자속구속형과 저항형 초전도 전류제한기의 특성비교

Comparison of Operating Characteristics between Flux-lock Type and Resistive Type Superconducting Fault Current Limiters

박형민1, 임성훈2, 박충렬3, 최호성1,3, 안병성3
(Hyoung-Min Park1, Sung-Hun Lim2, Chung-Ryul Park3, Hyo-Sang Choi1,3, and Byoung-Sung Han3)

Abstract

we compared the operating characteristics between flux-lock type and resistive type superconducting fault current limiters (SFCLs). Flux-lock type SFCL consists of two coils, which are wound in parallel each other through an iron core, and a high-TC superconducting (HTSC) element is connected with coil 2 in series. The the flux-lock type SFCL can be divided into the subtractive polarity winding and the additive polarity winding operations according to the winding directions between the coil 1 and coil 2. It was confirmed from experiments that flux-lock type SFCL could improve both the quench characteristics and the transport capacity compared to the resistive type SFCL, which means, the independent operation of HTSC element.

Key Words : Fault current limiting characteristics, Flux-lock type superconducting fault current limiter, Initial limiting current level, Quench characteristics, The independent operation of HTSC element

1. 서 론

지속적인 경제성장과 산업발전은 전력수요의 증가를 가져왔으며, 이에 따른 전력설비 증설은 계통의 임피던스 감소를 야기시키고 단락사고에 의한 고장전류의 크기를 점점 증가시키고 있다. 국내 전력계통에서 전원집중지역에서는 임피던스가 낮아 고장전류가 차단기의 차단내력을 초과하고 있으며 그 수는 더욱 더 증가할 것으로 예상된다[1]. 고장전류 대책으로는 차단기를 교체하는 방법이 있으나 대용량 차단기 교체에 따른 막대한 비용과 기술적인 한계에 부딪히고 있고 모선분리를 통한 고장전류의 지하화책은 과부하 및 계통안정성 저하 등의 문제가 있다. 또 다른 대책으로는 직렬회로

1. 조선대학교 전기공학과
(광주시 동구 서석동 375)
2. 전북대학교 공업기술연구센터
3. 전북대학교 전기공학과
a. Corresponding Author : hyosang@chosun.ac.kr
접수일자 : 2004. 11. 26
1차 심사 : 2005. 1. 11
심사완료 : 2005. 2. 4

전력계통에서 초전도 전류제한기에의 목적은 기존 차단기 앞에 초전도 전류제한기를 설치하여 사고가 발생하였을 시 고장전류를 억제하여 차단기의 용량증대 효과를 가져온다. 초전도 전류제한기는 폰치특성에 따라 크게 폰치형과 두폐형으로 분류할 수 있는데 폰치형은 다시 양극형 특성을 이용한 저항형과 마이너 효과를 이용한 유도형으로
분류 할 수 있다. 지형형 전류제한기는 구조 및 원리가 간단하고 소형화할 수 있는 장점이 있으나 한류 용량 증대를 위해서는 직렬 연결이 필수 적이며 동시접지 유도는 큰 문제점이 있다. 유도 형 전류제한기는 지형형과 다르게 초전도체에 직접 고장 전류가 흐르지 않아 초전도체의 손실비중이 적고 회복시간이 짧은 장점이 있으나 용량증대 시 원심 포도물질 및 빌리지에의 문제점이 있다 [9,10]. 본 논문에서 분석한 자속구축형 전류제한기는 지형형 전류제한기와 유도형 전류제한기의 구조와 특성을 이용한 제한기로 볼 수 있으며 자속 구축형 전류제한기의 특성은 정상 운전 시 철선에 교류차속이 발생되지 않지만 사고가 발생하여 고장전류가 고온초전도 소자의 임계전류를 넘어가면 펜치가 발생하고 소자의 작동으로 인해 셀과장속에 시간 변화가 생겨 각 코일의 전압이 유기물로써 사고전류를 제한할 수 있다.

본 논문에서는 자속구축형 전류제한기의 구조와 작동원리에 의해 결과방향에 따른 감극결선시와 가극결선시 전압과 전류 관계식을 얻을 수 있으며 실험을 통해 전류제한특성을 분석할 수 있다. 분석한 결과를 바탕으로 지형형 전류제한기와 비교해 분석하였다.

2. 실험

2.1 자속구축형 전류제한기의 구조 및 동작원리

그림 1은 자속구축형 고온초전도 전류제한기의 구조를 나타낸 것이다. 철선 코어를 매개로 코일 1, 2를 별개로 연결하였고 고온초전도 소자는 코일 2에 직접 연결되었다. 초전도의 특성상 소자의 초전도상태를 유지하기 위하여 액체질소가 담긴 내부 방각장치 속에 소자를 담근 재 실험하였다. 자속구축형 전류제한기의 동작방법은 \(N_1, N_2 \)를 각 코일 1, 2의 턴 수라 하면 결선방향에 따라 감극성과 가극성으로 나눌 수 있고 각 코일에 유기되는 전압의 식을 (1), (2)와 같이 표현된다.

\[
V_1 = N_1 \frac{dB}{dt}
\]

\[
V_2 = \pm N_2 \frac{dB}{dt}
\]

사고가 발생하기 전의 고온초전도 소자의 양방 전압은 0이 되므로 코일 1과 2의 양극전압은 같게 되어 다음식이 성립된다.

\[
V_1 + V_2 = 0
\]
그림 2. 감극결선서 동가회로.
Fig. 2. Equivalent circuit of subtractive polarity winding.

그림 3. 가극결선서 동가회로.
Fig. 3. Equivalent circuit of additive polarity winding.

전류는 I_c, 코일 2의 전류는 I_{sc}와 하면 감극결선등
정의 식 (5), (6)과 같이 전압·전류 관계식을 얻을 수 있다.

\[I_{FCL} = I_1 + I_{sc} \]
\[V_{sc} = V_1 + V_2 \]

가극결선일 경우 식(7), (8)과 같이 전압·전류 관계식을 얻을 수 있다.

\[I_{FCL} = -I_1 + I_{sc} \]
\[V_{sc} = V_1 - V_2 \]

2.3 실험장치 및 방법

가극기구회형 전류제한기의 실험 회로도를 그림 4에 나타내었다. V_S는 전원전압이고 SW_1은 전원을 공급하고 차단하는 스위치이며 R_m은 전류변화량 측정하기 위한 표준저항이며 R_1은 부하저항이고 SW_2는 단락사고 발생하기 위한 스위치이다. L_1과 L_2는 코일 1과 2임에 천으로 연결하였고, HTSC는 초전도 소자를 나타내며 코일 2와 직렬로 연결하였다.

그림 4는 이중 실험에 사용한 자후도 소자인 YBCO 약품의 표면형태를 보여주고 있다. 특이
THEVA사에서 제작하였고 직경 2 inch, 전체길이 420 mm, 염계온도와 임계전류는 각각 87 K, 18 A의 세로로 있고 그림처럼 meander 형태로 이루어져 있다.

실험조건은 V_S는 60 V, R_m는 1 Ω, R_1은 50 Ω, N_1은 63회, N_2는 21회로 하여 사고를 발생시켰다. 전 전력계통의 차단기가 5주기 안에 작동하는 점을 고려해 5주기 동안 전압을 인가함으로써 초전도 소자에 무리하게 전류가 호르지 않도록 보호하였다.

결선 방향에 따라 코일 1과 2을 감극, 가극 결
3. 결과 및 고찰

자속구속형 전류제한기와 저항형 전류제한기의 비교분석을 위하여 동일한 조건으로 저항형 전류제한기를 실험하여 사고전류 제한특성을 분석하였다.

그림 6은 저항형 전류제한기의 사고전류제한특성을 전류파형과 전압파형으로 보여주고 있다. 그림 6(a)의 전도전류(I_{FCL})를 보면 사고발생 직후 최고 31 A_{peak}까지 상승하였으나 반주기만에 7 A까지 감소하는 것을 알 수 있고 5주기 동안 서서히 감소하여 5주기 때에는 5 A까지 감소하는 것을 확인 할 수 있었다. 이는 전류가 빠른 시간 내에 제한되어 안정적인 파형으로 변하는 것을 알 수 있다. 그림 6(b)의 소자전압을 보면 전압은 사고 직후 발생하는 것이 아니라 초전도 소자가 임계전류 값을 넘어 초전도 상태로 넘어 소자의 전압이 생겨 전류가 제한되는 것을 알 수 있었고, 점 주기에 서는 68 V 이지만 두 번째 주기부터 74 V로 상승하여 5주기 동안 일정한 값을 나타내는 것을 확인 할 수 있다.

그림 7은 자속구속형 전류제한기를 감작 결선시 사고발생 후 5주기 동안의 전류 및 전압 파형을 보여주고 있다. 그림 7(a)의 전류 파형을 보면 전도전류(I_{FCL})는 사고 직후 39 A_{peak}까지 전류가 상승하지만 반주기 만에 11 A까지 감소하고 5주기 동안 서서히 감소하여 8.5 A까지 감소하는 것을 확인할 수 있다. 전도전류(I_{FCL})는 코일 1의 전류와 코일 2의 전류의 합과 같을 수 있으며 전류가 사고발생 직후 제한되는 것이 아니라 임계 전류 값을 넘어 초전도 소자에 펜치가 발생하여 전전도 저항에 의해 코일 1에 호르는 전류가 제한되어 감소되는 동안 코일 1의 전류를 포함한 전도전류도 감소하는 것을 알 수 있다. 또한 전도전류의 코일 1의 전류 및 소자전류가 임계값 이상을 넘어서 인덕턴스에 의해 위상이 약간 앞서고 뒤지는 것을 볼 수 있다. 그림 6(b)의 전압파형을 보면 초전도 소자 전압 V_{SC}는 코일 1과 코일 2의 전압 V_{1}과 V_{2}의 합과 같음을 볼 수 있고, 초전도 소자의 첫 반주기의 전압 값은 80 V이고 두 번째 주기는 92 V로 상승하여 안정된 파형을 나타내는 것을 알 수 있다. 감작 결선시 등장하게 되는 전류도 주기로 25.5 A_{peak}까지 증가하지만 반주기 만에 7.5 A로 감소하고 5주기 동안 서서히 감소하여 5.5 A까지 감소하는 것을 알 수 있다. 점(7)에서 알 수 있듯이 사고전의 코일 1의 전류와 코일 2의 전류가 180도의 위상차를 나타내고 있으며 실험결과와 비교적 일치함을 알 수 있다. 단락사고를 발생하였을 시 코일 1의 전류는 임의 방향으로 증가하고 코일 2의 전류는 양의 방향으로 증가함을 확인할 수 있다. 임계전류 값을 넘으면 초전도 소자에 펜치가 발생하고 전전도 저항에 의해
Fig. 7. Fault current limiting characteristics of subtractive polarity winding.
(a) Current curve (b) Voltage curve (N₁=63, N₂=21).

Fig. 8. Fault current limiting characteristics of additive polarity winding.
(a) Current curve (b) Voltage curve (N₁=63, N₂=21).

Fig. 7. A fault current limiting characteristic of a subtractive polarity winding.
Fig. 8. A fault current limiting characteristic of an additive polarity winding.
그림 9. 소자적합 비교(저항형, 감각결선, 가극결선).
Fig. 9. Comparison of the resistance of each element(resistive, subtractive, additive).

그림 10. 사고전류 비교(저항형, 감각결선, 가극결선).
Fig. 10. Comparison of each fault current (resistive, subtractive, additive).

그림 11. 각 소자의 소비전력 비교(저항형, 감극결선, 가극결선).
Fig. 11. Comparison of the consumption power of each element (resistive, subtractive, additive).

그림 10은 선로전류(I_{FCL})를 비교하여 보여주고 있다. 사고가 발생하여 선로전류(I_{FCL})가 최고로 상승하는 전류최계 값은 저항형이 $31 \times A_{peak}$, 감극결선 시 $39 \times A_{peak}$, 가극결선시 $20.5 \times A_{peak}$도 나왔다. 그리고 5주기 동안 사서의 감소하면서 전류가 체한 되었는데 그 값은 저항형이 $5 \times A$, 감극결선시 $8.5 \times A$, 가극결선시 $5.5 \times A$였다. 가극결선시 선로전류 (I_{FCL}) 최고 값이 가장 적게 나왔는데 이는 용량 측면에서 유리할 것으로 사료되며, 5주기 후의 선로 전류값은 저항형이 적게 나왔으나 가극결선시와 큰 차이는 없었다. 또한, 감극결선시 전류 최고값은 가장 높게 나왔지만 선로전류 (I_{FCL}) 최고 값에서 5주기 동안 $31 \times A$을 감소시켜 사고전류의 감소폭이 가장 크게 나타남을 확인할 수 있다.

4. 결 론
본 논문에서는 자속구속형 전류제한기의 동작원리 및 구조를 이해하여 감극결선시와 가극결선시 동가회로를 유도하였다. 실험을 통해 전류제한특성 을 분석하였는데 동가회로를 유도한 식과 비교적 일치함을 알 수 있었다. 사고 사고전류도 소자에 사고전류가 호르게 되어 염전류를 초과할 경우 전류제한기에 입력단자가 발생되어 전류가 제한될 수 있는 것을 확인하였다. 이는 자속구속형 전류제한기가 고장전류를 L1, L2에 의해 전류값을 분산 시킬 수 있기 때문에 단락용량이 저항형에 비해 증가할 수 있는 특징이 있음을 알 수 있었다.
자속구속형 전류제한기의 감극결선과 가극결선 시, 소자단독 동작시(저항형) 동일한 입력조건하에서 저항, 사고전류, 소비전력의 비교 분석하였다. 총 4번 저항값의 비교는 감극결선시 가장 높은 값.
이 나온 것으로 보아 초전도소자의 부담이 가장 큰 것으로 나타났다. 두 번째 사고전류 비교는 사고 발생 직후 사고전류 폭직없이 가극결선시 가 장 낮게 나온 것으로 보아 용량측면에서 유리함으로서 미약으로 5주후의 선로전류 값은 저항형 이 약간 좋은 특성을 보였다. 마지막으로 소자가 부담하는 소비전력을 비교하였는데 가극결선시 소 자의 부담이 가장 적은 것으로 나타났다. 자속구속 형 전류제한기가 저항형에 비해 사고전류제한 특 성과 용량측면에서 우수함을 확인할 수 있었고, 실 계응에 적용하는데 유리함으로 보인다. 본 논 문은 비람으로 향후 코일 1과 2의 턴 수 변화에 대한 전류제한특성을 분석하고자 한다.

참고 문헌