Local Oxidation of 4H-SiC using an Atomic Force Microscopy

Jae-woong, Wook Bahng, Sang-Cheol Kim, and Sang-Mo Koo

Abstract

The local oxidation using an atomic force microscopy (AFM) is useful for Si-based fabrication of nanoscale structures and devices. SiC is a wide band-gap material that has advantages such as high-power, high-temperature and high-frequency in applications, and among several SiC polytypes, 4H-SiC is the most attractive polytype due to the high electron mobility. However, the AFM local oxidation of 4H-SiC for fabrication is still difficult, mainly due to the physical hardness and chemical inactivity of SiC. In this paper, we investigated the local oxidation of 4H-SiC surface using an AFM. We fabricated oxide patterns using a contact mode AFM with a Pt/Ir-coated Si tip (N-type, 0.01–0.025 Ω cm) at room temperature, and the relative humidity ranged from 40 to 50%. The height of the fabricated oxide pattern (1–3 nm) on SiC is similar to that of typically obtained on Si (10^{15}–10^{17} cm^{-3}). We perform the 2-D simulation to further analyze the electric field between the tip and the surface. We demonstrated that a specific electric field (4 x 10^7 V/m) and a doping concentration (10^{17} cm^{-3}) is sufficient to switch on/off the growth of the local oxide on SiC.

Key Words: Atomic force microscopy (AFM), Local oxidation, Silicon carbide, 2-D simulation

1. 서론

원자현미경(AMF)은 수 마이크로에서 수 나노스케일에 이르는 미세구조를 분석 가능한 첨단의 분석 장비로써 기발하고 연구들로 보편 분석 장비뿐만 아니라 전자적인 특성을 측정하거나 나노 패턴을 구현하는 등의 장비로써 그 응용분야가 확대되고 있다. 이러한 응용분야의 한가지로써 원자현미경을 이용한 국소산화(Local Oxidation)는 태와 시료 사이에 전자를 결어 증으로써 특정 시료에 나노 스케일의 패턴을 생성시키는 패턴링 기술이다. 현재의 소자 제작에서는 광학적 방법을 이용한 패턴 공정이 널리 사용되고 있다. 이러한 패턴 기술은 단기간 내에 대량의 패턴을 만들 수 있다.
들어, 기판 위에 얇은 Au를 코팅하여 국소화학율 성공하거나, UV광원을 패턴팅 할 국소 부위에 조사하여 섞어가 증가시켰다는 연구가 보고되고 있다. 하지만 이전의 SiC 기판으로 국소화학율 성공시킨 사례는 거의 없다. X. N. Xie 그룹의 연구에서는 SiC의 촉활화(graphitization)로 인하여 일반적인 원자현미경 국소화학율에서는 섞어가 형성되지 않는다는 보고가 있었고, 그에 따라 바이어스를 약 1000배 이상 높게 인가했을 경우에는 섞어가 생성되었다는 연구결과가 발표 되었다[1-7].

본 연구에서는 원자현미경 국소화학율을 이용하여 4H-SiC 위에 나노 스케일의 패턴 형상을 성공하였다. 그뿐만 아니라 그림의 전계값을 2-D 시뮬레이션을 통하여 비교 분석하였고, 추가적으로 도핑 농도의 조건과 관련된 전계값에 대해서도 분석, 논의하였다.

2. 실험 및 결과 토의

본 연구에서는 슬로 40~50%의 실험에서 원자현미경(Surface Imaging Systems Gmbh, 독일)의 contact mode를 이용하여 국소화학율을 수행하였고, tapping mode를 이용하여 표면분석을 수행하였다. 이때 사용된 펌은 실리콘(N-type, 0.01~0.025 Ωcm)에 Pt/Ir으로 코팅된 펌으로 탄성계수는 ~3 N/m이고, 50~70 kHz의 공정주파수 값을 갖는다.

그림 1은 국소화학의 기본원리를 간략하게 나타낸 개념도이다. 펌은 (-) 바이어스가 호르는 음극(cathode)의 역할을 하고 기판은 (+) 바이어스가 호르는 양극(anode)의 역할을 한다. 이때 전계가 형성되면 대기 중의 음이온(OH) 들이 양극의 시료 쪽으로 터널링하여 이동하게 된다. 이러한 음이온 들이 대기 중의 물 분자와 시료와 동시에 반응하게 되면 연쇄적인 화학반응이 일어나서 섞어들이 형성되게 된다. 섞이 패턴을 형성시킨 이후에는 동일한 대기조건에서 시료 표면을 분석하였다. 실험에서 사용된 펌패턴은 도핑농도 10⁵에서 10⁶ cm⁻³ 범위의 n-type, p-type 4H-SiC이다. 추가적으로 2-D 시뮬레이션(Atlas, Silvaco Inc.)을 이용하여 전계 분포를 알아보았다.

그림 2는 원자현미경 국소화학율을 사용하여 p-type 4H-SiC(도핑 농도 : 7 x 10⁶ cm⁻³) 표면 위에 전압을 증가시키면서 나노 패턴을 형성시킨 topology의 3-D 이미지이다. 가장 좌측부터 5, 7, 9 V 순으로 시료에 전압을 인가하여 패턴을 형성하였다. 5 V를 인가했을 경우, 약 1 nm 미만의 높이로 섞어 패턴이 형성되었다. 7 V를 인가했을 경우의 섞어 패턴 높이는 약 2 nm이었고 9 V를
인간의 경우, 약 3 nm 높이의 산화 패턴이 생성된다. 인간의 전압이 증가할수록 산화패턴의 높이가 증가함을 알 수 있다.
전압이 증가되면 시료 표면과 틴의 굴대간의 방울이는 부분의 전각이 증가하게 되는데, 전각이 증가하면 틴과 시료사이에서 온이온(OH⁻)의 틴느림이 증가하게 되고, 다음과 같은 화학반응이 가속화된다. 전각이 걸린 상태에서 틴에서의 화학반응은 다음과 같다.

\[
4H_2O + 4e^- \rightarrow 2H_2 + 4OH^-
\]

연쇄적인 반응으로 다음과 같이 수소 이온(H₃O⁺)과 수산화 이온(OH⁻)의 결합으로 H₂O가 생성된다.

\[
4H^+ + 4OH^- \rightarrow 2H_2O
\]

생성된 물은 생물 표면에서 다음과 같은 화학반응을 일으키며 산화물을 생성하게 된다.

\[
SiC + 2H_2O + 4H^+ \rightarrow SiO_2 + 4H^+ + C_4^-
\]

또한 틴느림 된 온이온(OH⁻)들은 이러한 화학반응을 더욱 활발하게 만들어 더 높은 산화 패턴을 만들게 된다.
그림 3은 각각 도핑이 다른 SiC 기판 위에 9V의 일정한 전압을 인가할 때, 생성된 산화 패턴의 높이를 나타낸 그래프이다. 약 7.8 x 10¹⁵ cm⁻³의 도핑 농도이상에서 패턴이 형성되는 것을 확인할 수 있었다.
그림 4는 2-D 시뮬레이션을 이용하여 9V의 일정한 전기장과 일정 도핑 농도(10¹⁶ ~10¹⁸ cm⁻³)에서 시료 표면의 전각값을 비교한 그래프이다. 도핑 농도가 10¹⁵ cm⁻³에서 10¹⁸ cm⁻³의 범위로 증가할 때, Si의 경우는 시료 표면에서 일정한 전각값이 약 5 x 10⁷ V/m을 보이지만, p-type SiC의 경우는 Si에 비해 높게 형성할 수 있었다. 실제 국소산화의 결과를 보더라도 p-type 4H-SiC는 약 9 x 10¹⁵ cm⁻³의 도핑 농도 이상에서는 산화패턴이 잘 형성됨을 보였다. 저온도 기판에서는 SiC가 Si보다 고에너지렌드질이므로 그만큼 더이동에 필요한 에너지가 크기 때문에 전각이 낮게 걸리고 고온도 기판에서는 그 효과가 감소하기 때문에 전각값이 유사함을 알 수 있다.
4H-SiC 기반의 원자현미경 국소산화 연구는 물질의 특성상 성공 사례가 거의 없었다. 본 연구에서는 특정 도핑 농도와 전계 조건을 연구, 분석하여 4H-SiC에 원자현미경 국소산화를 성공하였다. 추가적으로 2-D 시뮬레이션을 이용하여 전체와 기판 도핑 농도가 국소산화에 미치는 영향을 분석하였 다. 전압에 비례하여 전계가 높아짐에 따라 뺨과 기판 사이의 화학작용이 증가하게 되므로 결과적으로 산화 높이가 증가함을 보였다. 약 9 x 10^{15} cm^{-3} 이상에서의 도핑 농도를 갖는 SiC 기판에서 약 4 x 10^{17} V/m 이상의 물식 전계값을 가해주면 산화산화망이 생성됨을 보였다. 아직 SiC의 원자현미경 국소산화 연구가 활발히 진행되지 않는 현 상황에서, 전체와 산화산화생성 메커니즘의 연구는 나노 소자 공정을 위한 중요한 역할을 할 수 있을 것이다.

감사의 글
본 논문은 산업자원부가 지원하는 국가 반도체 연구사업인 “시스템적반도체기반기술개발사업 (시스템IC2010)”을 통해 개발된 결과임을 밝힙니다.

참고 문헌

