다중 적응 퍼지제어기를 이용한 유도전동기 드라이브의 고성능 제어

(High Performance Control of Induction Motor Drive using Multi Adaptive Fuzzy Controller)

고재섭*·최정식·정동화
(Jae-Sub Ko·Jung-Sik Choi·Dong-Hwa Chung)

요 약

유도전동기의 백터제어는 고성능 적응에서 광범위하게 사용되고 있다. 그러나 이러한 드라이브 성능은 파라미터 변동에 의한 동조는 여전히 한계가 있다. 다양한 속도영역에서 운전하기 위하여 중에는 PI와 같은 제어기를 보통 사용하였으나, 이러한 제어기는 이상적인 백터제어 조건에서 광범위한 운전에 대하여 제한된 양호한 성능을 나타낸다.

본 논문은 다중 적응 제어기를 사용하여 유도전동기 드라이브의 고성능 제어를 제시한다. 이 제어기는 FAM(Fuzzy Adaptation Mechanism)에 의해 속도제어, MFC(Model Reference Adaptive Fuzzy Control)에 의해 저류제어 그리고 ANN을 이용하여 속도추정을 수행한다. 제시한 제어 알고리즘은 FAM, MFC 및 ANN 제어기를 사용하여 유도전동기 드라이브 시스템에 적용한다. 제시한 제어기의 성능은 유도전동기의 파라미터를 사용하여 다양한 동작조건에서 해석으로 평가한다. 또한, 본 논문은 제어기의 효용성을 입증하기 위하여 해석결과를 제시한다.

Abstract

The field oriented control of induction motors is widely used in high performance applications. However, detuning caused by parameter disturbance still limits the performance of these drives. In order to accomplish variable speed operation, conventional PI-like controllers are commonly used. These controllers provide limited good performance over a wide range of operation, even under ideal field oriented conditions.

This paper is proposed high performance control of induction motor drive using multi adaptive fuzzy controller. This controller has been performed for speed control with fuzzy adaptation mechanism (FAM)-PI, current control with model reference adaptive fuzzy control(MFC) and estimation of speed using ANN. The proposed control algorithm is applied to induction motor drive system using FAM-PI, MFC and ANN controller. The performance of proposed controller is evaluated by analysis for various operating conditions using parameters of induction motor drive. Also, this paper is proposed the analysis results to verify the effectiveness of this controller.

Key Words : Induction Motor Drive, FAM-PI, MFC, ANN, Speed Control, Speed Estimation

* 주저자 : 순천대목 역기제어공학과
Tel : 061-750-3540, Fax : 061-752-1103, E-mail : hwa777@sunchon.ac.kr
검수일자 : 2009년 6월 17일, 1차심사 : 2009년 6월 19일, 심사완료 : 2009년 7월 2일
1. 서론

최근 간접 벡터제어를 적용한 유도전동기 드라이브는 고성능 제어를 위하여 산업 적용분야에 광범위하게 사용되고 있다. 이는 유도전동기 드라이브가 간단하고 고속 응답 특성을 가지고 있으며 강인성, 가격, 신뢰성 및 효율성이 우수하다는 장점 때문에 있다[1-2].

그러나 포화, 온도변화, 미지의 외란 및 파라미터의 변동 등에 의한 유도전동기의 모델은 비선형적이고 복잡하므로 성능 및 신뢰성을 저하시킨다. 따라서 고성능으로 제어되는 드라이브는 양호한 동작 속도추정, 우수한 부하 응답, 드라이브의 부하 파라미터의 변동에 대하여 강인성이 반드시 필요하다.

본 논문에서는 유도전동기의 제어와 추정을 위하여 FAM(Fuzzy Adaptation Mechanism)으로 PI 제어기의 이득을 추정하여 속도를 제어한다. MFC (Model Reference Adaptive Fuzzy Control)로 전류를 제어하며 ANN(Artificial Neural Network)에 의해 운전을 제어한다. 본 논문에서 제시한 제어기의 제어특성과 추정성능을 분석하고 그 결과를 제시한다.

2. 시스템 구성 및 모델링

본 논문에서는 공간벡터 PWM 인버터에 의해 구동되는 고성능 유도전동기의 벡터제어 시스템을 고려한다. 이러한 시스템 구성은 분산, 경작기 및 전기 자동차 등의 드라이브와 같은 고성능 제어 시스템에용된다.
그림 1은 공간벡터 PWM 인버터에 의해 구동되는 일반적인 유도전동기 드라이브의 벡터제어 시스템을 나타냅니다.

\[i_{qs}^* \text{와 } i_{ds}^* \text{는 지령 토큰 및 자속 성분의 전류를 나타내며 실제전류 } i_{qs} \text{와 } i_{ds} \text{와 비교하여 속도제어기로 이용하여 제어한다. 속도제어기의 출력은 } V_{qs}^* \text{와 } V_{ds}^* \text{이며 이는 좌표변환에 의해 } V_{as}, V_{bs}, V_{cs} \text{로 변환하여 공간벡터 PWM 인버터에 의해 유도전동기를 제어한다. 회전자의 위치정보 } \theta_r \text{는 좌표변환에 이용한다.} \]

\[v_{as}^* = \left(k_p + k_i \frac{1}{s} \right) (i_{as}^* - i_{as}) - \omega_c a_L i_{ds}^* \]

\[v_{bs}^* = \left(k_p + k_i \frac{1}{s} \right) (i_{bs}^* - i_{bs}) + \omega_c a_L i_{as}^* + \omega_c \frac{L_m}{L_r} \phi_d \]

3. 다중 적용 둔지제어기

다중 적용 푸지제어기를 이용하여 유도전동기 드라이브의 속도 제어 및 추정에 대한 시스템의 구성도는 그림 2와 같다. FAM으로 PI 제어기의 이득을 추정하여 속도를 제어하는 FAM-PI 제어기가 있다. MFC는 전류를 제어하고 ANN에 의해 속도를 추정한다.

PI 제어기의 두 개의 이득이 잘 알려진 종래의 방 법을 이용하여 초기화한다. 그러나 이 이득은 정격 동작조건에서 유도전동기의 추정모델에 의존한다.

PI 제어기의 두 개의 이득을 동조하기 위한 편지 없 고려들은 파라미터가 변동할 경우에 휘효한 성능을 유지하기 위하여 사용한다. 이는 \(\Delta K_p \)와 \(\Delta K_i \)를 발생시키기 위하여 편지 톤을 사용한다. 이 톤의 설계는 정격적인 자속에 기초하여 여러 동작조건에서 \(K_p \)와 \(K_i \)의 다양한 값을 위한 종래의 PI 제어기를 해석하여 구한다.

\[T_e = \frac{3}{2} \left(\frac{P}{2} \right) (\phi_{qs} i_{qs} - \phi_{as} i_{as}) \]

여기서, \(\sigma \)는 다음 식과 같다.

\[\sigma = 1 - \frac{L_m}{L_r} \]

\(L_r, L_m, L_m \): 고정자, 회전자 및 상호 인덕턴스

\(R_s, R_r \): 고정자 및 회전자 저항

\(\omega_s, \omega_r, \omega_m \): 동기, 회전 및 슬립 속도

보상을 위한 비간섭 제어는 인버터 출력전압을 선 정한다.
다중 적응 피지제어기를 이용한 유도전동기 드라이브의 고정능 제어

FAM에서 입력은 속도 오차 ϵ와 속도 오차의 변화 ce이고 출력은 두 개의 이득 K_p와 K_i이다. K_p와 K_i를 경신하기 위한 피지 휘는 표 1과 표 2에 나타낸다. 피지집합은 같은 폭으로 증폭된 삼각형 함수를 사용한다.

피지 동조기는 두 개의 출력 인어변수의 비피지화를 위하여 무게중심법을 사용하여 PI 제어기의 이득의 적절한 변화를 얻는다. 이 두 개의 이득은 다음과 같이 경신한다.

$$K_p = K_p + K_{pf_1}(\epsilon, \Delta\epsilon)$$ (6)

$$K_i = K_i + K_{if_2}(\epsilon, \Delta\epsilon)$$ (7)

그림 2. 유도전동기 드라이브를 위한 다중 적응 피지 제어

Fig. 2. Multi adaptive fuzzy controller for induction motor drive

표 1. 이득 K_i를 경신하기 위한 휘 빈어에

<table>
<thead>
<tr>
<th>$\epsilon\omega_i$</th>
<th>NL</th>
<th>NM</th>
<th>NS</th>
<th>ZE</th>
<th>PS</th>
<th>PM</th>
<th>PL</th>
</tr>
</thead>
<tbody>
<tr>
<td>NL</td>
<td>NS</td>
<td>NM</td>
<td>NL</td>
<td>NM</td>
<td>NS</td>
<td>ZE</td>
<td></td>
</tr>
<tr>
<td>NM</td>
<td>PS</td>
<td>ZE</td>
<td>NS</td>
<td>NM</td>
<td>NS</td>
<td>ZE</td>
<td>PS</td>
</tr>
<tr>
<td>NS</td>
<td>PM</td>
<td>PS</td>
<td>ZE</td>
<td>NS</td>
<td>ZE</td>
<td>PS</td>
<td>PM</td>
</tr>
<tr>
<td>ZE</td>
<td>PS</td>
<td>PM</td>
<td>PS</td>
<td>ZE</td>
<td>PS</td>
<td>PM</td>
<td>PL</td>
</tr>
<tr>
<td>PL</td>
<td>ZE</td>
<td>PS</td>
<td>PM</td>
<td>PL</td>
<td>PL</td>
<td>PL</td>
<td>PL</td>
</tr>
</tbody>
</table>

표 2. 이득 K_p를 경신하기 위한 휘 빈어에

<table>
<thead>
<tr>
<th>$\epsilon\omega_i$</th>
<th>NL</th>
<th>NM</th>
<th>NS</th>
<th>ZE</th>
<th>PS</th>
<th>PM</th>
<th>PL</th>
</tr>
</thead>
<tbody>
<tr>
<td>NL</td>
<td>NL</td>
<td>NL</td>
<td>NL</td>
<td>NL</td>
<td>NM</td>
<td>NS</td>
<td>ZE</td>
</tr>
<tr>
<td>NM</td>
<td>NS</td>
<td>NL</td>
<td>NL</td>
<td>NM</td>
<td>NS</td>
<td>ZE</td>
<td>PS</td>
</tr>
<tr>
<td>NS</td>
<td>PS</td>
<td>NM</td>
<td>NS</td>
<td>ZE</td>
<td>PS</td>
<td>PM</td>
<td>PL</td>
</tr>
<tr>
<td>ZE</td>
<td>PL</td>
<td>ZE</td>
<td>PS</td>
<td>PM</td>
<td>PL</td>
<td>PL</td>
<td>PL</td>
</tr>
<tr>
<td>PL</td>
<td>ZE</td>
<td>PS</td>
<td>PL</td>
<td>PL</td>
<td>PL</td>
<td>PL</td>
<td>PL</td>
</tr>
</tbody>
</table>

드라이브의 안정화를 위하여 이득 K_p와 K_i는 정상 상태에 도달하면 제한하고 지령속도가 변화할 경우에는 초기화한다.

첫 번째는 추론 휘 표에서 이득 K_i는 속도오차를 정 방향으로 크게 하거나 부 방향일 경우에는 더욱 증가시키고 속도의 오차변화를 정 방향으로 크게 하거나 부 방향일 경우에는 더욱 감소시킨다. 이는 속도의 상승시간이 개선되지만 오버슈트에 의한 속도 응답이 지연된다.

두 번째는 이득 K_p는 오차와 오차변화가 정 방향으로 클 경우에는 증가시키고 부 방향으로 작을 경우에는 감소시킨다. 이는 속도의 오버슈트와 정상상태의 오차를 감소시킨다.

적응 시스템의 적응과정은 2개의 피지제어기로 동작한다. 그림 3은 두 개의 피지동작의 상호작용을 나타내며 DFC(Direct Fuzzy Controller)는 종래의 일반적인 피지제어기와 ACF는 기준 모델을 고려한 적응 피지제어기를 나타낸다.

DFC 알고리즘에 의한 출력은 $\Delta\nu_{qcl}(k)$이며 AFC에 의한 출력은 $\Delta\nu_{qcl}(k)$이다. 이 두 출력을 합하여 적분기를 통해 지령 $d-q$축 전압을 얻는다.
4. ANN에 의한 속도 추정

ANN은 인간 두뇌의 간단한 모델에 의해 사고하는 구조로 된 컴퓨터 시스템이다. ANN은 비선형 동적 시스템의 과제물을 추정 및 제어를 하는데 사용된다. ANN을 위한 이상적인 적용은 비선형 시스템의 추정분야에 있다. 실질적으로 어떤 이상 비선형 시스템은 지연 입출력에서 시스템을 표현할 수 있는 NARMAX(Nonlinear AutoRegressive Moving Average with exogenous inputs) 모델에 의해 나타낼 수 있다. 일반적으로 NARMAX 모델은 다음과 같은 형태로 나타낼 수 있다.

\[y(k+1) = f(y(k), \ldots, y(k-d_y), u(k), \ldots, u(k-d_u)) \]

(8)

여기서 \(d_y \)와 \(d_u \)는 입력과 출력 벡터 \(u \)와 \(y \)에서 최대 지연을 나타내며. 이 모델의 형태는 모델이 적절히 기저 항으로 표현되기 때문에 시스템의 추정을 추구하는데 이상적이다. 그림 4는 ANN을 이용한 시스템의 추정을 나타낸다. ANN은 시스템의 NARMAX 모델을 추정하는데 사용하며 이를 위해 식 (8)에서 필요한 입력과 예측 출력벡터 \(\hat{y}(k+1) \)로서 ANN의 출력을 구성한다. 시간 \(k+1 \)에서 예측 출력벡터를 실제 출력벡터와 비교하여 식 (8)에서 함수 \(f(\cdot) \)를 에뮬레이팅하기 위하여 학습한다. 그리고 오차 역전파 알고리즘에 의해 ANN 하중을 세포계 하기 위하여 오차를 사용한다.

\[\dot{\omega}_r(k+1) = \dot{\omega}_r(k) + T \cdot \dot{\omega}_r(k) \]

(9)

여기서 \(T \)는 샘플링 주기를 나타내며 \(\eta \)는 학습계수이며 학습과정에서 학습률을 나타낸다. 이 계수의 크면 하중 변량이 크다. 실제 구현을 위하여 학습율은 진동이 유발되지 않는 범위에서 큰 값으로 설정한다. 계수 \(\alpha \)는 현재 하중에서 변동하는 파거 하중의 영향을 결정한다.

추정속도를 이용한 회전동자 재해의 위치는 다음과 같다.

5. 시스템 성능 결과

본 연구에서 사용한 유도전동기의 파라미터는 표 3과 같다.

그림 5는 0.1[sec]에 1800rpm으로 운전 중, 지정속도가 0.4[sec]에 1200rpm으로 변화시키고, 0.6[sec]에서 0.8[sec]까지 부하토크를 \(5[N.m] \)인하하였을 경우 운전특성을 나타낸다. 그림 5 (a)는 지정속도와 추정속도, 그림 5 (b)와 5 (c)는 FAM-PI 제어기에서 구한 이동 \(k_p, k_i \)를 나타내고, 그림 5 (d)는 \(Q \)축 전류를 나타낸다.
표 3. 유도전동기의 파라미터
Table 3. Parameter of induction motor

<table>
<thead>
<tr>
<th>극수</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>고정자 저항 R_s</td>
<td>0.59 [Ω]</td>
</tr>
<tr>
<td>회전자 저항 R_r</td>
<td>0.18 [Ω]</td>
</tr>
<tr>
<td>정격 주파수</td>
<td>60 [Hz]</td>
</tr>
<tr>
<td>고정자 인덕턴스 L_s</td>
<td>64.72 [mH]</td>
</tr>
<tr>
<td>회전자 인덕턴스 L_r</td>
<td>64.72 [mH]</td>
</tr>
<tr>
<td>상호 인덕턴스 L_m</td>
<td>61.91 [mH]</td>
</tr>
<tr>
<td>정격 속도</td>
<td>1800 [rpm]</td>
</tr>
<tr>
<td>정격관성 J_n</td>
<td>0.029 [$kg \cdot m^2$]</td>
</tr>
</tbody>
</table>

그림 6. 지령속도 및 부하변화에 대한 속도 응답특성
Fig. 6. Speed response characteristic with command speed and load torque variation

그림 7은 4상한 운전에 대한 응답특성을 나타낸다. 그림 7 (a)는 PI 제어기, 그림 7 (b)는 FAM 제어기, 그림 7 (c)는 FAM-PI 제어기, 그림 7 (d)는 속도 오차를 나타낸다. 그림 7 (d)에서 FAM-PI 제어기의 속도오차가 FAM 및 PI 제어기에 비하여 작게 나타나고 있어 우수한 성능을 나타내고 있다.

그림 8은 정·역 운전에 대한 응답특성을 나타낸다. 그림 8 (a)는 PI 제어기, 그림 8 (b)는 FAM 제어기, 그림 8 (c)는 본 논문에서 제시한 FAM-PI 제어기의 응답특성을 나타낸다. 정·역 운전을 하였을 경우에도 FAM-PI 제어기는 정상의 FAM 및 PI 제어기에 비하여 우수한 성능을 나타낸다.

그림 9와 그림 10은 완성 및 회전자 저항 등의 파라미터가 변동하였을 경우 응답특성을 나타낸다. 그림 9는 완성이 3배가 되었을 경우 응답특성을 나타내며, 그림 10은 전기저항이 3배가 되었을 경우 응답특성을 나타낸다. 완성 및 회전자 저항 등의 파
Fig. 7. Speed response characteristic with quadrant drive

Fig. 8. Speed response characteristic with forward and reverse operation

Fig. 9. Speed response characteristic with quadrant drive ($J_r = 3J_0$)

Fig. 10. Speed response characteristic with quadrant drive ($R_s = 3R_0$)
다중 작용 펑크제어기를 이용한 유도전동기 드라이브의 고성능 제어

라미터가 변동하였을 경우에도 본 논문에서 제시한 FAM-PI 제어기가 종래의 FAM 및 PI 제어기에 비하여 약호한 응답특성을 나타내고 있다. 그림 11은 ANN에 의한 속도추정에 대한 응답특성을 나타낸다. 그림 11 (a)는 지령속도와 실제속도, 11 (b)는 지령속도와 추정속도, 11 (c)는 \(q \) 축 전류, 11 (d)는 실제속도와 추정속도의 오차를 나타낸다. 그림 11 (d)에서 추정오차는 1% 내로 추정성을 매우 우수하다.

그림 12와 13은 부하변화에 대한 전류 응답특성을 나타낸다. 그림 12는 PI 제어기에 의한 전류제어 응답특성을 나타낸다. 그림 12 (a)는 지령속도와 추정속도, 그림 12 (b)는 지령 a상 전류, 그림 12 (c)는 실제 a상 전류, 그림 12 (d)는 전류오차, 그림 12 (e)는 스위칭 시간을 나타낸다.

그림 13은 본 논문에서 제시한 MFC 제어기에 의한 전류제어 응답특성을 나타낸다. 그림 13 (a)는 지령속도와 추정속도, 그림 13 (b)는 지령 a상 전류, 그림 13 (c)는 실제 a상 전류, 그림 13 (d)는 전류오차.
그림 13 (e)는 스위치 시간을 나타낸다. 그림 12 (d)와 그림 13 (d)의 전류 오차에서 본 논문에서 제시한 MFC 제어기에 의한 전류오차가 PI 제어기의 전류 오차보다 작게 나타난다.

그림 14와 15는 정·역 운전에 대한 전류 응답특성을 나타낸다. 그림 14는 PI 제어기에 의한 전류제어 응답특성을 나타내고, 그림 15는 본 논문에서 제시한 MFC 제어기에 의한 전류응답특성을 나타낸다. 그림 14 (d)와 그림 15 (d)에서 본 논문에서 제시한 MFC 제어기에 의한 전류오차가 PI 제어기에 의한 전류 오차보다 작아 양호한 응답특성을 나타낸다.

6. 결 론

본 논문에서는 FAM-PI에 의한 유도전동기의 속도제어, MFC에 의한 전류제어 및 ANN에 의한 속도 센서리스를 제시하여 고성능 속도제어 및 추정, 전류제어를 얻을 수 있었다. 제시한 FAM-PI 제어기는 퍼지제어와 적응제어를 혼합한 형태이며 FAM 제어기를 통해 PI 제어기의 이동성을 운전상태에 따라 자동으로 개선시켜, 개선된 이동감으로 유도전동기의 속도를 제어하였다. MFC 제어기는 기존 모델을 고려한 AFC와 종래의 퍼지제어인 DFC를 혼합한 형태이며 MFC를 이용하여 유도전동기의 전류를 제어하였다. 제시한 FAM-PI 제어기 및 MFC 제어기는 종래의 FAM 및 PI 제어기보다 속도제어 및 전류제어의 성능이 우수한 결과를 얻을 수 있었다. 특히, 속도, 부하토크, 관성 및 저항 등 파라미터 변동에서도 양호한 제어응답특성을 얻을 수 있으며 고성능 및 강인성 제어를 확보할 수 있었다. ANN을 이용한 다양한 지령속도의 변화에도 추정속도는 실제속도에 양호하게 추정하였다. 따라서 본 논문에서 제시한 제어기의 타당성을 입증할 수 있었다.

References

다중 적용 폐지제어기를 이용한 유도전동기 드라이브의 고정능 제어

◇ 저자소개 ◇

고재섭(高在済)
1980년 2월 9일생. 2005년 순천대학교 공대 전기계어공학과 졸업. 2007년 2월 순천대학교 대학원 전기공학과 석사. 2007년 3월 ~ 동 대학원 전기공학과 박사과정. Tel : (061)750-3543 Fax : (061)752-1103 E-mail : kokos22@naver.com

최정식(崔正植)
1980년 2월 2일생. 2005년 순천대학교 공대 전기계어공학과 졸업. 2007년 2월 순천대학교 대학원 전기공학과 석사. 2007년 3월 ~ 동 대학원 전기공학과 박사과정. Tel : (061)750-3543 Fax : (061)752-1103 E-mail : cjs1108@scnu.ac.kr

정동화(鄭東和)
1965년 8월 15일생. 1979년 영남대 공대 전기공학과 졸업. 1981년 한양대 대학원 전기공학과 석사. 1987년 동 대학원 전기공학과 졸업. 1988년 ~ 1989년 현대자동차(주) 기술연구소 책임연구원. 1989년 ~ 현재 순천대학교 정보통신공학부 교수. Tel : (061)750-3543 Fax : (061)752-1103 E-mail : hwa777@sunchon.ac.kr WebPage: http://pelab.sunchon.ac.kr/~hwa777