마이크로파 무선전력전송을 위한 렉테나 설계와 구현

(Design and Fabrication of Rectenna for Microwave Wireless Power Transmission)

박정흠
(Jeong-Heum Park)

요 약

본 논문에서는 마이크로파를 이용한 무선전력전송시스템을 구현하기 위해 2.45GHz 마이크로파를 수신하여 직류전력으로 변환하는 렉테나를 설계, 구현하고, RF-DC변환효율을 높이기 위한 임피던스 매칭 및 튜닝 방법을 제시하였다. 구현된 렉테나는 널은 Open Stub을 사용하여, 설계 튜닝이 가능하며, 정류회로의 RF-DC변환효율은 5(dBm)입력에 대하여, 최대 59(%)를 얻을 수 있었다. 제작된 패치안테나와 정류회로를 이용하여 소전력무선전송시스템을 구현한 결과, 송수신거리가 1m 범위인 거리에서 2.2(V), 1.5(mW)의 직류전력전송이 이루어졌으므로, 소전력 디지털시스템의 운용에 적용가능한 값을 얻을 수 있었다.

Abstract

In this paper, the rectenna converting 2.45(GHz) microwave into DC power is designed and fabricated for wireless power transmission using microwave and the method for impedance matching and tuning are proposed in order to maximize RF-DC conversion efficiency. The fabricated rectenna can be easily tuned by using a broad open stub and has the RF-DC conversion efficiency up to 59(%) when the 5(dBm) input power is applied. The 2.2(V), 1.5(mW) DC level, in the 1[m] distance between the transmitter and the receiver can be obtained and this value is available in the small power digital system.

Key Words : WPT(Wireless Power Transmission), Rectenna, RF-DC conversion efficiency

1. 서 론

무선전력전송(Wireless Power Transmission) 기술은 우주 공간에 설치된 태양전지판에 의해 생성된 직류전압을, 지구로 송전하기 위한 RF 전력으로 변환하여 전송하고 지구에서는 다시 RF전력을 DC전압으로 변환하는 것으로 1968년 Peter Glaser 박사가 최초 제안한 이후, 차세대 청정에너지 개발의 일환으로 꾸준한 연구가 진행되어 왔다[1]. 최근에는 전자자동차, 관내검사용 로봇 등에 적용된 사례도 있었으며, 특히 RFID 시스템의 수동형 태그에 소전력을 공급하는 것이 융용분야의 중요한 사례로 부각되고 있다[2]. 또한 유비쿼터스 센서 네트워크가 향후 큰 시장으로 성장할 것이 예상됨에 따라 소형 이
마이크로파 무선전력전송을 위한 핵심 설계의 구현

동체나 전원공급이 어려운 환경에서 동작하는 시스템에 전원을 공급하는 무선전력전송기술은 그 응용의 폭을 넓힐 것으로 예상된다.

본 연구의 목적은 무선전력전송을 위해 마이크로파로부터 직류전력을 끌어내기 위한 레테나(Retenna, Antenna와 Rectifier의 합성어)를 구성하는 것이며, 안테나, 정류회로, 필터, 업파이던스 매칭 등의 레테나의 성능향상을 위한 설계의 요소가 된다. 입력된 RF전력에 대한 정류 후의 DC전력에 의해 부하장에서 소비되는 DC전력의 비를 계산하여 산출되는 RF-DC 변환효율이 레테나의 성능을 나타내는 중요한 파라미터가 된다.

RF-DC 변환효율을 높이기 위해서는 첫째, 지향성과 선형이득을 높아야 하며, 둘째, 안테나와 정류회로 사이의 업파이던스 매칭이 잘 되어야 하므로, 정류에 사용되는 Schottky 다이오드의 비선형특성을 정확히 고려해야 한다. 그러나 동작주파수에서 다이오드의 임차장, 임차절, 패스턴스 등의 정확한 파라미터를 예측하고 설계하는 것이 어렵기 때문에 튜닝이 용이한 매칭회로의 설계가 바람직하다.

이에 본 논문에서는 마이크로파를 이용한 무선전력전송시스템 구현을 위해 2.45(GHz) 마이크로파를 수신하여 직류전력으로 변환하는 레테나의 제작을 목적으로 하였다. 이를 위해, 설계와 튜닝이 용이한 안테나와 매칭회로 제작하였고, RF-DC 변환효율에 영향을 미치는 파라미터들을 실험적으로 분석함으로써, 무선전력전송기술의 응용의 폭을 넓히고자 한다.

2. 안테나 설계 및 제작

본 논문에서는 2.45(GHz) 원편과 마이크로스트립 패치안테나를 설계하고 전자계 시뮬레이터를 사용하여 모의실험을 행한 후 실제 안테나를 제작, 성능측정을 통해, 레테나용 안테나로서의 성능평가를 행하였다. 안테나의 소형화와 제작의 용이성을 이유로 마이크로스트립 패치 형태로 안테나를 제작하는 것이 바람직하지만, 적선편과 사용 시 송신측 변과 수신측 변과가 직교하는 경우는 통신이 되지 않으므로, 설치방향의 임의성을 위해서 원형편파로 구현하는 것이 필요하다. 그림 1에 설계된 폐치안테나의 형상을 나타내었다. 폐치의 길이 L은 프란츠 필드에 의한 길이 연장효과를 고려하여 아래의 식으로 결정하였다[3].

\[ L \approx 0.49 \frac{\lambda}{\varepsilon_r} \]

(1)

여기서 \( \lambda \)는 파장, \( \varepsilon_r \)은 기판의 유전율이다.

\[ \text{Fig. 1. Figure of Single feed circularly polarized microstrip antenna} \]

\[ Z_A = 90 \cdot \frac{2}{r-1} \cdot \left( \frac{L}{W} \right)^2 \]

(2)

\[ Z = Z_A \cdot \cos \beta \cdot \frac{2 \cdot \pi \cdot d}{L} \]

여기서 \( Z_A \)는 레테나 각장자에서의 업파이던스이고, \( d \)는 각장자에서 급전적까지의 거리, \( L \)은 폐치의 길이, \( W \)는 폐치의 폭이다.

원형편파를 발생시키는 방법에는 여러 가지가 있으나, 본 논문에서는 perturbation segment을 이용하기 위해 각형 폐치의 주부는 두 귀퉁이를 잘라서 원형편파를 생성하였다[5].

안테나의 실제 제작에 앞서 3차원 전자계 해석과 그에 따른 S-파라미터를 구하기 위해서 상용의 HFSS(High Frequency Structure Simulator)를 사

그림 2. 패치안테나의 반사손실의 측정값과 시뮬레이션값 비교
Fig. 2. The comparison of measured and simulated return loss in patch antenna

그림 3에 제작된 패치 안테나의 방사특성을 알아보기 위해, 두 개의 직교평면 상에서 편중된 2.45 [GHz]에서의 방사패턴을 나타내었다. 우수한 우수

회 원형패턴이 얻어졌음을 알 수 있다.
표 1에서 제작된 패치 안테나의 재 특성을 요약하였다.

<table>
<thead>
<tr>
<th>항목</th>
<th>제작된 안테나 사양</th>
</tr>
</thead>
<tbody>
<tr>
<td>크기</td>
<td>61.3[L] x 61.3[W] x 1.58[H][mm]</td>
</tr>
<tr>
<td>공전 주파수</td>
<td>2.449[GHz]</td>
</tr>
<tr>
<td>VSWR</td>
<td>1.2</td>
</tr>
<tr>
<td>3dB 빔폭</td>
<td>93[°]</td>
</tr>
<tr>
<td>선형이득</td>
<td>2.24[dBi]</td>
</tr>
<tr>
<td>전파</td>
<td>우수원형패턴(RHCP)</td>
</tr>
</tbody>
</table>

3. 정류회로 설계

RF를 전원으로 변환하기 위한 기본적인 회로구성
을 그림 4에 나타냈다. 안테나로부터 임사되는 RF는 정류회로를 거치기 전에 임피던스 메칭회로를 거
쳐야 하는데, 이는 RF-DC변환효율을 높이기 위한
핵심적인 요소가 된다. 주만저항과 병렬연결된 캐패시터는 다이오드에서 정류된 신호를 받아 DC전압으
로 측정하는 역할을 하며, 또한 RF 바이패스 캐패시터의 역할과 함께, 부하지향으로부터의 RF 유입을
차단하게 된다.

그림 3. d=8.6(mm)인 패치 안테나의 방사패턴
Fig. 3. Radiation pattern of patch antenna fabricated with d=8.6(mm)
마이크로파 무선전력전송을 위한 렉테나 설계와 구연

그림 4. 렉테나 회로의 기본 구성
Fig. 4. The basic diagram of rectenna circuit

본 논문에서 사용한 주파수 다이오드는 HSMS-2850 zero bias single Schottky diode (SOT-23)이며, 이의 특성 파라미터를 사용한 등가모델을 그림 5에 나타내었다[6].

여기서 $R_i$는 접합저항으로 다이오드에 흐르는 전류 $i$에 의해 다음 식 (3)과 같이 비선형적으로 변화하지만, 본 논문에서는 $R_i$를 9[Ω]으로 근사화 시켜 계산하였다.

그림 5. HSMS2850 다이오드 등가모델
Fig. 5. The equivalent circuit of HSMS2850 diode

$$R_i = \frac{V_i}{i} = \frac{8.33 \times 10^{-5} \pi T}{I_b + I_s}$$  (3)

HSMS-2850인 경우, $n$은 1.06, 포화전류 $I_b$는 $3 \times 10^{-6}[A]$, $I_s$는 외부에서 인가된 바이어스 전류, $T$은 접대온도이다. $C_i$는 접합 캐패시턴스로, 식 (4)로 표현되고, $C_i(0)$은 $V=0$일 때의 접합 캐패시턴스이고, $V_b=88[V]$이다.

$$C_i = \frac{C_i(0)}{\sqrt{1 - V/V_b}}$$  (4)

그림 6에서 바라본 다이오드 등가모델의 임피던스
Fig. 6. The impedance of equivalent circuit of HSMS2850 diode in $\Gamma_2$

그림에서처럼 동작주파수인 2.45[GHz]에서 $\Gamma_2$에서 바라본 임피던스는 1.340-j4.801로 임피던스 정합이 까다로운 위치에 있다. $\Gamma_2$에서의 임피던스를 50 [Ω]로 정합시키기 위해 개방형 스티커를 사용한 T형 매칭회로를 사용하였으며, 이후 튜닝을 용이하게 하기 위해 큰 폭의 개방형 스티커를 가지로그림 7과 같이 설계하였다.

그림 7. 다이오드를 고려한 매칭회로 설계
Fig. 7. The design of matching circuit for the diode

Agilent사의 ADS를 사용하여 매칭 후의 반사계수를 시뮬레이션 하였고 그 결과를 그림 8에 나타냈다. 시뮬레이션 결과, 그림 (a)에서와 같이 동작주파수 2.45[GHz]에서 반사주파수 -33.2[dB]을 얻었고, (b)에서와 같이 채30[Ω] 부근에 정합된 결과를 얻을 수 있었다.
박정호

그림 8. 매칭 후의 S11 시뮬레이션 결과
Fig. 8. S11 simulation result after matching

유전율 4.2, 두께 1.56[mm]인 FR4 기판을 사용하여 실제 제작한 임피던스 정합된 정류회로를 사진 1에 나타냈다.

사진 1. 제작된 임피던스 정합된 정류회로
Photo 1. The impedance-matched rectifier circuit

네트워크 아날라이저를 사용하여 제작된 회로의 S11측정 결과를 그림 9에 나타냈다. 최초 제작된 임피던스 매칭된 정류회로의 공진주파수는 2.35[GHz]로 목표치인 2.45[GHz]에서 -0.1[GHz] 벗어나 있었으나, 개방형 스타브의 끝을 단순히 1[mm] 절단함에 의해 쉽게 주파수 튜닝을 구현할 수 있었다.

그림 9. 튜닝 전후의 정류회로 S11 비교
Fig. 9. The comparison of s11 before and after tuning

부하저항과 입력저항에 따른 변환효율을 측정하기 위하여, RF-DC 변환효율을 아래 식으로 구하였다.

\[
\eta = \frac{V_o/R_f}{P_{in}} \times 100(\%) \tag{5}
\]

\(P_{in}\)은 안테나로부터 들어오는 입사전력이고, \(V_o\)는 부하저항에 인가되는 정류된 직류전압, \(R_f\)는 부하저항의 크기이다. 그림 10에 부하저항과 입력저항에 따른 RF-DC 변환효율을 나타냈다. 일반적인 RFID 시스템의 대구 안테나로부터의 입사전력이 2~5[mW]인 점을 고려하여 [7], 네트워크 아날라이저를 사용하여 정류회로에 가변전력을 입사시켜 입사전력에 따른 RF-DC 변환효율을 구하였다.

그 결과 입사전력이 증가함에 따라, 변환효율이 증가하였으며, 5[dBm] 입사 시 부하저항 525[\Omega]일 때, 최대변환효율 59[\%]가 구현되었다. 상기한 결과를 바탕으로 하여, 그림 11과 같이 무선전력전송시스템을 구성하여, 전체적인 레테나의 성능을 평가하였다.
미크로파 무선전력전송을 위한 백테나 설계의 구현

그림 10. 부하저항과 입력전력에 따른 정류회로의 RF-DC전환효율
Fig. 10. RF-DC conversion efficiency of rectifier circuit with the variation of load resistance and input power

그림 11. 무선전력전송시스템의 백테나 성능평가 구성도
Fig. 11. The schematic of rectenna characteristics measurement system of wireless power transmission system

그림 11에서처럼, 인사전력측정부를 구성하여 송신측 안테나에서 수신측 안테나까지의 거리에 따른 정류회로로의 인사전력을 측정하였다. 이 결과, 송신 및 수신 측 안테나 사이의 거리가 1m일 때 정류회로의 인사전력이 4mW로 측정되었고, 이 조건에서 인사전력 측정부를 제거하고, 수신측 안테나를 정류회로에 직접 연결하였을 때, 출력직류전압 2.2V, 전류 700uA를 얻을 수 있었다.

4. 결론

본 논문에서는 무선전력전송을 위한 백테나를 구성하기 위해서 페치안테나와 정류회로 설계, 제작하였다. RF-DC전환효율을 높이기 위해 Schottky 다이오드의 특성을 고려하여 안테나와 정류회로 간의 임피던스 매칭을 행하였고, 또한 튜닝을 쉽게 구현할 수 있도록 넓은 Open Stub를 도입하였다. 그 결과 2.2[V], 1.5[mW] 직류출력을 얻을 수 있었고, 이 값은 소전력을 사용한 디지털시스템을 운용하는 데 충분한 값이다. 향후 페치안테나의 협대역 특성을 보완하기 위한 광대역 안테나의 채용, 더 알고 소형화된 안테나 및 정류회로를 제작하기 위한 사용기판의 개발, 변환효율을 더욱 높이기 위한 정류회로 설계방법에 대한 연구가 이루어져야 할 것이다.
본 논문에서 제안된 임피던스 튜닝을 위한 넓은 Open Stub 방식은 RFID용 태그의 제작공정에 유용하게 사용되기라고 기대된다.

References


◇ 저자소개 ◇

박정흡 (朴正鉉)