Ethylene Oxide 기를 갖는 Acrylate계 Gel Polymer Electrolyte의 전기화학적 특성에 관한 연구

A Study on Electrochemical Properties of Acrylate-based Gel Polymer Electrolyte with Ethylene Oxide Group

김현수, 신경환, 문성인, 오대희
(Hyun-Soo Kim, Jung-Han Shin, Seong-In Moon, and Dae-Hee Oh)

Abstract

The gel polymer electrolyte was prepared by radical polymerization using tetra(ethylene glycol) diacrylate and tri(ethylene glycol) dimethacrylate to investigate the affect of the number of ethylene oxide. The gel polymer electrolyte showed good electrochemical stability up to 4.5 V vs. Li/Li' and high ionic conductivity at various temperatures. The lithium-ion polymer batteries with the gel polymer electrolyte, tetra(ethylene glycol) diacrylate- and tri(ethylene glycol) dimethacrylate-based, also represented good electrochemical performances such as rate capability, low-temperature performances and cycleability. However, the cell with tri(ethylene glycol) dimethacrylate, which has three ethylene oxide, showed better electrochemical performance.

Key Words: Monomer, Ionic conductivity, Gel polymer electrolyte, TEGDMA, TEGDA, Radical polymerization

1. 서 론

최근 휴대폰, IMT-2000, PDA, DVD, 노트북 PC, 디지털 카메라, 캡코더 등 휴대용 전자기기들이 급속히 보급되고 있다. 이들 휴대용 전자기기들의 전원으로는 종래의 리튬소자전지 보다 성능이 매우 우수한 리튬2차전지가 주로 사용되고 있다. 그 중에서 액체전해액을 사용하는 리튬이온전지 (LIB: lithium ion battery)는 중량전수량, 저온 및 고온특성 등이 우수하다. 그러나, 액체전해액의 누액가능성이 있으며, 외장제로 금속을 사용함으로써 박형화가 극단하여 에너지밀도가 낮은 단점이 있다[1].

이러한 문제점들을 해결하기 위하여 리튬이온폴리머전지(LIPB: lithium-ion polymer battery)를 개발하고 있으며, 일부는 상용화되어 있다[2]. 리튬이온폴리머전지는 기존의 리튬이온전지에 사용되는 전극 및 액체전해액을 그대로 활용하기 때문에 전기화학적 특성이 우수하며, 전자의 두개 및 강한 중일 수 있는 차세대 전지라고 할 수 있다[3]. 리튬이온폴리머전지의 하나는 건포폴리머전해질(GPE: gel polymer electrolyte)을 이용하는 것으로써, 이는 반응성 보노력을 전지 내부에 주입하고 전지 제조 후에 열을 이용하여 중합함으로써 고분자체를 만드는 방법인데[4]. 리튬이온폴리머전지가 상용화되기 위하여 건포폴리머전해질의 이온전도도는 상온에서 10^{-3} S cm^{-1} 이상이 되어야 한다 [5,6].

Kang 등의 PEO 기질 인 BPAEDA (bisphenol A ethoxylate diacrylate)와 LiPF6/EC-PC로 구성된 건포폴리머전해질을 제조하였으며, 이온전도도는 30℃에서 약 3.5×10^{-3} S cm^{-1}로 보고하였다[7]. 한
편 두께 이상의 고분자와 사용하여 캔플러이온정제 절은 리튬이온폴리머전지에 적용하는 연구도 진행되고 있다. 예를 들어 PVC(poly vinyl chloride) 및 PEMA(polyethyl methacrylate)의 블랜드와 LiPF6/EC+PC로 구성된 캔플러이온전해질의 상온 이온전도는 10^-3 S/cm^1 보다 높았고, 이온 전도한 전자순으로 전기전해질을 1.0 C의 방전율로 충전방향하였을 때 100 회 후에도 초기용량의 92 %의 성능을 보였다[8]. Du 등은 PU(polyurethane)와 PEO(polyethylene oxide)를 혼합하고 LiClO4/PC+EC과의 캔플러이온전해질의 상온 이온전도는 1.6×10^-3 S/cm^1이라고 보고하였다[9]. 또한 모노머 P(VdF-co-HFP)와 PAN을, 전해액으로 LiPF6/EC+DMC를 사용하여 캔플러이온전해질을 사용한 전지는 사이클시험(0.2 C) 시에 50회 끝내왔을 때 초기용량의 약 95 %를 나타내었다[10]. 저자 등은 polyurethane acrylate, PMMA, TEGDA, TEGDMA 등 반응성 단량체 또는 메크로머를 사용한 캔플러이온전해질을 합성하고, 그 전기화학적 특성의 우수함을 보고하였다[11-13].

본 연구에서는 전기화학적으로 안정하며, 액체 전해액과 상용성이 기대되는 ethylene oxide기반 합성 TEKA(tetraethylene glycol diacrylate) 및 TEGMA(triethylene glycol dimethacrylate)를 이용한 캔플러이온전해질을 합성하고 이들 단량체의 구조 차이가 전자순에 미치는 영향을 알아보았다. 즉, ethylene oxide기반 3개인 TEGMA와 4개인 TEGDA를 반응성 단량체로 사용하였을 때의 전기화학적 특성을 대하여 조사하였다.

2. 실험

본 실험에서 반응성 단량체로는 TEGDA (tetraethylenglycol, aldrich chemical)와 TEGMA (triethylene glycol dimethacrylate, aldrich chemical)를 사용하였고, 반응계시제로는 BPPbis (4-tert-butyloxyxyle) peroxydicarbonate, Aldrich Chemical을 사용하였다. 이 단량체들의 화학구조식은 그림 1에 나타내었다. 전해액으로는 1.0 M LiPF6/EC-DEC-EMC (30:40:30 vol%)를 사용하였고, 단량체는 액체전해액에 대해 5 vol%를 절개하였다. 정전 및 부극활성질료는 보판 중간 LiCoO2와 MCF(Mesophase Carbon Fiber)를 사용하였다. 도전계 및 절합제로는 VGCF(vapor growth carbon fiber)와 PVDF(polyvinylidene fluoride)를 각각 사용하였다. 정전 및 부극의 전극조성은 활화제:도전제:결합제를 9:1:63 및 90:2:8 (wt%)로 하였다. 리튬이온폴리머전지는 정극 및 부극 전극을 작정한 후 precursor를 주입하고 전극 봉윤을 하여 제작하였다. 그리고 3일간 aging 후에 60 °C에서 1시간 열응집하여 반응성 단량체가 함유된 precursor를 가교한 고분자로 만든다.

![그림 1. TEGMA 및 TEGDA의 화학구조](attachment:Chemical_structures_of_TEGMA_and_TEGDA.png)

Precursor의 점도는 Brookfield사의 viscometer (DV-II+)를 사용하여 측정하였다. 0.5 ml의 시료를 서로 tray에 넣고, CPE-40 스피드를 이용하여 RPM을 1~100으로 변화시키면서 점도를 측정하였다. 캔플러이온전해질의 전기화학적 안정성은 CV(cyclic voltammetry)를 이용하여 평가하였다. 작전전극으로는 스테인레스금류, 상대 및 비교전극으로는 각각 리튬 금속판을 사용하였다. 기기는 Zahner Elektrik사의 IM6을 이용하였으며, 점도는 OCV(open circuit voltage)에서 4.5 V (vs. Li/Li')까지 10 mVsec^-1의 주사속도로 스펙 소한 후에 -0.5 V까지 전위를 변화시켜 그 때의 전류를 측정하였다. 정전하이어 캔플러이온전해질을 삽입하고 주위는 물소계 고무를 이용하여 격리하였다. 이때 활성전극의 전극은 10 mV, 주파수 영역은 100 mHz~2 MHz로 하였다.

제작된 리튬이온폴리머전지에 대해서는 방전용 및 온도별 방전성능, 사이클수명 특성 등을 평가하였다. 방전용에 따른 방전특성을 평가하기 위하여 대상 전지는 0.2 C의 전류로 4.2 V까지 경전류 중
전한 후, 4.2 V에서 전류가 0.1 C가 될 때까지 정 전압 충전을 하였다. 충전 후에는 30분 간 유지한 후 0.2 C, 0.5 C, 1.0 C, 2.0 C의 전류로 셀의 전압 이 3.0 V가 될 때까지 방전하였다. 온도에 따른 방 전특성은 60, 40, 20, 0, -10, -20 °C에서 평가하였 다. 상온에서 0.2 C로 4.2 V까지 정전류 충전한 후, 4.2 V에서 전류가 0.1 C가 될 때까지 정전압 방전을 하였다. 방전 후에는 방전 후의 온도를 일정 하게 유지시키고, 그 온도에서 도달한 후 12시간 유지한 후 방전을 하였다. 방전은 0.2 C의 전류로 3.0 V까지 하였다. 사이클 특성은 충방전 전류를 0.5 C/0.5C로 하였으며, 상온에서 평가하였다.

3. 결과 및 고찰

그림 2는 TEGDA 및 TEGDMA의 양에 따른 precursor의 점도를 나타낸 것이다. 그림에서 알 수 있듯이 에폭시전해질의 점도는 약 4.5 mPa·s이었고, 반응성 단량체의 함량이 증가함에 따라 precursor의 점도는 증가하였다. 예를 들어 반응성 단량체가 5.0 vol% 함유된 TEGDMA계 및 TEGDA계 프리커서의 점도는 각각 47 및 48 mPa·s로, TEGDMA계가 약간 낮은 값을 나타내지만 거의 동등한 수준이었다. TEGDMA계 프리커서가 TEGDA계 보다 점도가 더 낮기 때문에 적용된 전극의 대로 화합되는 것이 더 유리할 것이라고 판단되나 그 차이는 미세하려 판단된다. 더욱이 프리커서의 함량은 점도에서 좌우되는 것이 아니라 사용하는 전극과 프리커서와의 상관성이 있는 산응에 따라서 변하기 때문이다[14].

그림 3에는 TEGDMA계 젤폴리머전해질의 전기 화학적 안정성을 알아보기 위하여 측정한 CV 결과 를 나타내었다. TEGDMA계 젤폴리머전해질은 0.5~1.0 V의 전위구간에서 림국금속의 산화에 의한 Li⁺ 해리를 나타내고 있고, 반대로 0~1.0 V 구간에 서는 Li⁺의 환원에 의한 리튬금속의 정전을 나타내 는 파크가 관찰되고 있다. 그리고, 4.5 V까지의 전위구간에서는 전류가 거의 호지되지 않음을 알 수 있다. 따라서 리튬코발트산화물을 정극활성질로 사용 하는 리튬2차전지가 대부분 최고 4.2 V까지 사용되 고 있음을 고려할 때 TEGDMA계 젤폴리머전해질은 전기화학적으로 안정하다고 판단된다[15,16].

그림 3. TEGDMA계 젤폴리머전해질의 CV 결과.
Fig. 3. Cyclic voltammogram of the TEGDMA-based gel polymer electrolyte.

표 1. 젤폴리머전해질의 이온전도도 변화.
Table 1. Ionic conductivity of gel polymer electrolyte at various temperatures.

<table>
<thead>
<tr>
<th>Temperature (°C)</th>
<th>Ionic conductivity (mS cm⁻¹)</th>
</tr>
</thead>
<tbody>
<tr>
<td>TEGDA</td>
<td>TEGDMA</td>
</tr>
<tr>
<td>-20</td>
<td>1.10</td>
</tr>
<tr>
<td>-10</td>
<td>1.67</td>
</tr>
<tr>
<td>0</td>
<td>2.30</td>
</tr>
<tr>
<td>20</td>
<td>4.10</td>
</tr>
<tr>
<td>40</td>
<td>5.86</td>
</tr>
<tr>
<td>60</td>
<td>7.58</td>
</tr>
</tbody>
</table>

TEGDMA계 및 TEGDA계 젤폴리머전해질의 이온전도도를 측정한 결과를 표 1에 정리하였다. 상온 이온전도도를 비교해 보면 TEGDMA계 젤폴리머전해질은 4.0×10⁻³ S cm⁻¹, TEGDA계는 4.10×10⁻³ S cm⁻¹로 거의 유사한 값을 나타내었다. 이전에 의하면, PAN(polyacrylonitrile)과 LiPF₆/EC +DMC, PANI [polyacrylonitrile-co-bis (2-2-
그림 4에는 TEGDA 및 TEGDMA 계열 케플리메이션
해결을 적용한 리튬이온폴리머전지의 방전용에 따
른 방전특성을 나타낸 것이다. 충전은 0.5 C로 하였
으며, 방전 시의 방전용은 0.2 C, 0.5 C, 1.0 C, 2.0
C로 하였고, 이는 전류밀도로 환산하면 각각 0.5,
1.2, 2.3, 4.7 mAcm⁻²에 해당하는 것이다. 표 2에는
방전용량 및 용량유지율을 백분율로 나타낸 것이다.
TEGDA 계열 케플리메이션해결을 적용한 리튬이온폴리
머전지는 방전용이 0.2 C, 0.5 C, 1.0 C, 2.0 C로 증
가함에 따라 방전용량은 139.0, 137.9, 136.0, 111.6
mAhg⁻¹로 감소하였다. 2.0C의 고속방전에서 얻은
방전용량의 값은 0.2 C 방전용량의 약 80 %로 양
호한 성능을 보였다. 그러나, TEGDA 계열 케플리메
어진 전지는 초기 용량이 TEGDMA 계열에 비하여 약
간 낮게 나타나는데 이의 원인은 아직 분명하지 않다.

표 2. 방전용량 및 용량유지율에 따른
방전용량과 용량유지율.

<table>
<thead>
<tr>
<th>C rate</th>
<th>TEGDA-based</th>
<th>TEGDMA-based</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Discharge</td>
<td>Capacity</td>
</tr>
<tr>
<td></td>
<td>capacity</td>
<td>retention (%)</td>
</tr>
<tr>
<td>0.1 C</td>
<td>139.0</td>
<td>100</td>
</tr>
<tr>
<td>0.5 C</td>
<td>137.9</td>
<td>99.2</td>
</tr>
<tr>
<td>1.0 C</td>
<td>136.0</td>
<td>97.8</td>
</tr>
<tr>
<td>2.0 C</td>
<td>111.6</td>
<td>80.2</td>
</tr>
</tbody>
</table>

한편, TEGDMA 계열 케플리메이션 전지는 방전용이
0.2 C, 0.5 C, 1.0 C, 2.0 C로 증가함에 따라 방전용
량은 147.7, 144.9, 142.2, 135.8 mAhg⁻¹로 감소하였
다. 또한 2.0 C의 고속방전에서도 0.2 C 방전용량의
약 92%로 TEGDA 계열에 비하여 더 우수한 고속특성
을 나타내었다. 뿐만 아니라, 용량성의 다른 케플리
매어진해결들의 용특성과 비교하여도 TEGDA 계열
의 용특성은 우수한 것으로 평가된다(31, 35, 21). 이는 이
전도도 특성에서 이상한 결과와 반대이다. 즉, TEGDA 계열
가 TEGDA 계열에 비하여 유연성이 상대
적으로 낮아서 이전전도도가 높았다. 따라서
TEGDA 계열 케플리매어진해결 전지의 방전용에
따른 방전특성은 다른 케플리매어진해결의 특성에
비해 더 낮은 것이 예상되었으나, 그림 4와 표 2에서 알
 수 있듯이 TEGDA 계열의 용특성이 다 우수하다.
이러한 이유는 TEGDMA 계열의 용제가 더 안정적이며,
전극간의 정전력이 높아 내부저항이 더 낮게 유지
되어 용특성이 더 우수한 것으로 사료된다(22).
그림 5. 케Formatteratted LIFS의 보고된 전류와 온도에 따른 용량 변화.

Fig. 5. Discharge capacities of the cell with gel polymer electrolyte at various temperatures.

그림 6. 케플리미전해점 전지의 사이클 특성.

Fig. 6. Cycle life performance of the gel polymer electrolyte cell.

4. 결론

본 연구에서는 ethylene oxide기의 수가 서로 다를 TEGDA와 TEGDMA를 이용하여 케플리미전해질을 사용하고, 그 전기화학적 특성의 차이를 고찰한 결과 다음과 같은 결과를 얻었다. 5 vol%의 다량체를 함유하는 전구체의 점도는 TEGDA계가 TEGDMA계에 비하여 약간 높은 값을 보이며, 액체전해액의 점도와 거의 동등한 값을 나타내었다. 또한 CV 실험 결과, TEGDA와 TEGDMA계 케플리미전해질은 상관 이온전도도는 약 4×10⁻³ S cm⁻¹ 이상으로 매우 양호한 특성을 보였다.

케플리미전해질을 사용한 리튬이온전지의 전기화학적 특성을 고찰한 결과, TEGDA계 전지 는 2.0 C의 고용량전에서 방전용량이 0.2 C 방전용량에 대해 80 %였고, -20 C 저온에서 방전용량은 상한 대비 86 %의 성능을, 또한 100회 사이클 정과 후 초기용량의 92 %의 방전용량을 나타내었다.
한편, TEGDMA계는 2.0 C의 고용량, 0.2 C 방전용량의 92 %를 나타내었고, 20 C 방전용량은 상한 대비 88 %의 성능을, 그리고, 100회 충방전 경과 후 방전용량은 최기용량의 약 94 %였다.

TEGDMA 및 TEGDA계 두 종류의 반려체는 달란에 이충전활을 갖고 있어서 젤폴리머화합물로 적합하다. 특히 구조 내부에 3개의 ethylene oxide기를 갖는 TEGDMA는 가로밀도가 높아 안정한 젤을 만들었지만 아니라 내부적정도 낮기 때문에 리튬이온сол리머전지를 위한 호스트폴리머로 더 적합하다.

참고 문헌


