Performance Comparison of the Railway Traction IPM Motors between Concentrated Winding and Distributed Winding

Chan-Bae Park*, Byung-Song Lee* and Hyung-Woo Lee†

Abstract – This paper presents performance comparison between concentrated winding and distributed winding of IPMSM (Interior Permanent Magnet Synchronous Motors) which is recently used for light-weight railway applications. Motors are designed on various schemes and analyzed by using FEM (Finite Element Method) instead of EMCNM (Equivalent Magnetic Circuit Network Method) in order to take into account saturation and non-linear magnetic property. The overall performance such as torque, torque ripple, losses, demagnetization, efficiency, power density and so on are investigated in detail at the rated and maximum operating speed. The results of the analysis found that both concentrated and distributed winding IPMSMs are promising candidates for high power railway traction motor

Keywords: Concentrated winding, Distributed winding, IPMSM, Power density, Performance

1. Introduction

Since conventional trains using an internal combustion engine have low efficiency, causing much pollution and oil shortage problems, electrified trains are used all over the world nowadays. The traction motors for electric trains mostly concern about power density as well as efficiency. Especially the power density of railway traction motors is lower than 1 (kW/kg), which is half of that of electric vehicles. In that regard, IPMSM (Interior Permanent Magnet Synchronous Motor) using permanent magnets is in the limelight for on-board traction motors from low-speed to high-speed trains. IPMSM with concentrated winding is superior to motors with distributed winding in power density because it uses less end coils. Yet, it can cause huge amount of eddy current loss in magnets by slot harmonics with concentrated winding because permanent magnet has inherent conductivity. Additionally, other performances are different between concentrated and distributed winding IPMSMs. It is appropriate time to consider what kind of winding is suitable for IPMSM for train applications. The aim of this paper is to analyze and compare the overall performance of each winding IPMSM, and suggest suitable winding for a light-weight train.

2. Operating Characteristics and Designed Models

2.1 Operating characteristics

Traction motors are operating within the maximum torque-speed curve. Frequent operating points for electric vehicle on federal highway driving schedules (FHDS), electric vehicle on federal urban driving schedules (FUDS), high speed train (max. speed of 300 (km/h)) and low speed train (max. speed of 80 (km/h)) are shown in Fig. 1. As the traction motors run mostly in the high speed region for FHDS and high speed trains, it is clear that the performance in the high speed region should be mostly concern.

Fig. 1. Frequent operating points of the traction motor for EV and trains (measured values)
On the other hand, traction motors for FUDS and low speed train which make frequent stops run all over the region and especially the motors should have better performance in the low-middle speed region for rapid acceleration and deceleration. These frequent operating characteristics should be considered in making decisions of which winding configuration is suitable. In this paper, the performances of the traction motor for a low-speed train (Fig. 1(d)) are analyzed.

2.2 Concentrated- and distributed-winding IPMSMs

In order to compare the performance of both concentrated winding and distributed winding IPMSMs for a low speed light-weight train, 110 (kW) traction motors are optimally designed by using Taguchi method. Fig. 2 shows the torque-speed curve of the proposed IPMSM to satisfy the required acceleration and climbing ability. Rated power is 110 (kW), required starting torque and maximum speed torque is 433 (Nm) and 75 (Nm), respectively.

The cross-sectional views and specifications of the motors are shown in Fig. 3 and Table 1, respectively. Both motors satisfy the motor current limit and inverter voltage limit which is induced by the coast running in a steep descent, and also accomplish required torque and efficiency.

Fig. 1. Frequent operating points of the traction motor for EV and trains (measured values)

Fig. 2. Torque-Speed curve of the IMPSM for a light-weight train

Fig. 3. Designed concentrated winding IPMSM and distributed winding IPMSM with 6 poles

Table 1. Specifications of each IPMSM

<table>
<thead>
<tr>
<th>Variables</th>
<th>110[kW] IPMSM</th>
<th>Concentrated winding</th>
<th>Distributed winding</th>
</tr>
</thead>
<tbody>
<tr>
<td>Phase / Poles</td>
<td>3 phases / 6 poles</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rated/Max. Speed</td>
<td>2,400 / 6,000 (RPM)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Stack length</td>
<td>280 (mm) (without end-turn)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Permanent magnet</td>
<td>Nd-Fe-B (Br = 1.15(T))</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Number of slots</td>
<td>9 (ea)</td>
<td>36 (ea)</td>
<td></td>
</tr>
<tr>
<td>Outer diameter</td>
<td>316[mm]</td>
<td>319 (mm)</td>
<td></td>
</tr>
<tr>
<td>Magnet angle</td>
<td>15 (degree)</td>
<td>5 (degree)</td>
<td></td>
</tr>
<tr>
<td>Web width</td>
<td>2 (mm)</td>
<td>10 (mm)</td>
<td></td>
</tr>
</tbody>
</table>
3. Comparison of the Performance

Designed concentrated winding IPMSM and distributed winding IPMSM are analyzed by FEM to investigate the overall performance such as torque, torque ripple, manufacturability, losses, efficiency, operating speed range, controllability, demagnetization and power density.

3.1 Torque and torque ripple

As it is well known, the distributed winding motor has lower torque ripple because of the distributed magnetic flux through the teeth. Analysis results show that it has lower torque ripple of 116 (Nm) compared with the 133 (Nm) of concentrated winding motor. And the average torque of the distributed winding motor at the maximum speed is higher than that of the concentrated winding motor. Hence, it results in that the distributed winding motor is better for the torque performance.

Fig. 4. Torque and torque ripple of each IPMSM

3.2 Manufacturability

Fig. 5 shows a concentrated winding IPMSM used for an electric vehicle. One pattern of coils is wound around one stator core separately so as to build a piece of stator tooth and winding, and assemble it. This increases the space factor of the slots and makes the slot opening small. Therefore, this kind of divided core increases the manufacturability for concentrated winding IPMSMs. In addition, shorter end coil means lower copper cost.

Fig. 5. Divided cores and concentrated winding

3.3 Losses and efficiency

As the concentrated winding IPMSM has shorter end coil as mentioned, it has lower phase resistance and lower copper loss than the distributed winding IPMSM. In addition, the distributed winding IPMSM has more magnetic saturation parts at the stator teeth as shown in Fig. 6 and core loss is bigger than that of the concentrated winding IPMSM. However, the concentrated winding IPMSM causes huge amount of eddy current loss in magnets by slot harmonics at high speed operation because permanent magnet has inherent conductivity.

Fig. 6. Magnetic flux density of each IPMSM at the maximum speed
3.4 Operating speed range

In general IPMSMs, reluctance torque is dominant at the maximum speed and this decides the operating speed range. This reluctance torque is generated by the inductance difference \(L_q - L_d \) as is well known. The calculated q-axis and d-axis inductances of the designed concentrated winding IPMSM are 0.2867 (mH) and 0.2692 (mH), respectively. And those of the distributed winding IPMSM are 0.6077 (mH) and 0.2946 (mH), respectively. Therefore, concentrated winding IPMSM has smaller reluctance torque and shortened possible operating speed range. Fig. 8 shows the torque-speed curve of both winding IPMSMs [1]. As shown in the figure, the speed range of the concentrated winding IPMSM is shorter than that of the distributed winding IPMSM. It seems that the concentrated winding IPMSM has no problem with this because the frequent operating points are usually in the constant torque region as mentioned before. However, it did not show favorable climbing ability at maximum speed.

3.5 Harmonics of EMF and controllability

Harmonics and controllability are also considered. Fig. 9 shows the full-load EMFs (Electro Motive Forces) and their harmonics of both winding IPMSMs. Fundamental frequency at the maximum speed is 300 (Hz).

3.6 Demagnetization tolerance

Demagnetization is generally occurred by high temperature, airgap variation and high locked-rotor current. For both concentrated and distributed winding IPMSMs, demagnetization from high temperature and airgap variation would be similar and demagnetization tolerance is relatively stronger than SPMSM (Surface Permanent Magnet Synchronous Motor) because permanent magnets of IPMSM are inserted in the rotor. However, demagnetization from locked-rotor current is different.

Fig. 10 shows the demagnetization analysis of both motors when 1,600 (A) (around 4 times of the rated current) of locked-rotor current is fed. For the concentrated winding IPMSM, the intensive flux from the stator core affects directly on the permanent magnet and the minimum magnetic flux density of the permanent magnet is 0.2515
Performance Comparison of the Railway Traction IPM Motors between Concentrated Winding and Distributed Winding

3.7 Power density

In general, IPMSM with concentrated winding is superior to IPMSM with distributed winding in power density because of the use of less end coils. The calculated weight of the designed model with concentrated winding is 162.6 (kg) and its power density is 0.67 (kW/kg). On the other hand, the calculated weight of the designed model with distributed winding is 182.9 (kg) and its power density is 0.596 (kW/kg). Major sources of difference is the weight of stator and coil. From the calculation, it is confirmed that the concentrated winding IPMSM is better in the power density point of view.

4. Conclusion

Various performance characteristics of both concentrated winding IPMSM and distributed winding IPMSM used for low-speed railway traction motors are investigated and compared in detail. For the comparison, 110 (kW) light-weight train motors are optimally designed and analyzed by FEM. In terms of copper loss, manufacturability and power density, the concentrated winding IPMSM presented better results. In the points of efficiency at high speed, torque ripple, controllability, demagnetization tolerance and operating speed range, the distributed winding IPMSM performed better. Table 2 shows the summary of performance comparison of each IPMSM for a low-speed, light-weight train. Among many issues considered, efficiency and power density are the most important one for on-board traction motors and the analysis results elicit that the concentrated winding IPMSM can also be a good candidate for a traction motor in that regard.

Table 2. Summary of the performance comparison of the each IPMSM for a low-speed train

<table>
<thead>
<tr>
<th>Variables</th>
<th>110[kW] IPMSM</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Concentrated</td>
</tr>
<tr>
<td>Torque</td>
<td>○</td>
</tr>
<tr>
<td>Torque ripple</td>
<td>○</td>
</tr>
<tr>
<td>Manufacturability</td>
<td>○</td>
</tr>
<tr>
<td>Efficiency</td>
<td>Low speed</td>
</tr>
<tr>
<td></td>
<td>High speed</td>
</tr>
<tr>
<td>Operating speed range</td>
<td>○</td>
</tr>
<tr>
<td>Controllability</td>
<td>○</td>
</tr>
<tr>
<td>Demagnetization tolerance</td>
<td>○</td>
</tr>
<tr>
<td>Power density</td>
<td>○</td>
</tr>
</tbody>
</table>

References

Chan-Bae Park He received the B.S. degree and M.S. degree in electrical engineering from Chungnam National University, Taejon, Korea, in 2001, and Seoul National University, Seoul, Korea, in 2003, respectively. Since 2009, he is completing the Ph. D course in electrical engineering from Hanyang University, Seoul, Korea. From 2003 to 2006, he worked as Senior Engineer in Digital Appliance R&D Center at Samsung Electronics Co., where he developed various motors for home appliances. Since 2007, he has been a Senior Researcher at the Korea Railroad Research Institute, Uiwang, Korea.
His research interests include design and analysis of motor/generator, transformer and superconducting devices for energy conversion systems. Currently, he is working for development of linear propulsion systems for railway transit.

Byung-Song Lee He received the B.S. degree in electrical engineering from Seoul National University of Technology, Seoul, Korea, in 1988, and M.S. degree and Ph. D degree in electrical engineering from Chung-Ang University, Seoul, Korea, in 1991 and 1995, respectively. From 1996 to 1997, he worked as Senior Researcher in Railway Vehicle R&D Center at KHRC(Korea High speed Rail Construction Authority), where he developed propulsion system for high speed train. Since 1998, he has been a Senior and Principal Researcher at the Korea Railroad Research Institute, Uiwang, Korea.

His research interests include IPT(Inductive Power Transfer) and energy conversion systems for railway train. Currently, he is working for development of IPT system for railway vehicles.

Hyung-Woo Lee He received the B.S. and M.S. degrees from Hanyang University, Seoul, Korea, in 1998 and 2000, respectively, and the Ph.D. degree from Texas A&M University, College Station, TX, in 2003, all in electrical engineering. In 2004, he was a Post-doctoral Research Assistant in the Department of Theoretical and Applied Mechanics, Cornell University, Ithaca, NY. In 2005, he was a contract Professor at the BK division of Hanyang University, Seoul, Korea. Since 2006, he has been a Senior Researcher at the Korea Railroad Research Institute, Uiwang, Korea. His research interests include design, analysis and control of motor/generator, power conversion systems, and applications of motor drives such as Maglev trains, conventional railway propulsion systems, and modern renewable energy systems.