Robust Passive Low-order Filtering for Discrete–time Uncertain Descriptor Systems

Jong-Hae Kim * · Do-Cang Oh †

Abstract – In this paper, we consider the problem of a robust passive filtering with low-order for discrete–time singular systems with polytopic uncertainties. A BRL (bounded real lemma) for robust passivity with a dissipativity of discrete-time uncertain singular systems is derived. A low-order robust passive filter design method is proposed by new reduced-order method and LMI (linear matrix inequality) technique on the basis of the obtained BRL. Finally, illustrative examples are presented to show the applicability of the proposed method.

Key Words : Robust passivity, Low-order filter, Polytopic uncertainty, Discrete descriptor systems

1. 서론

정리를 기초로 볼리토프 불확실성을 가지는 이산시간 특이시스템에 대한 강인 피동성 필터의 존재조건과 필터의 설계방법을 제안한다. 구하고자 하는 필터의 차수는 미리 결정하면 제한한 조건으로부터 원하는 차수의 강인 피동성 필터를 설계할 수 있다.

본 논문에서 사용하는 표기는 일반적인 기호를 사용한다. n과 R은 적절한 차원을 가진 단위행렬, 영행렬과 $r \times 1$ 차원을 가진 실수 벡터를 각각 의미한다. $X_{n \times n}$는 X가 $n \times n$ 차원을 가진 행렬이고, *는 대칭행렬 (symmetric matrix)의 주 대각선 아래에 놓이는 요소이고, $\mathrm{diag} (*)$는 블록 대각(block diagonal) 행렬을 의미한다. $P \succ 0$은 행렬 P가 양(음)의 정부호 행렬(positive(negative)-definite matrix)을 의미한다.

2. 문제설정

이산시간 불확실성 특이시스템

$$E(x(k+1)) = A(x(k)) + B(y(k)) \quad y(k) = C(k) + D_{w}(k) \quad z(k) = L_{w}(k) \quad \tag{1}$$

을 다룬다. 여기서, $x(k) \in R^{n}$는 상태변수, $y(k) \in R^{r}$는 측정 출력, $z(k) \in R^{p}$는 추정되는 변수, $w(k) \in R^{n}$는 $t_{0} \in [0, \infty)$에 속하는 외부입력신호, E는 rank(E) = $r \leq n$을 만족하는 특이행렬이고, 모든 시스템 행렬은 적절한 차원을 가진다. 시스템 행렬은 잘 모르지만 볼리토프형의 알고 있는 볼록 성질을 갖게 된다. 여기서

$$X := (A, B, C, D, L) \in \Omega \quad \tag{2}$$

에 속한다고 가정한다. 여기서 Ω는

$$\Omega := \left\{ X(\lambda) = \sum_{i=1}^{N} \chi_{i} \lambda_{i} \lambda_{i} = 1, \lambda_{i} \geq 1 \right\} \quad \tag{3}$$

이기이며, $\chi_{i} := (A_{i}, B_{i}, C_{i}, D_{i}, L_{i}) \in \Omega$, $(i = 1, \ldots, N)$이며, χ_{i}는 다변 정의역(polyhedral domain) Ω의 i번째 묶임점(vertex)을 표시한다. 본 논문의 목적은 불확실 이산시간 특이시스템 (1)을 위하여 $z(k)$를 추정하는 저차의 선형 시불변이고 점근적으로 안정한 강인 피동성 필터인

$$x(k+1) = A_{i}z(k) + B_{i}y(k) \quad \hat{z}(k) = C_{i} \hat{z}(k) + D_{i}w(k) \quad \tag{4}$$

를 설계하는 것이다. 여기서, $\hat{z}(k) \in R^{n}$는 필터 상태변수이고 $\hat{z}(k) \in R^{n}$는 $z(k)$의 추정치이다. 또한, $A_{i} \in R^{n \times n}$, $B_{i} \in R^{n \times r}$, $C_{i} \in R^{n \times p}$와 $D_{i} \in R^{n \times q}$는 적절해야 할 필터변수이다. 주어진 시스템보다 저차의 차수(+$n \leq n$)를 가지는 강인 피동성 필터 (4)에, $n \leq n$이면 미리 정한 n 차수를 가지는 저차의 필터를 설계할 수 있으며, $n = n$이면 원한 차수(full-order) 강인 피동성 필터가 된다. 또한, $A_{i} = 0, B_{i} = 0, C_{i} = 0$가 되면, 필터 (4)는 $\hat{z}(k) = D_{i}y(k)$ 와 같이 영의 차수(zero-order)를 가지는 정적 필터(static filter)가 된다. 따라서, 미리 설정한 차수를 가지는 저차의 강인 피동성 필터를 쉽게 설계하도록 하는 것이 본 논문의 목적중의 하나이다. 보조 상대 벡터를 $\tilde{x}(k) = [x(k)^{T} \quad \tilde{z}(k)^{T}]^{T}$ 로 두고, 추정오차를 $\hat{z}(k) = z(k) - \tilde{z}(k)$ 로 정의하면, 필터링 오차 특이시스템은

$$\tilde{E}\tilde{x} + k = \tilde{A}x(k) + \tilde{B}y(k) \quad \hat{z}(k) = \tilde{C}\tilde{x}(k) + D_{w}(k) \quad \tag{5}$$

으로 정의한다.

정의 1[23]: 특이시스템 $E(x(k+1)) = A_{i}x(k)$ 에 대하여, $\det (E - A_{i})$ 이 항등적으로 영이 아닌면 정규적이라고 정의하며, $\deg(\det (E - A_{i}))$ 이면 요소가 있다. 정규적이고 $\det (E - A_{i}) = 0$ 의 모든 근이 단위원내에 존재하면 안정하다고 정의한다.

정의 2[22,24]: 모든 불확실성 (2)에 대하여, 행렬부등식

$$J_{p} := \sum_{j=0}^{\infty} Y_{j}(k) \geq 0. \quad \forall T > 0 \quad \tag{6}$$

을 만족하면, 불확실 특이시스템 (5)는 강인 피동성이라고 정의한다.

정의 3[22,24]: 모든 불확실성 (2)에 대하여, 행렬부등식

$$J_{p} := \sum_{j=0}^{\infty} Y_{j}(k) \geq 0. \quad \forall T > 0 \quad \tag{7}$$

을 만족하면, 불확실 특이시스템 (5)는 산인성 η를 가지는 강 인 피동성이라고 정의한다. 따라서, 식 (4)의 형태를 가지는 저차의 강인 피동성 필터 설계의 목적은 필터링 오차 특이시스템 (5)의 산인성 및 요소를 만족시키고 $\hat{z}(k)$의 초기조건–이 영인 경우에 대하여 성능지수 (7)를 만족하는 것을 만족하는 것이다.

정의 2와 정의 3에서 피동성은 산인성의 양의 성질이 되는 것을 의미한다. 시스템의 가장 큰 산인성, 즉 식 (7)을 만족하는 가장 큰 η를 산인적(dissipativity)이라고 표현하고 η로 표시한다[22].

3. 저차 강인 피동성 필터

본 절에서는 필터링 오차 특이시스템이 안정하고 강인 피동성 성질 (7)을 만족하는 유계 성질정리를 구한다. 그리고 저차의 강인 피동성 필터가 존재할 조건과 차수축소 필터 설계방법을 구하고자 하는 모든 변수의 측면에서 볼록최적

이산시간 불확실 특이시스템의 저차 강인 피동성 필터
와(convex optimization)가 가능한 선형행렬부등식 기법으로 나타내고자 한다. 정리 1에서는 필터링 오차 특이시스템의 강인 피동성을 만족하기 위한 유계 실수정리를 제안하고, 정리 2에서는 저차의 차수를 가지는 강인 피동성을 필터 설계방법을 제안한다.

정리 1: 주어진 실수 \(\eta > 0 \)에 대하여, 이산시간 필터링 오차 특이시스템 (5)가 정규적이고 코짱이며 안정하고 식 (7)의 강인 피동성을 만족하기 위해서는 아래의 행렬부등식

\[
H = \begin{bmatrix}
\langle A^T R Z^T \rangle - E^T PE & 2R^T B - C^T \tilde{A}^T P \\
* & 2\eta^2 - \langle D \rangle^T \tilde{B}^T \tilde{P} < 0
\end{bmatrix}
\]

(8)

을 만족하는 양의 정부호 행렬 \(P \)와 음의 행렬 \(Z \)가 존재하는 것이다. 여기서, \(R = \tilde{E}\tilde{R} \tilde{E} \) 을 만족하는 행렬이다.

증명: 적절한 리아토노프 함수(Lyapunov function)를

\[V(\tilde{x}(k)) = \tilde{x}(k)^T \tilde{E} \tilde{R} \tilde{E} \tilde{x}(k) \]

와 같이 설정하고, \(V(\tilde{x}(k)) \)의 전방향 차분(forward difference)을 구하면

\[\Delta V(\tilde{x}(k)) = V(\tilde{x}(k+1)) - V(\tilde{x}(k)) \]

(10)

으로 구한다. 또한 \(E^T \tilde{R} = 0 \)이므로

\[2\tilde{x}(k+1)^T E^T \tilde{R} \tilde{x}(k) = 0 \]

(11)

이 된다. 따라서, 식 (10)과 (11) 및 정의 3의 강인 피동성 지수인 식 (7)에 의하여

\[\Delta V(\tilde{x}(k)) - w(k)\tilde{x}(k)^T \tilde{z}(k)^T w(k) + 2\eta \tilde{w}(k)^T w(k) + 2\tilde{x}(k+1)^T E^T \tilde{R} \tilde{x}(k) = \langle \zeta^T(k) \rangle \Xi(k) \]

(12)

와 같은 조건을 구할 수 있다. 여기서, 변수들은 다음과 같다.

\[\zeta(k)^T = \left[x(k)^T \eta \tilde{w}(k) \right]^T \]

\[\Xi = \begin{bmatrix} \tilde{A}^T \tilde{P} \eta + \langle \tilde{A}^T \tilde{R}^T \rangle - E^T PE & 2R^T \tilde{B} - C^T \tilde{A}^T \tilde{P} \\
* & 2\eta - \langle \tilde{D} \rangle^T \tilde{B}^T \tilde{P} \end{bmatrix} \]

식 (12)에서 \(\Xi < 0 \)임에, 다음의 부등식

\[\Delta V(\tilde{x}(k)) - w(k)\tilde{x}(k)^T \tilde{z}(k)^T w(k) + 2\eta \tilde{w}(k)^T w(k) + 2\tilde{x}(k+1)^T E^T \tilde{R} \tilde{x}(k) < 0 \]

(13)

을 만족한다. 식 (13)의 양변을 0에서부터 \(T \)까지 더하면

\[\sum_{k=0}^{T} \Delta V(\tilde{x}(k)) - w(k)\tilde{x}(k)^T \tilde{z}(k)^T w(k) + 2\eta \tilde{w}(k)^T w(k) + 2\tilde{x}(k+1)^T E^T \tilde{R} \tilde{x}(k) < 0 \]

(14)

을 얻을 수 있다. \(T > 0 \)에 대해서

\[S(T) = \sum_{k=0}^{T} \left[-w(k)\tilde{x}(k)^T \tilde{z}(k)^T w(k) + 2\eta \tilde{w}(k)^T w(k) \right] \]

(15)

라고 정의한다. 식 (11)과 초기조건이 영이라고 가정하였으므로

\[S(T) \leq \sum_{k=0}^{T} \left[\Delta V(\tilde{x}(k)) - w(k)\tilde{x}(k)^T \tilde{z}(k)^T w(k) + 2\eta \tilde{w}(k)^T w(k) + 2\tilde{x}(k+1)^T E^T \tilde{R} \tilde{x}(k) \right] \]

(16)

을 만족한다. 식 (11)과 (13)으로부터 \(S(T) < 0 \)이므로 어떤 \(T > 0 \)에 대하여

\[\sum_{k=0}^{T} \left[-w(k)\tilde{x}(k)^T \tilde{z}(k)^T w(k) + 2\eta \tilde{w}(k)^T w(k) \right] < 0 \]

(17)

을 만족하므로 정의 3에 의하여 불확실 필터링 오차 특이시스템 (5)는 산입성 \(\eta \)를 가지는 강인 피동적이다. 양의 정리(Schur complements)[22]에 의하여 \(\Xi < 0 \)은 식 (8)로 변형된다.

다음은 주어진 필터링 오차 특이시스템의 정규성, 코짱 및 안정성에 대한 증명이다. 선형행렬부등식 (8)은

\[\langle A^T R Z^T \rangle - E^T PE \tilde{A}^T P \]

\[*

\[2\eta - \langle D \rangle^T \tilde{B}^T \tilde{P} \]

(18)

을 의미한다. 양의 정리에 의하여

\[\langle A^T R Z^T \rangle - E^T PE \tilde{A}^T P \tilde{A}^T P \]

\[< 0 \]

(19)

와 같이, 식 (19)는 Xu와 Lam[19]의 정리 1과 정의 1에 의하여 정규적이고 코//= 및 안정성을 보일 수 있다. ■

변수 종속 리아토노프 함수를 폴리토픽 불확실성을 가지는 필터링 오차 특이시스템 (5)에 적용하고 보수성을 줄이기 위하여 Oliveira 등[25]이 사용한 슬랙 변수(slack variable)를 사용하여 정리 1의 조건을 정리 2와 같이 변형한다.

정리 2: 폴리토픽 불확실성 (2)를 가지는 필터링 오차 특이시스템 (5)가 정규적이고 코//=이며 안정하고 식 (7)의 강인 피동성을 만족하기 위해서는 아래의 행렬부등식

\[\bar{H} = \begin{bmatrix}
\langle A^T R Z^T \rangle - E^T PE & 2R^T \tilde{B} - C^T \tilde{A}^T P \\
* & 2\eta - \langle \tilde{D} \rangle^T \tilde{B}^T \tilde{P} \end{bmatrix} < 0 \]

(20)

을 만족하는 양의 정부호 행렬 \(P \)와 행렬 \(Z \)가 존재하는 것이다. 여기서, \(\bar{R} = E^T \tilde{R} \tilde{E} = 0 \)을 만족하는 행렬이다.

증명: 폴리토픽 불확실성을 가지는 식 (2)를 정리 1의 식
(8)의 조건에 대입하면
\[
\sum_{\lambda} \lambda \left(\begin{array}{c}
\lambda \\
\text{H}
\end{array} \right) = \sum_{\lambda} \lambda \text{H}
\]
(21)

과 같이 되고, $\text{H} < 0$ 이면 정리 1의 $H < 0$ 이 되므로 식 (20)을 만족하면 필터링 오차 특이시스템 (5)가 식 (7)의 강한 피동성을 만족한다.

구하여진 정리 2를 이용하여 필터링 오차 특이시스템 (5)의 강한 피동성을 만족하는 저차의 필터 설계방법을 정리 3에서 제안한다. 정리 3에서는 설계하고자 하는 필터의 차수 (n)를 미리 설정하면 저차의 강한 피동성 필터를 직접 설계할 수 있다. $n = n$ 이면 완전 차수 필터이고 $n = 0$ 이면 영의 차수를 가지는 정적 필터를 설계한다.

정리 3: 폴리토픽 불확실성 (2)를 가지는 이산시간 특이시스템 (1)에 대하여, 아래의 선행행렬부등식
\[
\begin{bmatrix}
\Phi_n & \Psi_n & \Theta_n
\end{bmatrix} < 0
\]
(22)
을 만족하는 양의 정부호 행렬 \(\Phi_n, \Psi_n, \Theta_n \)가 존재한다. 식 (22)를 구할 수 있다. $\Theta_n < 0$ 이면 $\Theta_n < 0$ 이므로 정리 3을 만족한다. $\gamma(k)$의 점달함수
\[
C_f = C_f \gamma(k) A_f \gamma(k) \]
(28)
으로 정의한다. 여기서, 변수들의 차원은 $X_{(n \times n)}$, $X_{(n \times n)}$과 같다. 행렬행렬식 (24)로부터 $H + H^T > 0$ 이므로 $X_f + X_f^T > 0$ 이다. 따라서 X_f는 역행렬이 존재한다. 식 (24)는 구하고자 하는 변수들의 수치에서 비선형이므로 모든 변수들의 수치에서 볼록최적화가 가능한 선행행렬부등식을 얻기 위하여 몇 가지 변수들은
\[
\bar{R} = \text{diag}(R_0), \quad \bar{Z} = \text{diag}(I, X_f^{-1})
\]
(26)

\[
F_1 = X_f X_f^{-1} X_f, \quad F_2 = X_f X_f^{-1} X_f^T, \quad \Psi = \text{diag}(I, X_f^{-1})
\]
(26)
과 같이 정의한다. 그리고 $V = \text{diag}(\Psi, I, I, \Psi)$ 와 식 (26)의 변수들을 이용하여 식 (24)에서 함동변환이(congruence transformation)을
\[
V_A V^T = \Theta_n
\]
(27)
과 같이 정리하면 식 (22)를 구할 수 있다. $\Theta_n < 0$ 이면 $\Theta_n < 0$ 이므로 정리 3을 만족한다. $\gamma(k)$의 점달함수
\[
C_f = C_f \gamma(k) A_f \gamma(k) \]
(28)
으로 정의한다. 여기서, 변수들의 차원은 $X_{(n \times n)}$, $X_{(n \times n)}$과 같다. 행렬행렬식 (24)로부터 $H + H^T > 0$ 이므로 $X_f + X_f^T > 0$ 이다. 따라서 X_f는 역행렬이 존재한다. 식 (24)는 구하고자 하는 변수들의 수치에서 비선형이므로 모든 변수들의 수치에서 볼록최적화가 가능한 선행행렬부등식을 얻기 위하여 몇 가지 변수들은
\[
\bar{R} = \text{diag}(R_0), \quad \bar{Z} = \text{diag}(I, X_f^{-1})
\]
(26)

\[
F_1 = X_f X_f^{-1} X_f, \quad F_2 = X_f X_f^{-1} X_f^T, \quad \Psi = \text{diag}(I, X_f^{-1})
\]
(26)

\[
\text{Maximize } \eta \text{ subject to LMI (21)}
\]
(29)

의 최적화 문제로 변경 가능하다.

제안한 이산시간 불확실 특이시스템에 대한 강한 피동성 필터를 설계하기 위하여
\[
E = \begin{bmatrix}
1.00 & 0.51 & 0.32 & 0.5 + \delta \\
0.00 & -0.31 & -0.21 & 0.15 & 0.2 & 0.21 & -0.1 & -0.4
\end{bmatrix}
\]
(30)

\[
C = \begin{bmatrix}
0.4 + \delta & 0.5 & 0.2 \\
0.3 & 0.2 & 0.3 & 0.1 & 0.1 & 0.4 & 0.1 & 0.2
\end{bmatrix}
\]
(30)

과 같은 특이시스템을 다룬다. $E^T R = 0$을 만족하는 행렬 R이 선정된다.

이산시간 불확실 특이시스템의 저차 강한 피동성 필터링
은 완전 차수인 3차(\(q = 3\)) 강인 피동성 필터를 위해서는 \(R = \text{diag}(0,1,0)\) 으로, 2차(\(q = 2\)) 강인 피동성 필터를 위해서는 \(R = \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}\) 으로, 1차(\(q = 1\)) 강인 피동성 필터를 위해서는 \(R = \begin{bmatrix} 1 \end{bmatrix}\) 으로, 0차의 차수를 가지는 정적필터는 \(R = \begin{bmatrix} 1 \end{bmatrix}\)으로 구해진다. 따라서 제안한 강인 피동성 필터 설계 알고리듬은 특이시스템과 비특이시스템에 동시에 적용가능한 일반적인 알고리즘이다.

이로서, 제안한 강인 피동성 필터는 불확실성을 가지는 이산시간 불확실 특이시스템에 대한 저차의 강인 피동성 필터가 존재할 조건과 설계방법을 최적화가 가능한 선형행렬부등식 기법을 이용하여 제안하였다. 먼저 강인 피동성 필터가 존재할 조건을 리야프노프 함수를 선정하여 구하였다. 그리고 구하고자 하는 변수들을 폴리토픽에 속하는 변수로 선정하여 선형행렬부등식 형태의 저차의 저차 강인 피동성 필터가 존재할 조건과 설계방법을 구하였다. 또한, 본 논문에서 제안하는 알고리즘을 이용하면 특이시스템 뿐만 아니라 비특이시스템에 대해서도 적절적용할 수 있는 일반적인 알고리즘이 된다. 마지막으로 수치예제를 통하여 저차 강인 피동성 필터의 설계 방법을 확인하였다. 또한, 제안한 강인 피동성 설계 알고리듬은 이산시간에서의 시간지연 특이시스템이나 마코프 점프 특이시스템 등으로도 쉽게 적용 가능하다.

4. 결 론

본 논문에서는 폴리토픽 불확실성을 가지는 이산시간 불확실 특이시스템에 대한 저차의 강인 피동성 필터가 존재할 조건과 설계방법을 최적화가 가능한 선형행렬부등식 기법을 이용하여 제안하였다. 먼저 강인 피동성 필터가 존재할 조건을 리야프노프 함수를 선정하여 구하였다. 그리고 구하고자 하는 변수들을 폴리토픽에 속하는 변수로 선정하여 선형행렬부등식 형태의 저차의 저차 강인 피동성 필터가 존재할 조건과 설계방법을 구하였다. 또한, 본 논문에서 제안하는 알고리즘을 이용하면 특이시스템 뿐만 아니라 비특이시스템에 대해서도 적절적용할 수 있는 일반적인 알고리즘이 된다. 마지막으로 수치 예제를 통하여 저차 강인 피동성 필터의 설계 방법을 확인하였다. 또한, 제안한 강인 피동성 설계 알고리듬은 이산시간에 의한 시간이동 특이시스템이나 마코프 점프 특이시스템 등으로도 쉽게 적용 가능하다.

저자소개

오도창 (吳道昌) 1991년 경북대학교 전자공학과 졸업. 1997년 동 대학원 전자공학과 졸업(공박). 1997년~2002년 경북대학교 공학부 전자공학전공교수. 2004년 7월 미국 Univer. of Florida 방문교수. 1997년 8월~현재 건양대학교 전자정보공학과 교수. Tel : 041–730–5180 E-mail : docoh@konyang.ac.kr