Analysis of Fault Current Limiting Characteristics due to Ratio of Inductances between Coil 1 and Coil 2 in a Flux-lock Type SFCL

박종렬1, 임성훈2, 박형언3, 최호성3, 한병성1
(Chung-Ryul Park1, Sung-Hun Lim2, Hyong-Min Park3, Hyo-Sang Cho3, and Byoung-Sung Han1)

Abstract

A flux-lock type SFCL consists of two coils, which are wound in parallel each other through an iron core, and a HTSC thin film connected in series with coil 2. If the current of the HTSC thin film exceeds its critical current by the fault accident, the resistance generated of the HTSC thin film, and thereby the fault current can be limited by the impedance of the flux-lock type SFCL. The amplitude of fault current can be set by the impedance of the flux-lock type SFCL. In this paper, we investigated the variance of the limiting current due to the ratio of inductances between coil 1 and coil 2 in the flux-lock type SFCL through the computer simulations and short circuit tests. In addition, both the simulation results and experimental ones were compared each other. From the comparison of both the results, the simulation results agreed well with the experimental ones.

Key Words : The flux-lock type SFCL, HTSC thin film, Critical current, Fault current

1. 서 론

저속공속형 고온초전도 전류제한기의 인덕턴스 변화에 따른 전류제한 특성 분석

차단기로 교체하거나, 고장전류가 차단기의 차단내력이하가 되도록 적절한위치를 센서 또는 교환터스 기기를 사용하여 고장전류 약제하는 방안이 검토되고 있다. 전자의 경우, 교체비용, 차단기 구성요소 및 기술적인 제약의 문제를 안고 있다. 후자의 경우에는 전력손실 및 전압강하, 넓은 설치 공간이 요구되는 문제를 안고 있다. 증가되고 있는 고장전류를 극복하기 위한 그 이외의 방법으로는 파워퓨즈 사용과 모션분리 및 선로분리방안이 있다. 파워퓨즈의 경우에는 수동교체의 비효율성, 모션분리 및 선로분리방안의 경우에는 인접 전력계통의 과부하, 전력계통의 안정도 저하 및 송전의 유연성 격여 등의 문제점을 안고 있다[1].

최근 이러한 문제를 해결하기 위한 방안으로 고온초전도체를 이용한 전류제한기기 제안되었고, 여러 형태의 고온초전도 전류제한기에 관한 연구가 활발히 진행되고 있다[2-9]. 그 중에서 저속공속형 고온초전도 전류제한기는 사고전류가 코일의 조화에 얹은 부분에 따른 전류제한 특성에 있어서 적절한 조화에, 각 코일의 인덕턴스 비율 달리하
여 제한되는 전류의 크기 조정이 가능하며, 단위소자 이상 전류의 한류제한이 증가되는 구조로 되어 있어 단위소자 수를 줄일 수 있기 때문에 제한량 고전조작 전류제한기의 단점을 보완할 수 있다. 또한, 자속구조형 고전조작 전류제한기는 력이나 트랜스포터의 고전조작 소자대신 볼랙나 YBCO 박막형태로 제작된 저항형 한류소자를 사용하기 때문에 유도형 고전조작 전류제한기에 비해 고전조작제의 제작이 용이한 장점을 갖는다.

본 논문에서는 자속구조형 고전조작 전류제한기의 등가회로로부터 제한된 임피던스 및 각 코일의 전류를 유도한 다음, 설계파라미터에 따른 제한 임피던스 및 전류제한 특성을 분석하였다. 또한, 실험을 통해 자속구조형 고전조작 전류제한기의 인덕턴스 변화에 따른 사고전류제한 특성을 분석하였다. 마지막으로, 자속구조형 고전조작 전류제한기의 설계파라미터에 따른 모델링 결과와 실험으로부터 얻어진 전류제한 특성을 비교・분석하였다.

2. 구조 및 동작원리

자속구조형 고전조작 전류제한기의 구조는 그림 1과 같이 건축성 첨단에 코일 1과 코일 2가 각각 병렬 연결되어 있고, 고전조작 소자(YBCO 박막)는 코일 2에 직렬 연결되어 있다.

정상 동작시 고전조작 소자 액당전압은 0이므로 코일 1과 코일 2의 액당 전압은 같게 되며 이 때, 각 코일에서 유기되는 저속은 서로 상쇄된다. 결국, 자속구조형 고전조작 전류제한기의 임피던스는 나타나지 않으며 계통상 단락선로처럼 동작한다.

사고시 사고전류가 고전조작 소자에 임계전류를 초과하면 소자에 팬차 발생으로 저항(Rsc)이 발생하고 이로 인해 전압(Vsc)이 유기된다. 따라서 코일의 왜곡 저속은 시간에 따른 변화가 생기게 되고 각 코일에 전압이 유기되어 발생된 제한하기의 임피던스에 의해 사고전류가 제한된다.

3. 등가회로 분석

그림 1의 구조로부터 그림 2의 자속구조형 고전조작 전류제한기의 등가회로를 유도할 수 있다. 그림 2의 등가회로로부터 식 (1)에서 식 (3)과 같이 각 코일의 전류와 제한기 임피던스에 관한 관계식을 얻을 수 있다.

\[
\frac{I_{SC}}{I_{FCL}} = \frac{j\omega L_1 \pm j\omega M_{12}}{R_{SC} + j\omega L_1 + j\omega L_2 \pm 2j\omega M_{12}}
\]

\[
\frac{I_1}{I_{FCL}} = \frac{j\omega L_2 + j\omega M_{12} + R_{SC}}{R_{SC} + j\omega L_1 + j\omega L_2 \pm 2j\omega M_{12}}
\]

\[
Z_{FCL} = \frac{\omega^2 M_{12}^2 - \omega^2 L_1 L_2 + j\omega L_1 R_{SC}}{R_{SC} + j\omega L_1 + j\omega L_2 \pm 2j\omega M_{12}}
\]

여기서 \(M = K\sqrt{L_1 L_2}\)이고, (+), (-) 부호는 1, 2차 코일에 의한 자속의 응답에 따라 결정한다. 식 (1), (2), (3)에서 \(R_{SC} = 0 \sim 20\ \Omega\), \(L_1 = 0 \sim 0.1\ \text{H}\)이며, 각각 변화시키고 결합계수 \(K=1\), \(L_2 = 0.01\ \text{H}\)로 설정하여 각각 설계 파라미터에 따른 각 코일의 전류와 제한기 임피던스의 관계를 도식화하여 그림 3, 4, 5에 나타내었다.

![Fig. 1. Scheme of flux-lock type SFCL.](image)

![Fig. 2. Equivalent circuit of flux-lock type SFCL.](image)
그림 3. R_{SC}, L_1, L_2와 $|I_{SC}/I_{FCL}|$의 관계.

Fig. 3. Dependence of $|I_{SC}/I_{FCL}|$ on R_{SC}, L_1, L_2
(a) subtractive polarity winding and (b) additive polarity winding.

그림 4. R_{SC}, L_1, L_2와 $|I_1/I_{FCL}|$의 관계.

Fig. 4. Dependence of $|I_1/I_{FCL}|$ on R_{SC}, L_1, L_2
(a) subtractive polarity winding and (b) additive polarity winding.

그림 3은 고온초전도소자(의 저항(R_{SC})과 코일의 인덕턴스 비(L_1/L_2)에 따른 고온초전도소자에 흐르는 전류와 선로전류의 비(I_{SC}/I_{FCL})를 나타낸 것이다. 고온초전도 소자에 발생된 저항(R_{SC})이 증가하면 경전방향에 관계없이 고온초전도소자에 흐르는 전류와 선로전류의 비(I_{SC}/I_{FCL})는 감소하고, 코일 1의 인덕턴스와 코일 2의 인덕턴스 비(L_1/L_2)가 증가할수록 고온초전도소자에 흐르는 전류와 선로전류의 비(I_{SC}/I_{FCL})는 증가하는 것을 확인할 수 있다.

그림 4는 고온초전도소자(의 저항(R_{SC})과 코일의 인덕턴스 비(L_1/L_2)에 따른 코일 1에 흐르는 전류와 선로전류의 비(I_1/I_{FCL})를 나타낸 것이다. 그림 3의 결과와는 반대로 고온초전도 소자(의 저항(R_{SC})이 증가할수록 코일 1에 흐르는 전류와 선로전류의 비(I_{SC}/I_{FCL})는 증가하고, 코일 1의 인덕턴스와 코일 2의 인덕턴스의 비(L_1/L_2)가 증가할수록 고온초전도소자에 흐르는 전류와 선로전류의 비(I_{SC}/I_{FCL})는 증가하는 것을 확인할 수 있다. 그림 3(b)와 그림 4(b)에서 고온초전도소자의 저항(R_{SC})이 0이고, 코일 1과 코일 2의 인덕턴스의 비(L_1/L_2)가 거의 1에 가까울 때, 고온초전도소자에 흐르는 전류와 선로전류의 비(I_{SC}/I_{FCL}), 코일 1에 흐르는 전류와 선로전류의 비(I_1/I_{FCL})가 매우 큰 값을 나타내는데 이는 식 (1), (2)의 분모 항이 0이 되기 때문이다. 이러한 결과로부터 자속구속량 고온초전도 전류계의 기의 설계시 코일 1과 코일 2의 인덕턴스 비가 1이 되지 않도록 설계해야 할 것이다.
4. 실험결과 및 고찰

4.1 실험장치 구성 및 실험방법
자속구속형 전류제한기의 사고전류제한을 위한 실험회로는 그림 6과 같이 나타난다. \(V_s \)는 60 Vrms로 인가된 전원 전압이고 \(R_n \)은 전류변화를 측정하기 위한 1 \(\Omega \)의 기준저항을 나타내며 부하저항 \(R_L \)은 50 \(\Omega \)으로 설정하였다. 실험에서 전류제한소자로 사용된 고온초전도 \(YBa_2Cu_3O_7 \) 박막의 제원을 표 1에 나타내었다. 코일 1과 코일 2를 각기 가극으로 설정한 후 스위치 \(SW_1 \)을 단아 회로에 전압을 인가한다. 회로에 오는 전류는 임계전류를 초과하지 않았기 때문에 자속구속형 고온초전도 전류제한기는 닫락전로처럼 동작한다. 스위치 \(SW_2 \)를 닫아 닫락사를 발생시키면 고온초전도 소자에 호르는 전류는 임계전류를 초과하게 되고 전류가 발생한다. 이때 형상이 호르는 전류는 \(I_{FCL} \). 코일 1에 호르는 전류는 \(I_1 \), 코일 2의 양극전압 \(V_1 \)와 전류제고자 양극전압 \(V_{SC} \)을 측정하였다. 또한 코일 1과 코일 2의 전류를 변화시켜 간단한 실험을 수행하였다.

그림 5. \(R_{SC} \), \(L_i \), \(L_2 \)와 \(I_{FCL} \)의 관계.
Fig. 5. Dependence of \(I_{FCL} \) on \(R_{SC} \), \(L_i \), \(L_2 \).
(a) Subtractive polarity winding and (b) Additive polarity winding.

그림 6. 실험 회로 구성도.
Fig. 6. Diagram of the circuit for experiment.

표 1. YBCO 박막의 제원.
Table 1. Specification of YBCO thin film.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>소자 직경</td>
<td>2</td>
<td>inch</td>
</tr>
<tr>
<td>스트립폭</td>
<td>2</td>
<td>mm</td>
</tr>
<tr>
<td>전차길이</td>
<td>420</td>
<td>mm</td>
</tr>
<tr>
<td>YBCO 층 두께</td>
<td>0.3</td>
<td>um</td>
</tr>
<tr>
<td>금층 두께</td>
<td>0.1~0.2</td>
<td>um</td>
</tr>
<tr>
<td>임계전류</td>
<td>17</td>
<td>A</td>
</tr>
<tr>
<td>임계 온도</td>
<td>87</td>
<td>K</td>
</tr>
</tbody>
</table>
4.2 실험 결과 및 고찰

그림 7과 8은 자속구속형 고온초전도 전류제한 기를 감쇠결선시 사고발생 후 5주기 동안 전류, 전압 파형을 나타낸 그림이다. 그림 7(a)와 8(a)에서 코일 1에 호르는 전류(I_1)와 고온초전도소자에 호르는 전류(I_{SC})의 합으로 나타나는 선로전류(I_{FL})는 사고 직후 고온초전도소자에 호르는 전류(I_{SC})가 17 A를 넘는 순간($Q_{RF} = 59.65, 59.82$ ms) 제한되기 시작한다. 이때의 선로전류(I_{FL})를 제한하기 위해 동작전류($I_{lim} = 21.72, 29.65$ A)라 하며, 이 전류는 각각 최대 41.42 A, 51.17 A까지 상승하다 3주기 이후 9 A, 11 A이하로 감소하게 되었다. 그림 7(b)와 그림 8(b)에서 고온초전도 소자 양단전압(V_{SC})은 고온초전도소자의 펜치발생 후 코일 1의 전압(V_1)과 코일 2의 전압(V_2)의 합으로 나타나며 3주기 이후 안정된 파형을 나타내고 있다.

그림 9는 자속구속형 고온초전도 전류제한기의 감쇠결선시 사고발생 이후 코일 2의 반 전류 변화에 따른 고온초전도소자에 발생된 저항(R_{SC})을 나타내고 있다. 코일 2의 반전류가 증가함에 따라 고온초전도소자에 발생된 저항의 크기가 증가하는 것을 확인할 수 있다.

그림 7. 감쇠결선시 전류조정 곡선($N_1=63, N_2=21$).

Fig. 7. Voltage and current waveforms after a fault happens in subtractive polarity winding (a) Current (b) Voltage ($N_1=63, N_2=21$).

그림 8. 감쇠결선시 전류조정 곡선($N_1=63, N_2=42$).

Fig. 8. Voltage and current waveforms after a fault happens in case of subtractive polarity winding (a) Current (b) Voltage ($N_1=63, N_2=42$).

그림 9. 감쇠결선시 저항 발생곡선.

Fig. 9. Resistivity curve generated after a fault happens in case of subtractive polarity winding.

그림 10. 감쇠결선시 전류조정 곡선($N_1=63, N_2=21$).

Fig. 10. Voltage and current waveforms after a fault happens in case of additive polarity winding. (a) Current (b) Voltage ($N_1=63, N_2=21$).
그림 11. 가극 결선시 전류전압 과형(N₁=63, N₂=42).
Fig. 11. Voltage and current waveforms after a fault happens in additive polarity winding. (a) Current (b) Voltage (N₁=63, N₂=21).

그림 12. 감극 결선시 저항 발생곡선.
Fig. 12. Resistivity curve generated after a fault happens in case of additive polarity winding.

그림 13. 사고전류의 초기제한점 및 최대 피크 도달 시간.
Fig. 13. The arrival time of the initial limiting point and the 1st peak value of fault current after a fault happens.

그림 14. 선로전류의 첫 번째 피크 크기.
Fig. 14. The 1st peak value of line current.

그림 10과 그림 11은 자속구속형 고온초전도 전류제한기의 가극결선시 사고발생 후 5주기 동안의 전류 및 전압파행을 보여주고 있다. 그림 10(a)와 11(a)에서 선로전류(IREF)는 고온초전도소자에 호르는 전류(Isc)와 코일 1, 2에 호르는 전류(I₁, I₂)의 차로 나타나며, 제한기 초기 동작전류(I₀)는 각각 11.69 A, 5.52 A이다. 사고발생 후 선로전류(IREF)의 최대 피크의 크기는 각각 20.75 A, 10.41 A로 나타나며 3주기 이후 5 A, 3 A이하로 감소한다. 그림 10(b)와 그림 11(b)에서 고온초전도소자 양단전압(VSC)은 고온초전도소자의 펜치발생 후 코일 1의 전압(V₁) 과 코일 2의 전압(V₂)의 차로 나타나며 3주기 이후 안정된 파형을 나타내고 있다.

그림 12는 자속구속형 고온초전도 전류제한기의 감극결선시 사고발생 이후 코일 2의 터무 변화에 따른 고온초전도소자에 발생된 저항(RSC)을 나타내고 있다. 고온초전도소자에 발생된 저항은 감극결선선의 경우와는 반대로 코일 2의 터무가 증가함에 따라 크기가 작아지는 것을 확인할 수 있다.

그림 13은 감 가극 결선시 인덕턴스 변화에 따
 큰 사고 발생 후 임피던스 발생으로 초기 선로전류 (IrC1)가 제한되기까지 시간(Q1)과 선로전류의 첫 번째 피크까지 도달하는데 걸린 시간(IrC1-P1)을 나타낸 것이다. 감극결선시 코일 2의 인덕턴스가 증가하면 선로전류가 제한되는 시간과 첫 번째 피크값까지 걸린 시간은 증가된다. 그러나 가극결선 시 코일 2의 인덕턴스가 증가하면 선로전류가 제 한되는 시간과 첫 번째 피크값까지 걸린 시간은 감소한다. 또한 동일 조건에서 감극결선시보다 가 극결선시가 작은 값을 갖는 것을 확인할 수 있다.

그림 14는 감 가극 결선시 선로전류의 첫 번째 피크의 크기를 나타낸다. 코일 2의 인덕턴스가 증 가할수록 감극결선시에는 선로전류의 첫 번째 피 크의 크기가 증가하는 것을 확인할 수 있고, 이와 논해로 가극결선시에는 감소하는 것을 확인할 수 있다. 결국, 그림 13과 그림 14의 결과들로부터 자속구속형 고온초진도 전류제한기의 코일 1과 코 일 2를 가극으로 결선할 경우 전류제한 특성이 향상되는 것을 확인할 수 있다.

5. 결 론
본 논문에서는 자속구속형 고온초진도 전류제한 기의 동작특성과 동가회로를 분석하고, 동가회로에 서 얻은 결과를 바탕으로 각 설계파라미터에 따른 각 코일의 전류와 제한기 임피던스의 변화를 살펴 보았다. 이를 바탕으로, 실제 자속구속형 고온초진 도 전류제한기를 설계, 제작하여 실험을 통해 동일 한 결과를 확인할 수 있었다.

참고 문헌