세라믹 필터를 이용한 동축 서지어레스터의 잔류전압 저감

(Residual Voltage Reduction of Coaxial Surge Arrester Using Ceramic Filter)

엄주홍*, 조성철, 이태영, 이영철

(Ju-Hong Eom, Sung-Chul Cho, Tae-Hyung Lee, Young-Chul Lee)

요 약

현재 급속한 발전을 거듭하고 있는 이동통신 및 무선 멀티미디어 관련 서비스(W-CDMA, DMB, WiBro 등)의 확장은 이들 시스템을 구현하기 위한 수많은 기지국과 안테나 및 다수의 신호 전송선로를 필요로 한다. 기지국 또는 중계시설의 안테나는 신호 전송선로를 통하여 고고의 통신 네트워크 장비들과 결합되어 있으므로 주요 통신기 시스템은 안테나를 통해 유입하는 전격 및 유도화에 의한 순간적인 과전압의 위험이 항상 노출되어 있다. 현재 통신용 보호기로 사용되고 있는 가스방전관브(GDT) 또는 헬메르 스터브형 어레스터는 고속 정파의 통신설비에 대한 놀저지 보호수단으로서는 한계점이 드러나고 있다. 따라서 본 연구에서는 안테나를 통해 입사하는 놀저지를 효과적으로 저감시키려는 서지어레스터의 성능향상을 위해 세라믹 필터를 적용하였으며, 잔류전압 저감에 효과적임을 성능실험을 통해 입증하였다.

Abstract

Extension of the mobile communication and the rapidly developing services connected with wireless multimedia(W-CDMA, DMB, WiBro, and so on) need great many base station transceiver systems, antennas, and many signal transmission line to embody these services. The main communication appliances system is exposed always in danger of transient overvoltage by direct stroke or induced lightning surge flowing in through antenna because the antenna of base station transceiver system or relay equipment is combined with expensive communication network equipments through signal transmission line. Now, gas discharge tube(GDT) or narrow band stub arrester which is used by the surge protector for communication use is exposing limitations as for lightning surge protective means of the communication facility with high speed and wide frequency band. Therefore, for improving performance of surge arrester, we applied ceramic filter which can reduce lightning surge invading from antenna effectively, and proved that ceramic filter is effective in residual voltage reduction through the experimental research.

Key Words : Coaxial surge arrester, Ceramic filter, Shorting stub, Surge protector

* 주저자 : 기초전력연구원 전함연구원
Tel: 02-885-9443, Fax: 02-883-0827
E-mail: eommas@smu.ac.kr

접수일자 : 2006년 9월 28일
1차심사 : 2006년 10월 9일
성사일자 : 2006년 10월 30일

1. 서 론

최근 종류가 다양해지고 사용량이 급속하게 증가

하는 통신기기 보호용 어레스터(arrester)는 그 특성에 따라, 그리고 사용하는 주파수 대역에 따라 사용장소가 결정된다[1]. 동축 스티브(stub)형 어레스터의 경우 대부분 주파수 대역이 협대역 이외로 통신 설비나 기기의 종류에 따라 선택적으로 사용하여야 한다.

최근의 서지 어레스터는 이러한 협대역 특성을 개선하고 주파수 대역을 넓혀 적용성을 증가시킨 현대적 제품들이 개발되고 있다. 또한 기존의 보호기능들이 전원성을 통해 통신설비에 침입하는 레시지를 차단하거나 저감시키는데 주력하여 전원 SPD (surge protective device)에만 관심이 집중되었으나, 국내의 관련 기술규격이 공동체의 기반으로 개발됨에 따라 안테나, 통신선으로 등에서 유입되는 레시지의 전원으로 위험을 저감시키는 기술개발 및 제품개발이 주목을 받고 있다. 특히 안테나를 통해 기지국으로 유입되는 레시지의 경우 저감으로 유입될 가능성도 높아 필요성이 급증하고 있다[2-3].

기존의 협대역 어레스터는 그림 1과 같이 RF 대역에서 사용이 가능한 어레스터로서 일반적으로 동축 형태로 되어 있으며, 진주전압 제한에 저주파대역에서도처럼 비선형 소자를 사용하는 것이 아니라 저주파 단락 스티브 구조로 설계하여 저주파에서 단락, RF 대역에서는 큰 임피던스로 작용하는 원리로 작동하고 있다. 하지만 단락 스티브 간의 외부에 결정되는 사용주파수 대역폭이 좁으며, 높은 진주 전압 혹은 제한전압이 2차측에서 발생하므로 고성능 통신기기의 레시지 보호장치로서 효과가 충분하지 못하다.

이러한 협대역 스티브형 어레스터의 단점을 보완하고 이동통신 주파수 대역에서 광범위하게 사용할 수 있는 방법 동축어레스터로는 750~2600MHz의 대역 주파수특성을 가지는 제품들이 주목을 받고 있으며, 국내에서도 PCS, W-CDMA, IMT-2000, WiBro 등에 공동으로 적용이 가능한 개발이 중이다. 본 연구에서는 이러한 동축어레스터에 대해 극히 낮은 진주전압 특성을 가지는 고성능 동축 서지 어레스터를 이용한 새로운 형태의 어레스터를 개발하였다.

그림 1. 단락 스티브형 협대역 어레스터(800(MHz), 1800(MHz))

Fig. 1. Shorting stub type arrester with narrow pass-band(800(MHz), 1800(MHz))

2. 본론

2.1 세라믹 유전체의 설계

서지 전류제압장치에 서지 어레스터를 통하여 큰 서지전류가 통과할 때 통신기기로 전이되는 전압이며, 이 전류전압이 낮을수록 2차측의 피해가 적어진다. 그러나 현재의 1/4파장 단락 스티브 구조에서는 단락 스티브 자체가 일종의 L형으로 작용하므로 서지전류가 호울 때 나타나는 스티브 역전단의 전류제압을 감소시키는데 한계가 있다. 따라서 본 연구에서는 고저항과 커패스터의 역할을 수행할 수 있는 세라믹 유전체를 어레스터에 장착하는 방법으로 통신기기나 기지국으로 유입되는 서지전압을 저감시키는데 주력하였다. 세라믹 유전체는 일반적인 동축어레스터의 2차측에서, 기저부에 내장하여 2차측 전류제압을 저감시키며 전송되는 신호에는 감소가 없도록 일종의 필터와 같은 기능을 한다. 그림 2는 일반적인 동축어레스터 구조를 나타낸다.

세라믹 필터 어레스터는 동축어레스터에 그림 3과 같은 구조를 가지는 세라믹 제거의 유전체를 사용하여 인위적으로 C를 갖추한 형태로 단락 스티브를 통해 서지전류의 호울 때 나타나는 전류제압을 최적화으로 저감시키도록 고안하였다. 일반적으로 유전특성이 좋은 재질을 사용하게 되며, 신호전송 경로상 에 C성분을 직접으로 삽입함으로써 낮은 주파수성분의 레시지 전류제압을 효과적으로 저감시키는 기능
세라믹 필터를 이용한 동축 셀러어레스터의 전류전압 계반

을 한다. 따라서 이와 같은 C상의 셀러어레스터의 중
심도체에 삽입하기 위하여 유전특성이 우수한 티탄
산바륨(BaTiO₃) 재질의 세라믹을 별도로 개발하는
것이 필요하며 이를 위하여 세라믹 제조업체와 공동
으로 셀러어레스터장착이 가능한 세라믹필터를 개발
하였다.

그림 2. 동축 어레스터 구조
Fig. 2. Structure of coaxial arrester

그림 3. 세라믹 유전체의 설계
Fig. 3. Design of ceramic dielectric

보통의 경우 10~30[V] 정도의 값을 가진다. 현재 국
내에서 시판되는 현대력 동축어레스터는 2차측 전류
전압이 약 5[V] 수준이며, 국내 최고 수준 및 해외
의 수준은 약 7~8[V]이다. 하지만 이러한 값은 일반
적으로 안테나 등에서 적절히 접합하는 경우 매우
큰 놀러시 전류가 흐르게 되고 훨씬 큰 시저전압이
발생하게 되므로 가능한 2차측의 전류전압을 줄여줄
필요가 있다.

신호전로에 유전체를 삽입하여 필터로 사용하는
것은 시저전압의 역제에 효과적이나 전류전압을 적
절하게 설정하지 않을 경우 신호전송에 있어서 감쇄
나 왜곡의 원인이 되기도 한다. 따라서 p-spice simula-
tion을 통하여 그림 4와 같이 회로모델을 작성
하고 각각의 전류전압에 대하여 통과주파수 대역이
어떻게 되는지를 우선적으로 검증하였다.

그림 4. p-spice simulation 키로모델
Fig. 4. Circuit modeling for p-spice simulation

이에 대한 결과는 그림 5에 나타내었다. 그림 5는
10~30[pF]의 전류전압을 가지는 유전체 삽입 시 주
파수에 대한 출력전압을 나타낸 것이다. 각각의 경
우 인가전압은 10[V]이며 100[MHz]를 기준으로 할
때 0.7배 즉, 입력전압에 대한 출력비가 -3[dB] 이상
이 되는 전류전압이 필요하게 된다. 또한 저주파 대
역의 놀러시 차단능력에서 약 1[MHz]를 기준으로
할 때 입력전압의 1/100 이하로 줄여줄 수 있는 정전
용량은 15~25[pF]이다. 따라서 고주파 통과필터가
해당 주파수 대역에서 원활하게 동작하기 위해서는
약 15~20[pF]의 전류전압을 가지도록 설계하여야
하며, 이를 위해서는 유전체로 사용될 수 있는 재료
가 제한적이다.

또한 약 1[MHz] 이하의 놀러시 파형에 대해서는
기존의 동축 스타브에 인가되는 시저 전압이 4[kV],
단락스테브에서 제한되는 전압이 크게는 30[V] 이상
2.2 세라믹 유전체의 특성

세라믹 유전체로는 BaTi₄O₉, Ba₂Ti₅O₁₉, (BaCa) (TiZr)O₃ 및 BaTiO₃ 조성과 BaTiO₃ 조성에 MnO₂ 등 일부 첨가한 조성을 선정하여 고성능에 의해 각 각의 분할을 형성하였다. 충분한 비율로 BaCO₃, TiO₂, CaCO₃, ZrO₂ 및 MnO₂를 사용하였는데, 각각의 조성에 맞게 원료를 소량适时히 4차까지 정량하여 테트로병에 넣고, 액상융과 저르코니아 볼을 사용하여 24시간 동안 혼합하였다. 이렇게 혼합한 원료는 800°C로 유지된 건조기에 넣어 24시간 동안 건조 후 유발을 사용하여 분쇄하여 그림 6(a)의 조건으로 하소하였다.

이 재료는 다시 XRD(X-ray diffraction) 분석을 통해 결정성을 분석하였다. 하소한 분할은 세라믹 필터로 성형하기 위해 물질을 제작하고, 제작한 물질을 사용하여 0.2μg의 하소 분말을 0.2kg/cc의 압력으로 일차가압 성형하였다. 성형한 유전체는 다시 그림 6(b)의 조건조건에 따라 소결하였고, 제조한 소결체는 미세구조를 관찰한 후 세라믹 필터 제작에 적용하였다.
세라믹 필터를 이용한 동축 서지어레스터의 전류전압 측정

그림 7. 줄비에 따른 Ba$_2$Ti$_9$O$_{20}$의 결정상
Fig. 7. Crystalline phase of Ba$_2$Ti$_9$O$_{20}$ according to the molecular ratio

그림 8. 1200(℃)에서 하소한 BaTiO$_3$의 결정상
Fig. 8. Crystalline phase of BaTiO$_3$ calcined at 1200(℃)

세라믹 유전체 Ba$_2$Ti$_9$O$_{20}$, BaTiO$_3$ 및 BaTiO$_2$를 1320(℃)에서 2시간 소결한 미세구조 사진을 그림 9에 나타내었다. 그림에서 살펴보면 Ba$_2$Ti$_9$O$_{20}$가 낡지 결정형태인 칸막이형의 주상을 나타내고 있고, BaTiO$_3$는 구형의 입자형태를 나타내고 있다. 특히 BaTiO$_2$는 매우 발달된 결정상을 나타내고 있는데 이러한 결정형태는 소결온도가 증가함에 따라 보다 잘 나타났다. 이러한 결정상과 미세조직 결과의 확인 후 세라믹 유전체로 제작하였을 때 Ba$_2$Ti$_9$O$_{20}$와 BaTiO$_3$의 경우 약 25에서 30들외의 비율을 갖는 세라믹을 나타내었다. BaTiO$_3$는 높은 유효율을 갖도록 하기 위해 MnO$_2$를 0.1[모ル%]정도 치환하여 그림 10과 같이 유전체를 제작하였다. 제작된 유전체의 비율은 40으로 추정되었다.

그림 9. 세라믹 유전체의 미세구조
Fig. 9. Microstructure of the ceramic dielectric

그림 10. 세라믹 유전체
Fig. 10. Ceramic dielectric
2.3 뇌서지 저감특성

RF(radio frequency) 대역의 서지 어레스트에 대하여 그 성능을 평가할 수 있는 기준은 서지응답특성과 RF 신호의 전송특성으로 크게 구분할 수 있다. 서지응답특성은 1차로 유입되는 서지전압 또는 서지전류에 대하여 2차로 전파되는 위험전압 즉, 전류전압의 제한특성(제한전압)의 크기로 그 성능을 평가할 수 있다. 물론 구조적인 변형이나 외관상의 파손 등이 없는 조건이다. RF 대역의 신호전송 특성은 VSWR(voltage standing wave ratio)와 삽입손실(insertion loss)의 대표적인 성능요소가 된다. 이 외에도 어레스트의 특성임피던스나 반사계수(reflection coefficient), 반사손실(return loss)등이 있다[5-6].

서지특성에 대하여 2차로 전파되는 서지전압 또는 어레스트 전류전압 혹은 어레스트에 의해 클램핑되거나 스위칭 동작에 의해 나타나는 제한전압의 크기를 측정하여 성능을 평가하였다.

2.3.1 시험방법

서지 시험방법은 국제규격인 IEC 61643-1, -21의 규정에 의거하여 시험하며, 기타 통신분야의 관련규격(ITU-T K20)를 참조하여 최적의 시험조건을 만족시키도록 진행하였다. 전반적인 시험방법은 아래의 그림 11과 같다. 최초 정성적인 시료의 사전 특성을 이용한 VSWR와 삽입손실을 측정하고 시험준비를 한 후에 특성변화를 다시 한 번 관찰하는 순서로 진행되었다.

그림 11의 Step 1에서는 최대방전류를 인가하기 전에 기본적인 신호전송특성을 측정하는 과정이며, 주파수 대역이 6[GHz] 이상이 되는 네트워크 분석기(network analyzer)를 사용하여 VSWR와 삽입손실을 측정하였다. 네트워크 분석기의 경우 각각의 S-parameter을 측정하여 신호의 동파, 반사, 삽입손실 등을 측정할 수 있는 성능을 가지고 있어야 하며, VSWR와 임피던스 특성을 분석할 수 있는 기능이 있어야 한다.

Step 2에서는 진행하는 임펄스 전류시험은 최대방전류(Irrmax)를 인가하여 서지어레스트가 최대로

그림 11. 시험절차
Fig. 11. Test procedure

견필 수 있는 전류를 결정하기 위한 시험이다. 시험 대상 어레스트는 견고한 스테인리스 스틸 또는 이와 유사한 재료로 스티브가 구성되어 있으므로 최대방전력은 다른 ZnO 소자나 GDT에 비하여 매우 크다. 시험되는 일반적인 ZnO 소자가 단일품으로 최대방전력이 40[kA]에 이르고 있지만 동축형태의 어레스트는 방전전류가 통과하는 전류가 ZnO 소자가 아니라 급속성의 스트리 경로이며 최대방전력에 있어서는 최전에 큰 전압차를 가진다. 현재 개발되어 사용되고 있는 동축어레스트의 일반적인 전력용량이 8/20[μs] 전류파형을 기준으로 약 100[kA] 이상의 최대 방전전류값을 가진다.

Step 3에는 100[kA]의 대전류가 통과하면서 어레스트의 내부적인 변화이나 성능저하, 신호전송 특성의 변화 등을 분석하기 위해 다시 한 번 네트워크 분석기를 사용하여 VSWR와 삽입손실을 측정하게 된다. 측정결과가 초기 Step 1에서 측정한 값과 큰 변화가 없어야 하며, 전체적으로 내면에서 시험된 제품들의 VSWR은 1.2이하, 삽입손실은 0.1[dB] 이하의 성능을 가지고 있으므로 새로 제작한 어레스트의 성능을 시험하여 비교하였다.

Step 4에서는 뇌서지 응답시험에 널리 사용되는
세라믹 필터를 이용한 동축 서지어레스터의 전류전압 측정

2.3.2 시험결과

새로게 제작된 세라믹 소재의 유전체를 대역폭과 필터로 적용하여 개발된 동축 서지 어레스터로의 값의 일반동축 어레스터를 그림 1의 시험결과에 따라 비교하여 평가하였다. 두 어레스터 모두 100[kA]의 전류전류에 대하여 외형적인 이상이 신호전송 특성 변화가 크게 나타나지는 않았다. 형제형 전류형 구조를 가지며, 전기적으로도 접촉이 양호하여 매우 큰 전류전류를 발시키는 때 무리가 없었다. 각각의 시험결과에 대한 결과는 표 1에 요약하여 나타내었다.

표 1. 서지 및 전송시험 결과
Table 1. Surge and transmission test results

<table>
<thead>
<tr>
<th>구분</th>
<th>대역폭 [MHz]</th>
<th>전송시험</th>
<th>서지시험</th>
</tr>
</thead>
<tbody>
<tr>
<td>일반</td>
<td>VSWR</td>
<td></td>
<td></td>
</tr>
<tr>
<td>동축서지 어레스터</td>
<td>임업손실 [dB]</td>
<td>800~2600</td>
<td>1.14</td>
</tr>
<tr>
<td>세라믹</td>
<td>VSWR</td>
<td></td>
<td></td>
</tr>
<tr>
<td>필터 작용</td>
<td>임업손실 [dB]</td>
<td>750~2600</td>
<td>0.088</td>
</tr>
</tbody>
</table>

(a) 정극성

(b) 부극성

제목을 보이는데 비하여 약 40[%] 이하로 전류전압을 저감시키는 어레스터나 시스템으로 사용되는 서지를 거의 신호전송에 영향을 없이 두고까지 낮출 수 있음을 의미한다. 또한 최고 수준의 기술을 기반으로 제작된 동축 스테이레스터의 제한전압인 7.2[V] 보다도 훨씬 우수한 성능을 나타내었다.

그림 12. 잔류전압 및 서지전류 파형
Fig. 12. Waveform of residual voltage and surge current
그림 12에는 세라믹 필터를 적용한 동축 서지어레스터에 나타나는 전류전압을 실험으로 측정한 곡선을 나타내고 있다. 전압전압은 1.25V(μs) 전압과정으로 4[kV/peak]이며, 어레스터를 통과하여 호르는 전류는 8/20(μs) 전류과정으로 1.72[kA/peak]이다. 본 연구를 통하여 개발된 동축 어레스터는 전류전압 저감에는 매우 효과적인 것으로 나타났다. 하지만 신호전송 특성이 기존의 어레스터 보다 다소 떨어지는 결과를 얻었으며, 신호전송 특성에 대한 개선이 이루어진다면 안전성을 통하여 성능하는 레이지 보호에 매우 유용한 것으로 기대된다.

3. 결론

본 논문에서는 최근 사용이 급격히 증가하고 있는 동축 서지어레스터의 전류전압 저감시키는 방법에 대하여 연구하였다. 동축 서지 어레스터는 기지국내 한 종류의 보호 및 기기 보호하기 위해 안테나와 기기를 연결하는 신호전송부에 삽입하는 레이지 보호기의 일부로 저항전원용 SPD와는 단리 단락스태브를 사용한다. 단락스태브를 통하여 레이지 전류를 방류시키는 동안 스태브의 임피던스에 의해 발생하는 전류전압을 저감시키기 위해 BaTiO₃ 제절의 세라믹 유전체를 제조하여 중심도체에 삽입 하였다. 동축 원형 형태로 중심도체에 직렬로 삽입 된 유전체는 약 20 도로의 비율전용을 가지며 RF 주파수에서 대역폭과 필터로 작용하여 신호전송을 가능하게 하며, 저주파 영역에서 제거되어서는 차단시키는 능력이 탁월하여 기존 제품의 전류전압이 12[V] 정도인데 비하여 새롭게 개발한 제품은 약 2.8[V]로 전류전압을 40[%] 이하로 역제시키는 성능 향상을 얻었다.

References