Controllability of Structural, Optical and Electrical Properties of Ga doped ZnO Nanowires Synthesized by Physical Vapor Deposition

Sang Yeol Lee
Department of Semiconductor Engineering, Cheongju University, Cheongju 360-764, Korea

Received March 5, 2013; Revised March 24, 2013; Accepted April 11, 2013

The control of Ga doping in ZnO nanowires (NWs) by physical vapor deposition has been implemented and characterized. Various Ga-doped ZnO NWs were grown using the vapor-liquid-solid (VLS) method, with Au catalyst on c-plane sapphire substrate by hot-walled pulsed laser deposition (HW-PLD), one of the physical vapor deposition methods. The structural, optical and electrical properties of Ga-doped ZnO NWs have been systematically analyzed, by changing Ga concentration in ZnO NWs. We observed stacking faults and different crystalline directions caused by increasing Ga concentration in ZnO NWs, using SEM and HR-TEM. A D_0X peak in the PL spectra of Ga doped ZnO NWs that is sharper than that of pure ZnO NWs has been clearly observed, which indicated the substitution of Ga for Zn. The electrical properties of controlled Ga-doped ZnO NWs have been measured, and show that the conductance of ZnO NWs increased up to 3 wt% Ga doping. However, the conductance of 5 wt% Ga doped ZnO NWs decreased, because the mean free path was decreased, according to the increase of carrier concentration. This control of the structural, optical and electrical properties of ZnO NWs by doping, could provide the possibility of the fabrication of various nanowire based electronic devices, such as nano-FETs, nano-inverters, nano-logic circuits and customized nano-sensors.

Keywords: ZnO, Nanowire, Doped nanowire

1. INTRODUCTION

ZnO is a promising material, which has transparent, piezoelectric, wide-band gap (3.4 eV) and high exciton binding energy (60 meV), for application in electronics and optoelectronics devices. It has been extensively used for light emitting devices (LEDs), nano generator and laser diodes (LDs) using optical characteristics, such as short wavelength and wide band gap [1-5]. ZnO has n-type property due to native defects, such as oxygen vacancies and Zn interstitials. But these characteristics can be varied depending on processing conditions, such as pressure and temperature, between insulating and conducting properties [6,7]. Also, doping is one of the powerful methods to control electrical properties. In particular, doping controls have already been reported to change the behavior from n-type to p-type, by using various doping materials in thin film [8-11]. However, the doping has been limited, due to restrictive volume and native one-dimensional structure in nanostructures [12]. So, many researchers have studied doping problems of nanowires (NWs). Yuan et al. reported a controlled growth and doping process of well-aligned Ga doped ZnO NWs [13]. Also, M. Sakurai et al. reported electrical transfer properties of Ga doped ZnO NWs with NW FET fabrication [14]. Above these works, Ga doped ZnO NWs were fabricated by chemical vapor deposition (CVD) method, which is not so easy to control, and complicated to fabricate NWs [15]. Therefore, we have used the physical vapor deposition (PVD) method, like hot-walled pulsed laser deposition (HW-PLD), which is a relatively simple process for the application of electronics and optoelectronics devices, compared with CVD
Also, this process can easily be used to adjust the composition of NWs, by controlling the element component of targets. However, there could be a lot of defects and difficulties of uniform doping in fabricated doped NWs by PVD.

In this paper, we have fabricated Ga doped ZnO NWs with various concentrations (pure, 1 wt%, 3 wt%, and 5 wt%), by using the HW-PLD method. We observed that the Ga dopants had been successfully controlled in ZnO crystal lattice, by using optical and electrical measurements. Based on these results, we demonstrate that physical vapor deposition is simple and efficient to fabricate tunable Ga doped ZnO NWs, and presents systematic control of Ga doping into ZnO NWs.

2. EXPERIMENTS

ZnO NWs were fabricated using the vapor-liquid-solid (VLS) mechanism, by a self-designed HW-PLD. Figure 1 shows a schematic diagram of the HW-PLD system. It is very simple and powerful to fabricate the NWs, which have the same material composition as the target. Moreover, this fabrication system does not require any chemical reactions in the chamber. Therefore, it is very easy to fabricate NWs, without any complex source materials and source tool. In order to control the Ga concentration in ZnO NWs, we used 0 wt%, 1 wt%, 3 wt% and 5 wt% Ga doped ZnO targets with ball-milling the ceramic powders (ZnO and Ga2O3), followed by the isostatic press and sintering process [17]. These targets were irradiated by excimer laser, with the operating condition of 248 nm, 1.5 J/cm² and 10 Hz. A target holder was rotated at 4 rpm during the deposition, to prevent cone formation, and to ensure uniform ablation of the target. The Au catalyst thin film was deposited 2 nm on c-plane sapphire substrate by thermal evaporation. Then, ZnO NWs were fabricated at 800 ºC for 30 minutes. The NW fabrication pressure was maintained at 1.2 torr. Constant streams of Ar (90 sccm) gases flowed in the furnace during ZnO NWs fabrication. Substrates were located at 2 to 3 cm from the target. The crystalline direction and morphology of as-grown Ga-doped ZnO NWs were analyzed, by using X-ray diffraction (XRD), field emission scanning electron microscope (FE-SEM) and high resolution transmission electron microscopy (HR-TEM), respectively. The optical properties of Ga-doped ZnO NWs were measured by using photoluminescence (PL), depending on temperature. Also, in order to measure electrical properties, as-grown ZnO NWs were suspended in isopropyl alcohol, and dispersed on oxidized Si substrates. Finally, electrodes were fabricated, by using conventional photo-lithography process and e-beam lithography. Ti (10 nm) and Au (180 nm) were deposited, by using electron beam deposition and thermal evaporation, respectively. Fabricated Ga-doped ZnO NW devices were analyzed by using a semiconductor parameter analyzer.

3. RESULTS AND DISCUSSION

Figure 2 shows FE-SEM images of as-grown (a) undoped, (b) 1 wt%, (c) 3 wt%, and (d) 5 wt% Ga-doped ZnO NWs. The diameter and the length of these ZnO NWs were 80 to 100 nm, and approximately 10 μm, respectively. As shown in Fig. 2, we observed that all of ZnO NWs had Au particle at the top of NWs. This result clearly indicates VLS growth of ZnO NWs. It is interesting to note that stacking faults have been observed in 1 wt%, 3 wt%, and 5 wt% Ga doped ZnO NWs, different from undoped ZnO NWs. As Ga concentration was increased, the stacking faults also increased, and were much denser, mainly due to the induced stress caused by the different lattice parameters between Zn and Ga. More detailed analysis will be added later, by using HR-TEM.

We have examined the structural effect of various Ga concentration in ZnO NWs on the crystallization of ZnO NWs, using XRD. Figure 3 shows the crystalline direction of (a) undoped (b) 1 wt%, (c) 3 wt%, and (d) 5 wt% Ga-doped ZnO NWs in the XRD pattern. Pure ZnO NWs mainly grew (100), (002) and (101) planes, of which (100) and (101) planes showed the dominant intensity. The absence of the (002) peak in the XRD pattern was explained by the texture of the film, where most of the wires lay on the plane of the substrate [18]. It is interesting to note that the peak of the (002) plane has disappeared gradually, as Ga concentration increased, and the peak intensity of the (100) plane that was weak in pure ZnO NWs has been gradually stronger. Furthermore, as Ga concentration increased, the (002) plane showed...
Fig. 4. Photoluminescence spectra of (a) undoped, (b) 1 wt%, (c) 3 wt%, and (d) 5 wt% Ga-doped ZnO NWs. The inset shows photoluminescence spectra of the defect range.

Fig. 5. HR-TEM images of (a) undoped, (b) 1 wt%, (c) 3 wt%, and (d) 5 wt% Ga doped ZnO NWs.

Fig. 6. EDX spectra of (a) undoped, (b) 1 wt%, (c) 3 wt%, and (d) 5 wt% Ga-doped ZnO NWs.
the physical vapor deposition method, using different ZnO targets, with Ga dopants from 0 wt% to 5 wt%. Figure 6(b) shows the result of the line profile of EDX to confirm uniform distribution of the Ga dopant in 5 wt% Ga doped ZnO NW along the growth direction. It has been confirmed that Ga dopants into ZnO NWs were observed uniformly in all of the positions, and the average mean counts of Ga dopants per position (nm) were about 255.

Electrical properties of undoped 1 wt%, 3 wt% and 5 wt% Ga doped ZnO NWs were examined, by using semiconductor parameter analyzer. I-V curves of ZnO NWs, as depicted in Fig. 7, confirmed the resistance variation as increasing Ga concentration in the ZnO NWs. The resistance of undoped, 1 wt%, 3 wt% and 5 wt% Ga doped ZnO NWs was 22.13 MΩ, 1.30 MΩ, 0.39 MΩ, and 0.39 MΩ, respectively. The resistance of Ga doped ZnO NWs from undoped to 3 wt% clearly decreased by one order. From these results, it could be understood that Ga dopants were successfully doped into ZnO NWs, resulting in the generation of donor carriers, which reduced the resistance, when the Ga concentration increased up to 3 wt% in ZnO NWs. However, 5 wt% Ga doped ZnO NW had a lot of Ga concentration, which induced the decrease of mean free path of the carrier [21]. Consequently, it could be suggested that the resistance of heavily doped ZnO NW increased slightly, due to the increase of scattering. For more detail of the electrical properties, we have attempted to fabricate various Ga doped ZnO NW FETs. However, it was very hard to observe the off-state in Ga-doped ZnO NW FETs, due to the high doping concentration, resulting in conducting NWs. As a result, we clearly confirmed that the electrical properties of ZnO NWs were systematically controlled by varying the Ga concentration.

4. CONCLUSIONS

In summary, we have fabricated controlled Ga doped ZnO NWs, by using the PVD method. We observed a good single crystalline of ZnO NWs by HR-TEM measurement. The growth direction was changed, according to the increase of Ga concentration. These results agreed well with those of XRD and PL. Ga doped ZnO NWs clearly showed a D’Y peak without any defect emission. These results exhibited that Ga dopants in ZnO NWs were successfully doped. Also, we confirmed that the electrical properties of ZnO NWs were systematically controlled by changing Ga concentration in the ZnO NWs. Controlled Ga-doping into ZnO NWs by the physical vapor deposition has been easily achieved, and these various Ga-doped ZnO NWs could open the possibility of new applications in nano electronic and nanosensing devices.

REFERENCES