Characterization of Inkjet-Printed Silver Patterns for Application to Printed Circuit Board (PCB)

Abstract – In this paper, we describe the analysis of inkjet-printed silver (Ag) patterns on epoxy-coated substrates according to several reliability evaluation test method guidelines for conventional printed circuit boards (PCB). To prepare patterns for the reliability analysis, various regular test patterns were created by Ag inkjet printing on flame retardant 4 (FR4) and polyimide (PI) substrates coated with epoxy for each test method. We coated the substrates with an epoxy primer layer to control the surface energy during printing of the patterns. The contact angle of the ink to the coated epoxy primer was 69°, and its surface energy was 18.6 mJ/m². Also, the substrate temperature was set at 70°C. We were able to obtain continuous line patterns by inkjet printing with a droplet spacing of 60 μm. The reliability evaluation tests included the dielectric withstanding voltage, adhesive strength, thermal shock, pressure cooker, bending, uniformity of line-width and spacing, and high-frequency transmission loss tests.

Keywords: Inkjet, Reliability, Silver, Printed circuit board, Epoxy

1. Introduction

Photo-lithography is generally used for the fabrication of micro-structures. It requires many process steps, including photo-resist coating, exposing, developing and etching processes, to generate patterns after thin film deposition [1-4]. Due to the demand for low-cost manufacturing and shorter product development times, an alternative simple direct writing method has been proposed especially for printed electronics applications. Recently, inkjet printing, a direct writing technology, has been attracting growing interest for the production of micro-patterns. Its advantages include low-cost manufacturing and low-temperature micro-fabrication on flexible substrates, which are especially attractive for paper electronics, identification tags, and disposable electronic devices. Moreover, the ink consumption of this technique can be reduced because inkjet printing techniques use a drop-on-demand process that allows for the delivery of precise amount of various solution-based materials, such as nano-particle colloids, polymers, organo-semiconductors, and organo-metallics.

In recent years, various issues regarding the use of inkjet technology in industrial manufacturing have been reported. First, control of the waveform and voltage for driving the piezo actuator is critical to ensuring the stable jetting of droplets from the nozzles because printed patterns are formed by the deposition and connecting of individual liquid droplets ejected from a nozzle onto a substrate. Also, inkjet-printed patterns often produce a coffee ring effect or line bulges due to the differential evaporation rates between the center and edges, droplet spacing, surface wettability, and hydrodynamic instability. To obtain uniform and reliable patterns without the coffee ring effect and line bulges, many researchers have proposed various methods, including controlling nano-particle size, stabilizing nano-particle dispersion, controlling ink solvent properties, changing droplet spacing, heating substrates, altering surface wettabilities and mixing several solvents having different properties [5-8].

Recently, several studies on the reliability of inkjet-printed patterns have been conducted to evaluate inkjet printing technology as a fabrication process for the printed circuit board (PCB) industry. However, the methods and standards for evaluating the reliability of inkjet-printed patterns have not yet been entirely established [9]. For this study, we selected seven different items and conditions for reliability evaluation that have been commonly used in the conventional PCB industry according to the standard of the Institute for Interconnecting and Packaging Electronic Circuits (IPC), TM650. We extensively characterized the inkjet-printed Ag patterns according to these selected methods and standards. The test patterns for these tests were fabricated by inkjet printing of an Ag nano-particle ink on a FR4 rigid substrate and a polyimide (PI) film. The surface wettability was controlled by coating each substrate with an epoxy layer with a thickness of 5 μm. During the jetting process, each substrate was heated to promote the
evaporation of the solvent. Substrate heating enhances the evaporation rate of liquid droplets, thereby enabling the avoidance of line bulges and leading to fine and uniform pattern sizes.

2. Experimental methods

2.1 Experiment apparatus and materials

A piezoelectric print-head system with a 50 μm nozzle diameter (MicroFab Co., USA) was used for printing the Ag ink. The printing system was composed of a print-head, a motorized X-Y stage with positioning accuracy of 2 μm, a heatable working table, and an alignment system. Before printing the patterns, we first optimized the droplets ejected from the nozzle by controlling the voltage and waveform of the piezo actuator drive to ensure stable single droplet deposition during all the experiments [10]. We used Ag ink (Advanced Nano Products Co., Korea) in which ~20 nm Ag nano-particles were dispersed in a triethylene glycol monomethyl ether (TGME) solution with a viscosity of 12.8 cP, a vapor pressure of 0.001 kPa at 20 °C, and a surface tension of 35.9 mN/m, respectively. Rigid FR4 substrates were used to fabricate the specimens for the withstanding voltage, adhesive strength, thermal shock, pressure cooker, line-width uniformity, and high-frequency transmission loss tests. Flexible PI (Doosan Electronic Corp.) films were used to fabricate the specimens for the bending test which was carried out using a Toyoseiki MIT-SA bending tester. Viscosities and surface tensions were measured with a Brookfield DV-II + Pro viscometer and a Kruss K9 tension-meter, respectively. A UNION DZ2 microscope was used to evaluate the line-width and spacing uniformity of the patterns. The American Society for Testing and Materials (ASTM) D3359 adhesive strength test rating system was used along with 3M 610 Scotch tape to measure the adhesion of the Ag patterns. The dielectric withstanding voltage, thermal shock, pressure cooker, and high frequency transmission loss test were measured with CHROMA 6330 high-speed electric load, ESPEC high temperature tester, ESPEC pressure cooker tester, and AGILENT E8362B/C Series network analyzer, respectively.

2.2 Substrate preparation and inkjet printing

The cleaned FR4 substrates and PI films were coated with an epoxy primer solution, which was prepared by mixing bisphenol-A-epoxy resin, sulfone hardener, and ketone solvents. The substrates and films were coated with a primer layer to control the contact angle of the ink as patterns were formed on the substrate during inkjet printing. The primer layer, with a thickness of 5 μm, was spin-coated onto the FR4 and PI surfaces at 4000 rpm for 1 minute. Then, to attach the epoxy film onto the FR4 and PI surfaces, the samples were immediately loaded into a convection oven and baked at 170 °C for 30 minutes. Sequentially, the inkjet printing was completed within 10 minutes after completion of the surface treatment of the substrate and films to prevent any change in their surface wettability. The reliability evaluation patterns were printed onto the substrates with a droplet spacing of 60 μm and a surface temperature of 70 °C.

3. Results and discussion

In this study, we selected seven different test items and conditions for reliability evaluation used in the conventional PCB industry according to the standard of the Institute for Interconnecting and Packaging Electronic Circuits (IPC) TM650. We intensively characterized the inkjet-printed Ag patterns according to the selected methods and standards. Table 1 shows the test conditions, substrate type and evaluation results for the reliability test items, including the withstanding voltage, ASTM D3359 adhesive strength, thermal shock, pressure cooker, bending, line-width uniformity, and high-frequency transmission loss tests.

Table 1. Reliability test items, conditions, substrate type and evaluation results

<table>
<thead>
<tr>
<th>Test items</th>
<th>Conditions</th>
<th>Substrate type</th>
<th>Evaluation results</th>
</tr>
</thead>
<tbody>
<tr>
<td>Withstanding voltage</td>
<td>No spark discharge, short circuiting, or dielectric breakdown at 1000 V DC, 1 mA, 30 seconds</td>
<td>FR4</td>
<td>Pass</td>
</tr>
<tr>
<td>Adhesive strength</td>
<td>No peel off in 1 mm cross-cut tape test</td>
<td>FR4</td>
<td>Pass</td>
</tr>
<tr>
<td>Thermal shock</td>
<td>Variation of resistance within ±10% at –55 °C, 15 minutes and 125 °C, 15 minutes, 100 cycles</td>
<td>FR4</td>
<td>Pass</td>
</tr>
<tr>
<td>Pressure cooker test</td>
<td>Insulation resistance above 100 MΩ at 121 °C, 2 atm, 97% RH ; 24 hr, 48 hr</td>
<td>FR4</td>
<td>Pass</td>
</tr>
<tr>
<td>Bending</td>
<td>The angle of rotation: 135 °, velocity of rotation: 175 times/min above 10,000 times for a copper film</td>
<td>PI</td>
<td>Pass</td>
</tr>
<tr>
<td>Line-width uniformity</td>
<td>Uniformity variation within ±10%</td>
<td>FR4</td>
<td>Pass</td>
</tr>
<tr>
<td>High-frequency transmission loss</td>
<td>less than 1 dB/cm at 10 GHz</td>
<td>FR4</td>
<td>NG</td>
</tr>
</tbody>
</table>

(FR4: Flame Retardant 4, PI: Polyimide, RH: Relative Humidity)
The variation in resistance after the thermal shock test was found to be within $\pm 4.5\%$ for the five samples with no signs of spark discharge or short circuiting. The narrow variation of resistance less than $\pm 10\%$ (pass condition) demonstrates that the inkjet-printed Ag patterns have good resistance characteristics to external thermal shock.

The pressure cooker test was conducted by measuring the insulation resistance (“D” in Fig. 1) through both ends between two independent Ag lines at 121 °C, 2 atm, and 97% RH after 24 hours and 48 hours, after the test patterns were printed (“D” in Fig. 1). The pressure cooker test is a standard for determining the occurrence of leakage current. In the pressure cooker test, the average insulation resistance values and standard deviation after 24 hours and 48 hours for five test samples were $7.7 \times 10^9 \pm 1.7 \, \text{M} \Omega$ and $7.5 \times 10^4 \pm 1.6 \, \text{M} \Omega$, respectively. There was no remarkable difference in the resistance for five samples. These results show that inkjet-printed pattern has good stability of insulation resistance at high temperature, pressure and humidity conditions.

![Fig. 1. Standard test patterns formed by Ag inkjet printing on the FR4 substrate for reliability analysis items](image)

Table 2. ASTM D3359 adhesive strength rating

<table>
<thead>
<tr>
<th>Rating</th>
<th>Ratio of removed area</th>
</tr>
</thead>
<tbody>
<tr>
<td>5B</td>
<td>0%</td>
</tr>
<tr>
<td>4B</td>
<td>Less than 5%</td>
</tr>
<tr>
<td>3B</td>
<td>5 – 15%</td>
</tr>
<tr>
<td>2B</td>
<td>15 – 35%</td>
</tr>
<tr>
<td>1B</td>
<td>35 – 65%</td>
</tr>
<tr>
<td>0B</td>
<td>More than 65%</td>
</tr>
</tbody>
</table>

![Fig. 2. Microscopic images: (a) before adhesive strength test (initial status) and; (b) after adhesive strength test](image)

![Fig. 3. Bending test Ag patterns: (a) photographic image and; (b) cross-sectional scheme of the fabricated specimen](image)
which may result in the variation of the rotation number in the bending test because we used thermal sintering process and the ink suspension of nanoparticles of 10–20 nm.

The uniformity test of the line patterns was analyzed with a microscope after printing thirty six Ag lines in ‘ㄱ’ shape with the line-width and spacing of 120 μm, respectively (“A” in Fig. 1). We found the inkjet printing conditions that would produce patterns without any bulges or merging by controlling the surface wettability and substrate temperature as reported in previous researches [13]. We coated the substrates with an epoxy primer layer to control the surface energy during printing. The contact angle of the ink to the epoxy primer was 69° and the surface energy of the epoxy primer was 18.6 mJ/m². The substrate temperature was set at 70°C. We obtained continuous line patterns by inkjet printing with a droplet spacing of 60 μm. Once printed, the line uniformity test pattern was left in open air at room temperature to dry for 10 minutes and sintered at 170°C for 30 minutes. Fig. 4 shows a microscopic image of the line uniformity test pattern with an inset showing a magnified image. Measured width and spacing of the printed Ag lines were 126 ± 3μm and 114 ± 3μm, respectively. The line uniformity test pattern thus showed a uniformity of line-width and spacing of 120 μm ± 10%.

The transmission loss of the inkjet-printed microstrip line was estimated using three dimensional-full electromagnetic (EM) simulation, as shown in Fig. 5. The schematic view for the High Frequency Structural Simulator (HFSS) simulation and the simulated result for RF transmission are shown in the Fig. 5 (a) and (b), respectively. The microstrip line for the high-frequency transmission loss test was printed on a 5 μm-thick primer covering a 0.8 mm-thick FR4 substrate, which was 1.7 mm wide, 50 mm long, and 5 μm thick. The simulated results of the high-frequency transmission loss simulation showed an insertion loss of –1.8 dB at 10 GHz and reflection loss of more than –30 dB at 10 GHz. The ground of the microstrip line was formed on the backside of the FR4 substrate. For the transmission loss test at high frequencies, the RF characteristics of the inkjet-printed microstrip line were measured using a vector network analyzer (VNA) over a range from 1 GHz to 10 GHz. As shown in Fig. 6, the 50 mm-long micro strip line shows an insertion loss of –5.0 dB at 10 GHz and a reflection loss of –15 dB at 10 GHz. The large discrepancy between the simulation and the measurement could be explained by the non-uniformity of the silver nanoparticles on the substrate. The resistivity value was 5.3 μΩ·cm in the simulation. Hollow holes with a diameter of around 1–2 μm and a depth of 50–150 nm were observed all over the inkjet-printed Ag surface through the surface analysis using a surface profiler, an atomic force microscope and a scanning electron microscope (data not shown). The hollow holes took around 20% area of the whole printed Ag surface. Therefore, in comparison with the simulated results using a smooth surface without

<table>
<thead>
<tr>
<th>Sample number</th>
<th>Rotation number</th>
<th>Average ± standard deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>10,524</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>9,872</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>12,952</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>11,023</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>10,128</td>
<td></td>
</tr>
</tbody>
</table>

Table 3. Bending test results of Ag patterns

![Fig. 4. Microscopic image of line width uniformity test pattern with line and spacing of 120 μm ± 10%](image)

![Fig. 5. (a) HFSS simulation layout for high-frequency transmission loss test and; (b) simulated results of high frequency transmission loss simulation](image)
hollow holes, RF insertion loss and return loss might deteriorate due to the magnetic field generated by surface inductance near the hollow holes [14]. The non-uniformity of the silver nanoparticles could be a critical loss and main reason of the degradation.

In addition, the electrical resistivity ρ of the fully sintered lines was estimated and compared according to the relationship $\rho = RA/L$ (R: resistance, A: cross-sectional area, and L: length). The resistivity of the line made from the TGME-based ink was 5.3 $\mu\Omega\cdot cm$ which corresponds to approximately 3.3 times the resistivity of bulk silver (1.6 $\mu\Omega\cdot cm$).

4. Conclusions

To characterize inkjet-printed Ag patterns to test their suitability for application in the PCB industry, we established seven test items and conditions for reliability evaluation following the Institute for Interconnecting and Packaging Electronic Circuits (IPC) TM650 test method guidelines. The Ag patterns tested in the withstanding voltage test did not show any spark discharge, short circuiting, or dielectric breakdown phenomena after transmitting 1000 V DC for 30 seconds through both ends of a 5 cm line. The ASTM D3359 adhesive strength rating achieved by the tested sample was 5B, showing no loss of adhesion of the Ag pattern. The thermal shock test result showed resistance change within ±10% after testing without any spark discharge or short circuiting and the insulation resistance value for pressure cooker test was far greater than the pass condition of 100 MΩ at 121 °C, 2 atm, and 97% relative humidity after 48 hours. The bending test passed the test criteria above 10,000 times with showing 10,900 ± 1226 times. The line width uniformity test showing ±10% variation for the test samples, reached the required standard. The results of the high-frequency transmission loss test showed an insertion loss of ~5.0 dB/cm at 10 GHz for the micro-strip line and ground formed with silver ink.

In summary, this analysis confirmed that inkjet-printed Ag patterns are suitable for PCB applications insofar as the test results of the withstanding voltage, adhesive strength, thermal shock, pressure cooker, bending, and line-width uniformity are concerned. However, the inkjet-printed Ag patterns did not meet the required standards necessary to "pass" the high-frequency transmission loss test.

Acknowledgements

This work was supported by the Korea Institute of Industrial Technology and Ministry of Knowledge Economy, Korea.

References

of Silver Inkjet Overlap-Printing through Cohesion and Adhesion”, Journal of Electrical Engineering
Paajanen, Jouko Lahtinen, Jorma K. Kivilahti, “Pull-off test in the assessment of adhesion at printed
wiring board metallization/epoxy interface”, Journal of Microelectronics Reliability, Vol. 44, pp. 993-1007,
2004.
[12] Inyoung Kim, Young An Song, Hyun Chul Jung, Jea
Woo Youn, Sung-Soo Ryu and Jongyoul Kim, “Effect
of Microstructural Development on Mechanical and
Electrical Properties of Inkjet-Printed Ag Films”,
and substrate effects on inkjet-printed dots and lines
Vol. 21, pp. 11, 2011.
[14] Allen F. Horn, Ill, John W. Reynolds, James C Rautio,
“Conductor Profile Effects on the Propagation Constant
of Microstrip Transmission Lines”, International
Microwave Symposium Digest (MTT), 2010 IEEE

Kwon-Yong Shin He received bachelor
of engineering in Aerospace Engi-
neering from Chonbuk University in
2001 and Master of Engineering in
Mechanical Design and Mechatronics
from Hanyang University in 2010. He
joined Korea Institute of Industrial
Technology in 2004. His current research
interests are in printed electronics and application of
industrial inkjet technology.

Minsu(Tim) Lee began his 15-year
career in interconnect materials at
Doosan Electro-Materials where he
developed novel copper clad laminates
for PCB in 1987. Later he joined Doosan
Technology Center, responsible for
chemical synthesis of phospholipids after
receiving Ph.D. in US. Since 1997, he
returned to Doosan Electro-Materials and has been working
on electronic interconnection materials. His current respon-
sibility is the development of green materials including
material for printed electronics.

Dr. Lee has patents and publications on optical PCB,
green PCB materials and organic substrate materials. His
educational background includes BS and MS in Chemistry
from Hanyang University of Korea and a Ph.D. in Organic
Chemistry from University of Georgia in 1984, 1986 and
1992, respectively. In addition, he completed the MBA
program of Rensselaer Polytechnic Institute in 1997.

Heuseok Kang received the B.S. and
the M.S. degrees in Mechanical Engi-
neering from Seoul National
University, Korea, in 1986 and 1988,
and the Ph.D degree in Mechanical
Engineering from the University of
Texas at Austin in 1997. He served as
a researcher from 1988 to 1991 in
Daewoo Heavy Industries and KIST, Korea. He is
currently working as a principal researcher at KITECH,
Korea. His research interests include automatic control,
manufacturing system, and printed electronics.

Kyungtae Kang He received B.S. and
Ph.D in Mechanical Engineering from
Seoul National University in 1988 and
1994. He joined Korea Institute of
Industrial Technology in 1996 after
working at United Technologies Research
Center, CT. USA. His current interests
are in printed electronics applications
and standardization using non-contact printing/coating
technologies such as an inkjet and a nozzle jet. His work
included printed flexible/ transparent organic solar cell,
printed organic light emitting diode (OLED) light, printed
flexible circuit board (FPCB).

Jun Young Hwang received B.S. and
Ph.D. in Mechanical Engineering from
Seoul National University in 1993 and
1999, respectively. He is now working
at Korea Institute of Industrial Tech-
nology and his research interests are
thermo-fluid analysis for laser-assisted
printing processes and fuel cell systems.

Jung-Mu Kim (M’08) was born in
Jeonju, Korea, in 1977. He received the
B.S. degree in electrical engineering
from Ajou University, Suwon, Korea,
in 2000, the M.S. and Ph.D. degrees in
electrical engineering and computer
science from Seoul National University,
Seoul, Korea, in 2002 and 2007,
respectively. From 2007 to 2008, he was a Postdoctoral Fellow at University of California, San Diego. In 2008, he
joined Chonbuk National University, Department of
Electronic Engineering and Advances Electronics &
Information Research Center, where he is currently an
Associate Professor. His research interests include the IMU,
Optical MEMS and RF MEMS.
Sang-Ho Lee He received B.S. in Metallurgy and Materials Science Engineering from Hanyang University in 1996 and Ph.D. in Electrical Engineering from Seoul University in 2003. He joined Korea Institute of Industrial Technology in 2006 after a two year post doctoral fellowship at Soh Lab, UCSB. His current research interests are in micro bio-devices for chemotaxis analysis, paper chips, printed electronics and application of industrial inkjet technology.