확장된 군 통신망에 적용되는 VoIPv6 성능분석

정화원 김 기 법*, 민 상 원**

Performance Evaluation of VoIPv6 in a Large-Scaled u-Army Network

Ki-Bum Kim*, Sang-Won Min** Regular Members

요 약

본 논문에서는 현재 육군에서 진행하고 있는 VoIPv6 네트워크 구축 사업에 적용될 예정인 네트워크를 시뮬레이션을 통해 성능을 예측하고 그 결과를 도출하였다. 본 논문의 시뮬레이션을 앞서 진행하였던 첫 번째 u-Army 시뮬레이션의 경우 실험 부재로 범위를 한정하여 VoIPv6 네트워크의 성능을 측정하였다. 이번 시뮬레이션은 사전에 예측하였던 범위를 확장하여 사전에 적용할 경우 실제 VoIPv6 네트워크가 어느 정도의 성능을 보이고 실제 육군의 요구사항에 부합하는지를 예측하는 시뮬레이션이다. 시뮬레이션은 사전에 실제 적용한 네트워크를 모델링하여 사용하였고, 서비스를 사용하는 다양한 상황을 가정하고 시뮬레이션 조건으로 적용하여 네트워크에서 어느 정도까지 서비스를 제공할 수 있는지를 시뮬레이션 하였다. 도출된 결과는 네트워크의 성능을 예측하여 향후 진급으로 적용될 경우 무관과 규모에 적합한 네트워크 구축에 도움을 줄 것이다.

Key Words : VoIPv6, u-Army, Simulation

ABSTRACT

In this paper, we consider a future u-Army network with VoIPv6 and evaluate the performance based on the large-scale simulation. The target model chosen in our paper is extended to an division network from several unit networks in which the scope of the performance simulation was limited with the small experiment network. The simulation model is based on several practical scenarios and the actual condition of the division network with some assumption. The evaluated performance results will help to predict whether a future u-Army network meet the real-time service or not, and to design the network suitable for military condition and requirements.

1. 서 론

최근 통신 기술의 발전 흐름은 기술, 서비스, 산업 등의 다양한 분야에서 응용 및 통합화가 이루어지고 있으며, 특히 음성과 데이터를 수용하는 네트워크의 통합도 활발히 이루어지고 있다. 이는 점차적으로 증가하고 있는 VoIP 장비의 판매 증가와 인터넷 전화 서비스를 사용하는 인구의 증가를 통해서 확인할 수 있다.

VoIP 기술은 인터넷의 IP 프로토콜을 이용하여 음성을 전송하는 기술을 말하며 VoIP 기술을 바탕으로 제공되는 서비스를 인터넷 전화 서비스, Internet Telephony 등으로 지칭하고 있다. 그동안 VoIP 기술은 여러 가지 제약이 있었으나 국내 정보통신 기술의 발전으로 광대역 통합망의 대표적인 기술로 부상하게 되었다. VoIP 시스템을 구성하는 방법은 매우 다양하며 IPv4 전화 기반을 사용할 경우 SIP 서비스 혹은 IP PBX 등의 신호처리 장치와 IP 전화기만으로 시스템 구성이 가능하다. 만약 기존의 기존의 PSTN (Public
Switched Telephone Network) 전화기를 그대로 사용하고자 한다면 Access Gateway를 설치하고 기관 내 PSTN과 외부 VoIP 네트워크를 연동하여 음성 서비스를 사용할 수 있다. 또한 기관의 IP 전화기와 PSTN 전화기를 동시에 사용해야 할 경우 PSTN용 PBX와 VoIP용 신호처리장치를 같이 설치하거나 IP PBX를 설치하여 VoIP 서비스를 사용할 수 있다\[^{23}\].

이러한 VoIP 네트워크의 도입은 확장하게 이루어지고 있으며, 일반적인 VoIP 전화기의 장비와 맵에 대한 VoIP QoS 안정방향 제어 및 성능평가에 대한 연구가 진행되고 있다. 또한 음성규제에서의 VoIP6의 성능을 확장시킬 수 있는 방안에 관한 연구 등의 VoIP6의 활성화를 위한 다양한 연구가 진행 중에 있다\[^{9}\].

또한 C는 통신망과 관련해서 현재 국내에서는 미래 첨단 과학기술을 건설하기 위하여 u-Army 실험사단을 정하여 한국 처음으로 전략망을 실험구축하고 있다. u-Army에서는 신기술을 적용한 무선망이 체계, 생체 인식 기반의 쾌적과 관리체계, 국방 물류자산관리 체계, 국방 원격진료 체계, 인터넷을 이용한 음성/데이터 통합서비스의 5가지의 큰 분류를 가지고 진행 중이다. 이 중 인터넷을 이용한 음성/데이터 통합서비스는 VoIP6 네트워크를 기존의 전화통신망과 인터넷을 통합하는 사업을 진행 중에 있다. 육군에서는 군에 적합한 VoIP6 기술을 사용하기 위해 음성망의 VoIP6 시스템을 가격과 군의 환경에 맞도록 수정하고 추가하여 사업을 진행하고 있으며, 경기도에 위치한 사단을 실험 부대로 인정 주도권 내에 VoIP6 네트워크를 구축하고 서비스를 실현하였다.

2007년에 이러한 실험을 마쳤고, 2008년에 주둔지와 주둔지간 사단 예하부대를 연결하는 VoIP6 네트워크를 구축하여 서비스에 대한 시험을 진행 중에 있다. 네트워크 설계에 대한 제고적인 검증이 필요하며 네트워크 설계에 따라 네트워크를 구축하였을 경우 서비스 성능이 얼마나 될지 판단할 수 있는 시뮬레이션이 필요하다. 따라서 본 논문에서는 사단 예산부대를 연결하는 VoIP6 네트워크에 대한 시뮬레이션을 진행하여 QoS 파리미터를 기반으로 음성서비스를 이용할 수 있는 환경을 분석한다. 네트워크 시뮬레이션을 위해 ns-2를 이용하였고, 적용할 예정인 예하부대간의 네트워크 구조를 시뮬레이션 네트워크에 적용하였다\[^{9}\]. 서비스에 대한 사항은 음성서비스에 대해서 실험하였으며, 서비스를 지원할 수 있는 안정적인 환경과 불안정적인 환경을 예측하였다.

본 논문의 II장에서는 시뮬레이션에 사용된 네트워크 구성도와 수행 조건을 기술하였고, III장에서는 ns-2 시뮬레이터를 통해 u-Army의 VoIP6 링 성능 시뮬레이션 결과를 도출하였다. IV장에서는 산출한 시뮬레이션 결과를 토대로 결론을 제시하였다.

II. 시뮬레이션 구성

2.1 시뮬레이션 네트워크

그림 1은 시뮬레이션 네트워크를 나타낸 것으로, 병교로 표시된 각각의 노드는 네트워크의 정점을 나타내며, 노드의 번호는 실험사단의 예하부대의 어떤 네트워크와 매칭되어 있다. 시뮬레이션에서 사용된 네트워크는 실제 적용할 예정인 부대와 부대 사이의 네트워크로 노드 0-32는 실험 사단과 실험 사단에 속해 있는 예하부대이고, 노드 33-45는 실험 사단의 예하부대와는 관계가 없으나 예하부대를 가리키기 위해 경우 하부로 구성이 되어 있다. 노드 및 노드를 연결하는 링크의 종류에 따른 전송률은 표 1에서 정의하였다. 부대에는 데모도 있고 중대와 사단 내에 위치할 수 있는 여러 간물도 포함된다. 그리고 링크의 대역폭의 경우 64kbps인 구간이 있는데, 이 구간은 VoIP6 서비스를 사용하기 위해서는 부적합하며 차후 E1으로 증설될 예정이다. 따라서 이 번 시뮬레이션에서 실시 결과를 도출하지는 않았고, 그리고 N≠E1 구간이 있는데, 이 구간의 경우 N이 어떤 값을 가질지는

<table>
<thead>
<tr>
<th>링크</th>
<th>전송률</th>
<th>전송속도</th>
</tr>
</thead>
<tbody>
<tr>
<td>E1</td>
<td></td>
<td>2.048Mbs</td>
</tr>
<tr>
<td>LAN</td>
<td></td>
<td>100Mbs</td>
</tr>
<tr>
<td>N≠E1</td>
<td></td>
<td>N≠2.048Mbs</td>
</tr>
<tr>
<td>T3</td>
<td></td>
<td>64kbps</td>
</tr>
</tbody>
</table>

그림 1. 시뮬레이션 네트워크

표 1. 링크별 종류에 따른 전송률 비교표
2.2 시뮬레이션 수행 조건
시뮬레이션은 주어진 수행 조건에 따라 시나리오를 정하고 정해진 시나리오에 따른 스크립트를 미리 설정하고 시뮬레이션을 수행한다. 시뮬레이션을 수행하고 나면 평균, 총보수 결과를 나타내고 트래픽 파일이 생성되며, 이를 바탕으로 데이터를 처리하기 위한 프로그램 동일 Awk를 이용하여 평균 지연, 비즈니스 손실 물의 평균을 산출하는 과정을 거친다. 그러므로 시뮬레이션의 수행 조건 및 시나리오를 설정하는 것이 중요하다.

링크에 대한 수행 조건은 노드 9와 노드 11간의 N=2의48Mbps 링크에서 N=1과 2로 변경하였으며 N이 1인 경우 각각 2의48Mbps, 100Mbps, 64Kbps, 45Mbps로 설정되어 있다. 하지만 이 링크 조건에서 20%는 VoIP/6 응용서비스를 제외한 background traffic으로 사용한다고 가정하였기 때문에 실제 링크는 각각 1의384Mbps, 80Mbps, 51.2Mbps, 36Mbps의 대역폭이 VoIP/6에 사용될 것이다. 100Kbps의 대역폭을 가지는 음성트래픽은 평균적인 통화량인 3분의 통화시간 5분의 유 효 시간으로 설정하였다. 즉, 통화는 3분간 지속되고, 통화가 종료되면 5분간 통화가 시도되지 않음을 의미한다. 그리고 각 노드 당 6대의 VoIP/6 전화기가 동시에 통화를 하는 것으로 가정하였는데 이 수치는 실제 실험실의 평균 동시 통화차수에 근거하여 설정한 것이다. 여기서 언급한 시뮬레이션을 위한 수행 조건을 정리하면 다음과 같다.

- 링크 속도의 20%는 background traffic으로 설정
- 음성 트래픽의 대역폭은 104K로 설정
- 각각의 통화는 3분 통화 5분의 유 효 시간을 가짐
- 각 노드의 동시 통화수는 6대로 설정

시뮬레이션 시나리오는 주어진 모든 노드에 대해 설정할 경우, 경우의 수가 너무 많기 때문에 표 2와 같이 그림 1의 정해진 몇 개의 노드만을 이용하여 네트워크상 가까운 거리와 먼 거리로 구성된 시나리오를 설정하였다.

표 2. 노드 간 통화 연결 상태

<table>
<thead>
<tr>
<th>연결된 노드</th>
<th>노드 0</th>
<th>노드 9</th>
<th>노드 6</th>
<th>노드 11</th>
<th>노드 15</th>
<th>노드 21</th>
</tr>
</thead>
<tbody>
<tr>
<td>노드 1</td>
<td>노드 32</td>
<td>노드 7</td>
<td>노드 17</td>
<td>노드 18</td>
<td>노드 29</td>
<td></td>
</tr>
<tr>
<td>노드 2</td>
<td>노드 25</td>
<td>노드 8</td>
<td>노드 13</td>
<td>노드 22</td>
<td>노드 27</td>
<td></td>
</tr>
<tr>
<td>노드 3</td>
<td>노드 19</td>
<td>노드 10</td>
<td>노드 26</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>노드 4</td>
<td>노드 20</td>
<td>노드 12</td>
<td>노드 24</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>노드 5</td>
<td>노드 16</td>
<td>노드 14</td>
<td>노드 30</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

표 3. 시뮬레이션 결과 파라미터 조건

<table>
<thead>
<tr>
<th>조건</th>
<th>N</th>
<th>과장 값</th>
<th>변형 값</th>
</tr>
</thead>
<tbody>
<tr>
<td>조건 1</td>
<td>1</td>
<td>CIT, 동시 통화수</td>
<td>traffic load</td>
</tr>
<tr>
<td>조건 2</td>
<td>1</td>
<td>traffic load, 동시 통화수</td>
<td>CIT</td>
</tr>
<tr>
<td>조건 3</td>
<td>1</td>
<td>traffic load, CIT</td>
<td>동시 통화수</td>
</tr>
<tr>
<td>조건 4</td>
<td>2</td>
<td>CIT, 동시 통화수</td>
<td>traffic load</td>
</tr>
<tr>
<td>조건 5</td>
<td>2</td>
<td>traffic load, CIT</td>
<td>동시 통화수</td>
</tr>
<tr>
<td>조건 6</td>
<td>2</td>
<td>traffic load, CIT</td>
<td>동시 통화수</td>
</tr>
</tbody>
</table>

3.1 조건
조건 1은 N=1, CIT 과장, 그리고 동시 통화수를 고정하고 링크의 background traffic load를 변화시켜
가면서 지연과 손실률을 측정하였으며, 이에 대해 그림 2와 3에서는 시뮬레이션 결과를 나타낸 그래프이다. 결과를 살펴보면 가까운 노드의 경우 traffic load와 상관없이 서비스를 지원할 수 있는 것을 알 수 있다. 가까운 노드는 보통 긴 개의 링크를 거치는 경우로 링크가 매우 흔하게 대역폭의 80%를 차지하고 있는 경우에도 서비스에 문제가 없는 것을 확인할 수 있다. 그러나 중간 노드의 경우 대역폭에 40%가 다른 테이터로 점유되면 서비스에 차질이 생기는 것을 알 수 있는데, 40%일 때 50%일 때의 결과에 차이가 크므로 보다 정확한 traffic load의 영향을 알기 보기 위해 traffic load의 간격을 세분화하여 추가로 시뮬레이션을 진행하였다.

추가 시뮬레이션 결과로 traffic load가 35%를 초과하면 서비스 제공에 문제가 발생할 수 있다는 것을 확인할 수 있었으며, 거리가 먼 노드의 경우는 40% 이상이 되면 서비스 제공에 문제가 발생할 수 있는 것을 확인할 수 있다. 따라서 원활한 서비스를 제공하기 위해서는 중간거리의 노드는 링크의 대역폭을 차지하는 다른 데이터의 비율을 35% 이하로, 먼 거리의 노드는 링크의 대역폭을 차지하는 다른 데이터의 비율을 40% 이하로 유지해야 한다.

따라서 네트워크가 통합될 경우 여러 데이터가 혼재하여 전송되게 되는데, 일정한 품질의 서비스를 제공하기 위해서는 음성데이터를 위한 대역폭의 보장이 필요하며, QoS 장비가 없는 경우 링크에서 갑.sessions에 데이터 트래픽이 링크를 차지하는 비율이 40%를 넘지 못하게 제한하는 방안도 가능하다.

그림 2의 traffic load가 약 50-70%인 경우에는 실제 노드간 거리가 가장 흔 노드의 경우보다 중간 노드 결과가 더 좋지 않은 것으로 나타났는데, 이는 링크 사이의 거리보다 대역폭이 중요한다는 것을 나타내는 것이다. 즉, 중간 노드는 시망 내에 있는 예외부대 있는 경우로 대부분 E1 링크로 연결되어 있다. 반면에 먼 노드는 T1 링크를 통해 다른 시망을 경유하여 가는 경우로 중간 노드에 비해 링크의 대역폭이 크기 때문이다. 실제 설정에는 N * E1 구간이 존재한다. 조건 1에서는 N이 4인 경우이며 조건 4에서 다른 조건은 동일한 상태에서 N을 2로 설정하여 진행한 시뮬레이션 결과를 나타내었는데, 본 조건의 결과와는 크게 다르게 측정되었다.

3.2 조건 2
조건 2는 N=1, traffic load 고정, 그리고 동시 통화 자수 고정하고 CIT을 변화시켜면서 지연과 손실률을 측정한 시뮬레이션이며 그림 4와 그림 5는 시뮬레이션 결과를 나타낸 그래프이다.

결과를 살펴보면 가까운 노드의 경우 통화간격에 상관없이 서비스를 원활히 제공할 수 있고, 중간 노드와 먼 노드의 경우 CIT가 작아지면서 서비스가 불가능할 수 있는 지점이 나타난다. 그림 5에서 보는 것과 같이 모든 통화자가 통화간격은 3분 이상으로 계속해서 통화할 경우 서비스 제공에 문제가 발생하는 것으로 나타났다. 하지만, 실제 시험사용에서 제공

그림 2. Traffic load 변화에 따른 지연 변화 그래프

그림 3. Traffic load 변화에 따른 손실률 변화 그래프

그림 4. CIT 변화에 따른 지연 변화 그래프
결과를 살펴보면 중간 노드와 멀 노드는 서비스 제공에 문제가 발생하는 것을 알 수 있다. traffic load 변화와 마찬가지로 중간 노드가 동시 통화자 8명부터 서비스에 문제가 발생하는 것으로 나타났고, 가장 먼 거리의 노드가 동시 통화자 9명부터 서비스에 문제가 발생하는 것을 확인할 수 있다. 이는 한 노드 당 해당 하는 동시 통화자수로 부대 내에서 여러 부서간의 통화를 의미하는 것은 아니며 부대 외로 다른 부대와 통화하는 동시 통화자수를 의미하는 것이다. 따라서 외 부 부대와 동시 통화가 많이 있는 부대의 경우 대책이 필요하며 그렇지 않은 경우에는 제시된 네트워크를 사용해도 서비스 품질을 보장할 수 없다.

3.4 조건 4
조건 4 시뮬레이션은 조건 1과 N 값을 제외한 다른 시뮬레이션 조건을 동일하며 N 값을 2로 설정하고 수행하였다. 이에 대하여 그림 8과 그림 9에 시뮬레이션 결과를 나타내었다.

시뮬레이션 결과를 살펴보면 역시 가장 가까운 노드의 경우 대역폭의 상황과 관계없이 좋은 결과를 나타내고 있다. 하지만 중간 노드의 경우부터 traffic

![그림 5. CIT 변화에 따른 손실률 변화 그래프](image)

한 자료에 의하면 평균 통화간격이 3분 이상이기 때문에 간통호도수가 서비스에 미치는 영향은 거의 없다고 보아도 무방하다.

3.3 조건 3
조건 3은 N=1, traffic load 고정, 그리고 CIT 고정하고 동시 통화자수를 변화시켜가면서 지역과 손실률을 측정한 시뮬레이션이며 그림 6과 그림 7은 시뮬레이션 결과를 나타낸 그래프이다.

![그림 6. 동시 통화자 수 변화에 따른 지역 변화 그래프](image)

![그림 7. 동시 통화자 수 변화에 따른 손실률 변화 그래프](image)

![그림 8. Traffic load 변화에 따른 지역 변화 그래프](image)

![그림 9. Traffic load 변화에 따른 손실률 변화 그래프](image)
load에 영향을 받았으며, traffic load가 60%와 70%인 경우에 대한 결과 차이가 크기 때문에 좀 더 자세한 결과를 알아보기 위해 65%, 67%, 70%일 경우로 세 분화하여 시뮬레이션을 수행하였다. 중간 노드의 경우 다른 트래픽의 교차하는 대역폭의 비율이 대략적으로 70% 미만인 경우는 서비스가 원활한 것으로 나타났고, 가장 멀 노드의 경우 대략적으로 65% 미만까지 서비스가 원활한 것으로 나타났다. 즉, 다른 트래픽이 링크의 대역폭을 차지하는 비율이 65%를 초과하면 서비스에 문제가 발생할 수 있는 것으로 나타났다. 이를 조건 1 시뮬레이션 결과와 비교하면 25%의 큰 차이를 보여주고 있다.

3.5 조건 5
조건 5 시뮬레이션은 조건 2와 N 값을 제외한 다른 시뮬레이션 조건은 동일하며 N 값을 2로 설정하고 수행하였다. 이에 대하여 그림 10에 시뮬레이션 결과를 나타내었다.

시뮬레이션 결과를 살펴보면, 멀 노드를 제외한 나머지가 채팅에 상관없이 서비스가 가능하다는 결과를 보여주고 있으며, 멀 노드의 경우 CIT가 1분일 때를 제외하고 서비스가 원활하게 동작하고 있는 것을 확인할 수 있다. 이는 앞서 설명한 바와 같이 실제 발생하기 힘든 상황으로 통합제도가 서비스에 미치는 영향은 거의 없다고 보아야 할 것이다.

이 1인 경우 10명의 동시 통화가 발생할 경우 서비스에 문제가 발생하였지만, N이 2인 경우 10명이 동시에 통화하는 상황에서도 문제가 없는 것을 확인할 수 있다. 따라서 최대 몇 명의 동시 통화자까지 가능할지 알아보기 위해 시뮬레이션의 조건 중 동시 통화자의 수를 10명에서 1명씩 늘려가며 시뮬레이션을 진행하였다.

N이 1인 경우에 다르게 중간 노드의 경우 동시 통화자의 수가 14명까지 서비스가 원활한 것으로 나타났으며, 가장 멀 노드의 경우 13명까지 서비스가 원활한 것으로 나타났다. 그리고 방의 부하를 증가시키는 요소는 지역보다는 평균 손실률이 더 큰것임을 확인할 수 있다. 즉, 동시 통화자의 수가 지속적으로 증가할 때 따라 N이 1인 경우에는 N이 2인 경우에 비해 지역과 평균 손실률의 증가율이 크며, 이로 인해 많은 통화자를 동시에 수용하지 못하고 서비스에 문제가 발생할 수 있다. 반면 N이 2이고 다른 조건이 동일한 경우에는 지역과 평균 손실률의 증가율이 더 작기 때문에 확연히 더 많은 동시 통화자를 탐색위크에서 수용할 수 있다.

![그림 10. CIT 변화에 따른 지역 변화 그래프](image1)

![그림 11. 동시 통화자 수 변화에 따른 지역 변화 그래프](image2)

![그림 12. 동시 통화자 수 변화에 따른 손실률 변화 그래프](image3)
IV. 결론

현재 육군에서는 미래 첨단 과학군을 건설하기 위해 u-Army 사업을 2007년에 시작하여 현재에도 진행하고 있으며, 전화망과 인터넷을 통합하는 VolPv6 네트워크 구축 사업은 주둔지 내부에 대한 시험을 위해 시뮬레이션을 진행하였다. 이 시뮬레이션 결과는 토대로 실제 네트워크를 구축하여 시험을 마쳤고 현재는 사단과 예하부대 간의 네트워크를 구축하고 시험 중에 있다.

본 논문에서는 미리 진행하였던 시뮬레이션의 범위를 확장하여 예하부대간의 네트워크를 실제로 적용하기 전에 설치된 네트워크가 VolPv6에 대한 서비스를 어느 정도까지 제공할 수 있는지에 대한 시뮬레이션을 수행하고 성능을 측정하였다. 조건 1에서 다른 트래픽 링크의 대역폭을 차지하는 비율이 40%를 초과하는 경우 서비스에 문제가 발생하는 것으로 나타났다. 조건 2의 시뮬레이션 결과는 통화 밀도수에 관한 결과로 각각의 노드에서 모든 통화자가 3분 간격으로 통화할 경우 문제가 발생할 수 있다. 조건 3의 시뮬레이션 결과는 각 노드의 동시 통화자의 수가 7명을 초과하면 서비스에 문제가 발생할 수 있다는 결과가 나왔다. N이 2인 조건 4, 5, 6의 시뮬레이션에서 나타난 결과는 공통적으로 N이 1인 조건 1, 2, 3의 경우보다 흔치 않은 결과를 보여주었다.

시뮬레이션 결과를 분석해보면 서비스 네트워크의 N * E1 링크가 상관없이 많은 영향을 주는 것으로 나타났다. 동시에 통화자의 수를 증가시키려면 필요하다면 가장 간단한 방법으로 모든 링크의 대역폭을 증가하면 동시접속한 수를 증가시키고 그 외의 많은 제약사항을 해결할 수 있으나, 비용 소모가 크다는 문제점이 발생한다. 이 네트워크는 전시용이 아닌 네트워크로 전쟁이 아닌 사용하지 않게 되는 네트워크이다. 따라서 많은 비용을 부담할 수 없는 상황이기 때문에, 적절 비용으로 성능을 높이고자 한다면 N * E1 구간의 링크의 N값을 2 이상으로 설정하여 네트워크의 성능을 향상시켜 서비스를 제공하는 방향이 바람직하다.

참고 문헌