상의 물성을 독립적으로 변화시키기 주의
전지성능을 예측한 전산모델에서의 기체전산상의 측정 결과 및
방향을 제시할 수 있는 자료로서의 가치를 갖는다.

사용기호

\[a \quad : \text{cross section area}[m^2] \]
\[C \quad : \text{species mass fraction} \]
\[dp \quad : \text{pore diameter}[m] \]
\[D \quad : \text{diffusivity}[m^2\text{s}^{-1}] \]
\[F \quad : \text{Faraday constant}[96493 \text{ C mol}^{-1}] \]
\[g \quad : \text{gravitational acceleration}[\text{cm s}^{-2}] \]
\[\dot{h}_m \quad : \text{convective mass transfer coefficient}[\text{cm s}^{-1}] \]
\[H_1 \quad : \text{gas channel height}[m] \]
\[H_m \quad : \text{membrane thickness}[m] \]
\[I \quad : \text{current density}[\text{A m}^{-2}] \]
\[I_{\text{ref}} \quad : \text{exchange current density}[\text{A m}^{-2}] \]
\[J(s) \quad : \text{Leverett function} \]
\[k_c \quad : \text{Kozeny-Carman constant}[\text{m}^{-2}] \]
\[k_r \quad : \text{relative permeability} \]
\[K \quad : \text{gas permeability}[\text{m}^{-2}] \]
\[L \quad : \text{channel length}[m] \]
\[m \quad : \text{interfacial mass transfer rate}[\text{kg m}^{-2}\text{s}^{-1}] \]
\[M \quad : \text{molecular weight}[\text{kg mol}^{-1}] \]
\[p \quad : \text{pressure}[\text{pa}] \]
\[R \quad : \text{gas constant}[8.314 \text{ J mol}^{-1} \text{ K}^{-1}] \]
\[s \quad : \text{liquid water saturation} \]
\[t \quad : \text{time}[s] \]
\[T \quad : \text{temperature}[\text{K}] \]
\[u \quad : \text{velocity vector}[\text{m s}^{-1}] \]
\[u_x \quad : \text{the x-direction velocity component}[\text{m s}^{-1}] \]
\[V \quad : \text{cathode potential}[\text{V}] \]
\[V_{\text{oc}} \quad : \text{open circuit potential}[\text{V}] \]

그리고스 문자
\[\alpha \quad : \text{net water transport coefficient per proton} \]
\[\alpha_c \quad : \text{cathode transfer coefficient} \]
\[\epsilon \quad : \text{Porosity} \]
\[\eta \quad : \text{over potential}[\text{V}] \]
\[\eta_{\text{ohm}} \quad : \text{ohmic losses}[\text{V}] \]
\[\lambda \quad : \text{individual mobility} \]
\[\mu \quad : \text{viscosity}[\text{Pa s}] \]
\[\nu \quad : \text{kinetic viscosity}[\text{m}^2\text{s}^{-1}] \]
\[\theta_c \quad : \text{contact angle[\text{deg}]} \]
\[\rho \quad : \text{density}[\text{kg m}^{-3}] \]
\[\sigma \quad : \text{surface tension}[\text{N m}^{-2}] \]
\[\sigma_m \quad : \text{ion conductivity of the membrane} \]

위치자
\[\text{eff} \quad : \text{effective property} \]
\[H_2O \quad : \text{water} \]
\[O_2 \quad : \text{oxygen} \]

아래첨자
\[g \quad : \text{gas phase} \]
\[in \quad : \text{inlet} \]
\[k \quad : \text{phase k} \]
\[ref \quad : \text{reference value} \]
\[v \quad : \text{vapor} \]

참고문헌