Compromise Scheme for Assigning Tasks on a Homogeneous Distributed System

Joo-Man Kim, Member, KIMICS

Abstract—We consider the problem of assigning tasks to homogeneous nodes in the distributed system, so as to minimize the amount of communication, while balancing the processors' loads. This issue can be posed as the graph partitioning problem. Given an undirected graph \(G = (\text{nodes, edges}) \), where nodes represent task modules and edges represent communication, the goal is to divide \(n \), the number of processors, as to balance the processors' loads, while minimizing the capacity of edges cut. Since these two optimization criteria conflict each other, one has to make a compromise between them according to the given task type. We propose a new cost function to evaluate static task assignments and a heuristic algorithm to solve the transformed problem, explicitly describing the tradeoff between the two goals. Simulation results show that our approach outperforms an existing representative approach for a variety of task and processing systems.

Index Terms—task assignment problem, homogeneous system, load balancing, graph partitioning.

I. INTRODUCTION

THE cluster systems are not only provide facilities for utilizing resources and/or data at remote sites, but also enhance system performance and reliability with the multiplicity of processors and communication paths. Distributed applications range from large data base installations where the computing load is distributed for organizational efficiency, to small signal-processing systems where computation must be done very fast in a real-time environment.

There are, however, many problems to be resolved before realizing the potential of a distributed system, such as file and task assignment [6]. To alleviate part of these problems, we consider the problem of assigning tasks in cluster computing systems. Specifically, we will deal with static assignment of a given task to the processors in a distributed system which neither requires nor precludes the subsequent dynamic migration of the task. In particular, we are interested in developing centralized task assignment algorithms using global knowledge of the task and system characteristics. These task assignment algorithms attempt to assign each task to the processors so as to achieve such goals as the minimization of inter-processor communication, good load balancing among the processors, a small response time for the task, and efficient utilization of system resources in general. This statement of the static task assignment problem is also useful for assignment of tasks to fewer processors than the distributed algorithm was initially designed for, at the time of initial assignment or dynamically at execution time due to node failure, node withdrawal, or phase transitions in the distributed computation [7].

In this paper, we propose a new cost function for making and evaluating static task assignments, which describes the inherent conflict between the goals of minimizing communication and balancing loads by combining the two criteria into a single objective function. Also, the system designer can make an appropriate compromise between the two conflicting goals by systematically adjusting the weight in this cost function according to the underlying task type. We show that the task assignment problem can be modeled as the problem of minimizing the cost of an \(n \)-cut of a graph (the minimum \(n \)-cut problem) instead of the minimum balanced \(n \)-cut problem.

Note that while the minimum balanced \(n \)-cut problem has two objectives, the minimum \(n \)-cut problem has only one objective to optimize. The new problem, however, systematically deals with both communication cost minimization and load balancing. The main result of this paper is the development of a heuristic algorithm that allows the system designers to systematically study the effects of relaxing the load balancing constraint on the total communication cost.

The remainder of this paper is organized as follows. The next section presents background information on the task assignment problem. Section III describes the system model and problem statement for the task assignment problem. It is shown in Section IV that the task assignment problem can be modeled as the problem of finding a minimum \(n \)-cut in a graph using a graph-modification technique. In Section V, we present an iterative algorithm to solve this problem. Some experimental results and concluding remarks are made in the last two sections.

II. BACKGROUND

The task assignment problem was first introduced by Stone[2]. Stone’s original work lays down the TIG model.
to represent sequentially executing tasks. Bokhari[3][4] conducted a number of task-assignment studies without any inter-task constraints by minimizing total execution and communication costs. Lee[6][8] proposed an exact algorithm that map TIGs to processors in the array networks for minimizing the sum of total execution and communication costs. Lo[7] proposed some heuristic algorithms to improve the degree of concurrency in task assignment by extending Stone's model. Salman[10] proposed a particle swarm optimization for the static task assignment problem to effectively exploit the capabilities of distributed or parallel computing systems. Other researchers[11][12] investigated the task assignment problem by minimizing communication subject to certain constraints on the degree of load balancing, or the minimization of task completion time.

There are numerous studies addressing the task assignment problem under various characterizations. For some later works on mapping TIGs to processors in order to minimize turnaround time see [14] for exact algorithms under processor heterogeneity and network homogeneity; [15] for exact algorithms under processor and network heterogeneity and [13] for heuristics that map TIGs to processors in order to minimize total communication time in a heterogeneous network.

The task assignment problem can be modeled as the problem of partitioning the nodes of a graph into 2subsets so as to minimize the cost of the n-cut (i.e., the communication cost) and balance the subset size (i.e., load balancing). We will call this problem the minimum balanced n-cut problem which is known to be NP-complete [6][9].Kernighan and Lin[1] proposed a highly-efficient heuristic for the case of n= 2. The heuristic can be applied to solve the minimum balanced n-cut problem when n>2. However, improvements in these heuristics were made for the case of n= 2, and hence, they have little use for the case of n>2, because their efficiency decreases significantly as n gets larger [6].

Moreover, they all minimize the cutset cost and consider load balancing only as a constraint. It is very difficult for them to make a tradeoff between load balancing and communication minimization for the following two reasons. First, they do not take into account the degree of load balancing as long as they meet the load balancing constraints. Thus, in case a loose constraint is used, they may yield unbalanced assignments because their communication costs are slightly lower than the costs of other well-balanced assignments. Second, they do not consider any assignment which does not satisfy the load balancing constraint. Therefore, when a strict load balancing constraint is to be met, they may select assignments with much higher communication costs than others due to the constraint. However, for the task assignment problem, both load balancing and communication minimization should be achieved and must be considered at the same time. Also, the system designers should be able to make an appropriate compromise between the two criteria according to the given task type. Thus, the existing heuristics are not very useful for the above task assignment problem.

III. TASK SYSTEM AND PROBLEM STATEMENT

A. Task System Model

We assume that a given distributed system consists of rnodes and an interconnection network that provides full connectivity among the nodes. Formally, we define a task force as a set of m tasks \(T = \{ t_1, t_2, \cdots, t_m \} \) which are to be assigned to n nodes \(p = \{ p_1, p_2, \cdots, p_n \} \) in the homogeneous distributed system. Let \(x_{ij} \) be the execution cost of task \(i \) and let the interaction among the tasks in \(T \) be represented by a TIG, in which nodes correspond to the tasks in \(T \) and there exists an edge between two nodes if and only if the corresponding tasks interact. Task assignment to processors, is given by a matrix \(a \), where \(a_{ip} \) is 1, if task \(i \) is assigned to processor \(p_i \), and 0 otherwise. Let \(c_{ij} \) be a binary matrix such that denote the communication cost between two tasks \(t_i \) and \(t_j \) if they are assigned to different processors. Obviously, if no edge exists between \(t_i \) and \(t_j \) in the graph, then \(c_{ij} = 0 \). Both the execution and communication costs are derived from the types of the tasks. A task set \(T \) can be one of two types: computation module or communication module. They may be specified explicitly by the programmer, or deduced automatically by the compiler, or refined by monitoring the previous executions of the task. In this paper, we presume that the data about the execution and communication costs are available and they are positive integer values.

![Fig. 1. TIG for a 2-processor system.](image)

For tractability we ignore other attributes of the task-processor system such as timing and precedence constraints, and we assume that the communication costs are independent of the communication link upon which they occur. We will assume that the communication cost between two tasks executed on the same processor is negligible, since such communication is accomplished by

References:

accessing local shared memory, as opposed to using inter-processor communication links. An assignment of tasks to processors can formally be described by a function from the set of tasks to the set of processors, \(A : T \rightarrow P \). In a system of \(m \) tasks and \(n \) homogeneous processors there are \(1/2 \cdot n^m \) possible assignments of tasks to processors. For example, consider the TIG for two-processor system depicted in Figure 1.

To minimize the communication overhead, assignment \(A_i \) with the communication cost \(3\) is the best solution where \(t_i \) is assigned to \(P_1 \) and all the other tasks assigned to \(P_2 \). Assignment \(A_i \) however, induces the processor ‘load’ and 22 on \(P_1 \) and \(P_2 \), respectively, making the system highly-unbalanced. To achieve load balancing, we can choose assignment \(A_j \) that is perfectly load-balanced. However, the communication cost of \(A_j \) is 12 which is much higher than that of \(A_i \). If \(t_4 \) assigned to \(P_1 \) is exchanged \(t_2 \) assigned to \(P_2 \) under \(A_j \), i.e., assignment \(A_6 \), the Comm. cost decreases to 6 at a small loss of load balancing. Assignment \(A_6 \) may be chosen if no strict condition is imposed on the load balancing objective. Therefore, the system designer should be able to make an appropriate compromise between the two conflicting objectives according to the task type.

B. Problem Statement

The communication cost of an assignment \(A \), denoted as \(\text{Comm}(A) \), is then calculated as:

\[
\text{Comm}(A) = \sum_{i \in I} \sum_{p \in P} a_{ip} (1 - \alpha p) c_{ij}
\]

The load \(L_p \) of processor \(p \) is the total cost of running the tasks assigned to processor \(p \) under this assignment:

\[
L_p = \sum_{i=1}^{m} a_{ip} x_i
\]

The total load balancing cost of an assignment \(A \) is:

\[
L_{\text{tot}} = \sum_{i=1}^{n} \sum_{p \in P} L_p
\]

The standard deviations is essential for assessing the degree of dispersion of the loads around its mean load. If this load could be uniformly distributed among the \(n \) processors, each processor would be assigned a share of mean \(T \). For a given task, \(L_{\text{tot}} \) and \(T \) are uniquely determined irrespective of the assignment of the task. \(\sigma^2(A) \), the variance, for each assignment \(A \),

\[
\sigma^2(A) = \frac{n}{n^2} \sum_{i=1}^{n} \left(L_i - \frac{T}{n} \right)^2,
\]

is the variance of load distribution under the assignment. The first term, \((n-1)L_{\text{tot}}^2/n^2 \), is constant for a given task, and only the second term, \(2/n \sum_{p \in P} L_p \cdot L_q \), varies between 0 and \((n-1)L_{\text{tot}}^2/n^2\), depending on the assignment of the task. Then, the following inequality holds:

\[
0 \leq \sigma^2(A) \leq \frac{(n-1)}{n^2} L_{\text{tot}}^2,
\]

for all assignments \(A \).

The variance of load distribution indicates how evenly the load is distributed among the processors, i.e., the lower the variance the better balanced the load distribution. The maximum value of \(\sigma^2(A) \) is achieved when all the tasks are assigned to a single processor. \(\sigma^2(A) \) reaches its minimum value when all the processors are most evenly loaded. In such a case, the system is said to be best load-balanced. Thus, one may use \(\sigma^2(A) \) as a yardstick to measure the degree of load balancing of each assignment \(A \). For simplicity, we define the degree of load balancing of \(A \), denoted as \(LB(A) \), as:

\[
LB(A) = 1 - \frac{\sigma^2(A)}{n^2 \cdot L_{\text{tot}}^2} = 2n \sum_{p \neq q} L_p \cdot L_q.
\]

Note that \(LB(A) \) always satisfies the inequality \(0 \leq LB(A) \leq 1 \). Using \(\text{Comm}(A) \) and \(\sigma^2(A) \), we propose the following cost function:

\[
\text{COST}(A) = \text{Comm}(A) + \alpha \cdot \sigma^2(A)
\]

\[
= \text{Comm}(A) + \alpha \cdot (1 - LB(A)) \cdot \frac{n-1}{n^2} L_{\text{tot}}^2.
\]

TABLE I

ASSIGNMENT RESULT FOR TIG OF FIGURE 1

<table>
<thead>
<tr>
<th>Assign</th>
<th>Assign to Proc</th>
<th>Load</th>
<th>(\sigma^2(L))</th>
<th>(LB(L))</th>
<th>(\alpha=\text{wtd})</th>
<th>Comm(A)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(A_1)</td>
<td>(t_1 t_2 t_3 t_4)</td>
<td>(5 \times 19)</td>
<td>(49.66)</td>
<td>(3 \times \alpha)</td>
<td>(48.96)</td>
<td></td>
</tr>
<tr>
<td>(A_2)</td>
<td>(t_1 t_2 t_3 t_4)</td>
<td>(4 \times 20)</td>
<td>(64.56)</td>
<td>(7 \times \alpha)</td>
<td>(63.36)</td>
<td></td>
</tr>
<tr>
<td>(A_3)</td>
<td>(t_1 t_2 t_3 t_4)</td>
<td>(8 \times 16)</td>
<td>(6.89)</td>
<td>(9 \times \alpha)</td>
<td>(15.84)</td>
<td></td>
</tr>
<tr>
<td>(A_4)</td>
<td>(t_1 t_2 t_3 t_4)</td>
<td>(7 \times 17)</td>
<td>(5.83)</td>
<td>(9 \times \alpha)</td>
<td>(24.48)</td>
<td></td>
</tr>
<tr>
<td>(A_5)</td>
<td>(t_1 t_2 t_3 t_4)</td>
<td>(0 \times 15)</td>
<td>(9.94)</td>
<td>(10 \times \alpha)</td>
<td>(6.84)</td>
<td></td>
</tr>
<tr>
<td>(A_6)</td>
<td>(t_1 t_2 t_3 t_4)</td>
<td>(13 \times 11)</td>
<td>(0.99)</td>
<td>(6 \times \alpha)</td>
<td>(1.44)</td>
<td></td>
</tr>
<tr>
<td>(A_7)</td>
<td>(t_1 t_2 t_3 t_4)</td>
<td>(12 \times 12)</td>
<td>(1.00)</td>
<td>(12 \times \alpha)</td>
<td>(0 \times \alpha)</td>
<td></td>
</tr>
</tbody>
</table>

The result given in Table 1 are 8-assignments of 4 tasks to 2 processors. Where the weighting factor \(\alpha \) is some nonnegative constant to be chosen by the system designer. A good compromise between the two criteria can be made by setting \(\alpha \) to an appropriate value. For example, if we want to put more emphasis on load balancing, we may set \(\alpha \) to a higher value. By setting \(\alpha \) to a lower value, one can put more emphasis on communication cost than on load balancing.

B. The Weighting Factor

Based on the proposed cost function one can represent the tradeoff between load balancing a communication cost by setting \(\alpha \) to an appropriate value. There are two extreme cases in the task assignment problem. The one is to assign tasks with the objective of minimizing the communication cost only, without considering load balancing at all. The other is to assign tasks so as to achieve the maximum degree of load balancing. These two extreme cases may occur when one needs to assign highly communication-bound tasks and

INTERNATIONAL JOURNAL OF KIMICS, VOL. 9, NO. 2, APRIL 2011

highly computation-bound tasks, respectively. The proposed cost function can represent the objective of the first case by setting α to zero. In the second case, however, we have to estimate a certain value of α at which the maximum degree of load balancing (or best load-balancing) is achieved.

As α increases, the load-balancing degree of an optimal assignment increases until it becomes best load-balanced. Let $\hat{\alpha}$ be the smallest weighting factor with which optimal assignment are best load-balanced. We call $\hat{\alpha}$ the "upper-bound" of the weighting factor. Then, let A_α be an optimal assignment with the weighting factor $\hat{\alpha}$.

Definition 1: The gain in communication cost of an assignment A, denoted by $\text{Comm}_{\text{gain}}(A)$, is defined as

$$\text{Comm}_{\text{gain}}(A) = 1 - \frac{\text{Comm}(A)}{\text{Comm}(A_\alpha)}.$$

Definition 2: The loss in load balancing of an assignment A, denoted by $LB_{\text{load}}(A)$, is defined as

$$LB_{\text{load}}(A) = 1 - LB(A).$$

By setting α lower than $\hat{\alpha}$, we gain in communication cost but we lose in load balanced. To make a compromise between the two, we have to determine the weight on each of them according to the given task type. This compromise factor should be reflected in the cost function.

Definition 3: A compromise factor δ is valid if it satisfies the following two conditions:

- If $\text{Comm}_{\text{gain}}(A_1) - \delta \cdot LB_{\text{load}}(A_1) > \text{Comm}_{\text{gain}}(A_2) - \delta \cdot LB_{\text{load}}(A_2)$,

 then $\text{COST}(A_1) < \text{COST}(A_2)$.

- If $\text{Comm}_{\text{gain}}(A_1) - \delta \cdot LB_{\text{load}}(A_1) = \text{Comm}_{\text{gain}}(A_2) - \delta \cdot LB_{\text{load}}(A_2)$,

 then $\text{COST}(A_1) = \text{COST}(A_2)$.

Theorem 1: The cost function proposed in this paper is a δ-policy if

$$\alpha = \delta \cdot \frac{\text{Comm}(A_\alpha)}{N - 2 + L^2}.$$

Proof: For any assignments A_1 and A_2, suppose $\text{Comm}_{\text{gain}}(A_1) - \delta \cdot LB_{\text{load}}(A_1) > \text{Comm}_{\text{gain}}(A_2) - \delta \cdot LB_{\text{load}}(A_2)$.

Then,

$$\text{COST}(A_1) - \text{COST}(A_2) = \text{Comm}(A_1) - \text{Comm}(A_2) + \delta \cdot [\text{Comm}(A_\alpha) - \text{Comm}(A_1)]$$

$$= \text{Comm}(A_\alpha)(\text{Comm}_{\text{gain}}(A_1) - \text{Comm}_{\text{gain}}(A_2))$$

$$+ \delta \cdot (LB_{\text{load}}(A_1) - LB_{\text{load}}(A_2)) < 0.$$

Obviously, $\text{COST}(A_1) = \text{COST}(A_2)$ from definition 3. Therefore, it is a valid weighting factor.

To further investigate the effects of compromise factor δ on both load balancing and communication cost, 20 experiments were performed. In these experiments, 30 $\leq m \leq 50$ (the number of tasks), and 2 $\leq n \leq 4$ (the number of processors) were picked randomly. An edge was added between any two nodes with the probability p_δ. The weight of each edge and the size of each node were picked randomly between 0 & r_u and 0 & r_u, respectively. Also, in each experiment, p_u, p_v, and r_u were chosen randomly between 20 & 40, 1 & 10, and 5 & 15, respectively.

Fig. 2. Average $\text{Comm}_{\text{gain}}(\cdot)$ and $LB_{\text{load}}(\cdot)$ by compromise factor δ.

IV. PROBLEM TRANSFORMATION

An n-cut of a graph G is a set of edges that partitions the nodes of G into n disjoint subsets P_1, P_2, \ldots, P_n. The weight of an n-cut is the sum of the weights of the edges in the n-cut. The size of each subset P_i is the sum of the sizes of nodes in P_i. There is a one-to-one correspondence between n-cuts of the TIG of a given task and assignments of the task to n processors. Then, the weight of an n-cut is equal to the communication cost and the load-balancing degree of size distribution among the n disjoint subsets is equal to the load-balancing degree of the corresponding assignment. Therefore, the task assignment problem considered here is equivalent to the problem of finding an n-cut of a graph with the objective of minimizing the n-cut weight as well as balancing the size of subset. In the original TIG, each cutset has no information on the size of the resulting subsets. Thus, it is difficult to develop efficient heuristics on the original graph, since one must consider the load-balancing degree of an existing partition as well as the cutset weight of the partition. Kernighan-Lin's(K&L) algorithm, for example, keeps an existing partition balanced by using pairwise-exchange of nodes of the same size given an initial balanced partition and tries to minimize the cutset weight. Thus, we can see that, in K&L algorithm, there exist two separate parts which consider communication and load balancing, respectively. If we modify the TIG such that the weight of each edge
contains the information on the size (i.e., running costs) of
the corresponding nodes as well as the original weight of
the edge, it gets easy for us to develop an efficient method
for finding a tradeoff between the two objectives because
both pieces of information are included in the weights
of the edges in an n-cut after modification. We propose a
modification technique for the TIG of a given task such
that any cutest on the modified graph, say G, has the information on the load-balancing degree of the
corresponding assignment as well as the original weights
of the edges. For any two nodes \(m_i\) and \(m_j\) of the TIG :

1. if there is an edge between them then modify the
weight of the edge to be \(W_{ij} = x_i \cdot x_j \cdot (2\alpha / n)\)
2. otherwise, make an edge between them which has
the weight of \(-x_i \cdot x_j \cdot (2\alpha / n)\),

where \(\alpha = \delta \cdot \text{Comm}(A_{o}^\delta) / (N^2 L_{\text{tot}}^2)\).

Fig. 3. An example of graph modification.

For example, for the TIG in Figure 1, the modified
graph \(G\) with a compromise factor \(\delta = 3\) is shown in
Figure 3. Note that, in this example, \(\text{Comm}(A_{o}^\delta) = 12\), i.e.,
\[
\alpha = \delta \cdot \text{Comm}(A_{o}^\delta) / (N^2 L_{\text{tot}}^2) = 3 \times 12 / (2 - 1) = 242
\]
\[
= 0.25
\]

The 2-cuts \(C_1, C_6, C_7\) in Figure 3 correspond to the assignments \(A_1, A_6, A_7\) in Figure 1, respectively. An
algorithm based on this transformation requires more
storage since the initial potentially-sparse graph is
transformed into an almost complete graph before the
algorithm begins. However, with the resulting modified
graph \(G\), it becomes much easier to devise efficient
heuristics for the task assignment problem since each
edge has the information on both the execution and the
communication costs. Since each n-cut on the modified
graph \(G\) has the complete information on the total cost of
its corresponding assignment, the task assignment
problem considered here can be transformed into the
problem of finding a minimum-weight n-cut in a graph
which is called the minimum n-cut problem. This is proved
in Theorem 4.

Theorem 2 : The task assignment problem can be
transformed into the minimum n-cut problem.

Proof : Let an n-cut \(C\) of a modified graph \(G\) correspond
to an assignment \(A\). Suppose \(C\) partitions the nodes of \(G\)
into \(n\) subsets \(P_1, P_2, \cdots, P_n\). Let each subset \(P_k\) be
\(\{m_k : 1 \leq i \leq p_k\}\). Then the weight of \(C, W(C)\), is as follows.

\[
W(C) = \sum_{k < l} \left[\sum_{1 \leq i \leq p_k, 1 \leq j \leq p_l} W_{ij} \cdot \frac{2\alpha}{n} \right] - \sum_{k < l} L_k \cdot L_l \cdot \frac{2\alpha}{n} - \text{Comm}(A) \cdot \frac{2}{n} \cdot \alpha
\]

The second term of the last equation is constant for
each task. Therefore, the task assignment problem is
equivalent to the problem of finding a minimum-cost n-
cut in a graph generated by the proposed graph
modification technique. For example, the weights of
\(C_1, C_6, C_7\), in Figure 3 are -20.75, -29.75, and -12.0,
respectively. \(C_6\) is the minimum weight 2-cut. Then the
costs of their corresponding assignments are :

\[
\text{Cost}(A_1) = W(C_1) + \frac{n-1}{n^2} L_{\text{tot}}^2 \cdot \alpha = -20.75 + 144 \times 0.25 = 15.25,
\]

\[
\text{Cost}(A_6) = W(C_6) + \frac{n-1}{n^2} L_{\text{tot}}^2 \cdot \alpha = -29.75 + 144 \times 0.25 = 6.25,
\]

\[
\text{Cost}(A_7) = W(C_7) + \frac{n-1}{n^2} L_{\text{tot}}^2 \cdot \alpha = -24.0 + 144 \times 0.25 = 12.
\]

Therefore, as shown in Figure 1, when \(\delta = 3\), the best
assignment is \(A_6\) which corresponds to the minimum
weight 2-cut \(C_6\).

V. ASSIGNMENT ALGORITHM AND
ANALYSIS

A. The minimum n-cut problem

When the value of \(\delta\) is given, we have to find \(A_{o}^\delta\)
so as to determine the weighting factor \(\alpha\). Since it is
computationally intractable to find such an optimal best
load-balanced assignment, we have to resort to heuristics.
This problem can be transformed to the minimum n-cut
problem using the proposed graph modification technique
by setting \(\alpha\) to its upper bound
\[
\hat{\alpha} = \max_{j=1}^{m} \frac{n \cdot W_{ij}}{4x_j}.
\]

We first present a heuristic algorithm for the minimum n-cut problem. We wish to find a minimum weight n-cut \(C_{o}\) which assigns the
nodes in \(V\) to \(n\) subsets (i.e., processors) \(P_1, P_2, \cdots, P_n\).
Here, \(W(C_o) = \min t_i W(C) = \min t_i \sum c_{i,j} \), where \(t_i \) and \(t_j \) are assigned different subsets. This is called the minimum \(n \)-cut problem.

The basic approach for the minimum \(n \)-cut problem is to start with an arbitrary assignment and to improve it by iteratively choosing one node in a processor and moving it to another processor. The node to be moved is chosen such that a maximum decrease in the cutset weight may be obtained (or minimum increase if no decrease is feasible). The algorithm consists of a series of passes (iterations): in each pass, every node should be moved only once. In each pass, the modes to be moved are chosen among those that have not yet been moved during the pass. The \(m \) assignments produced during the pass are examined and the one with the smallest cutset is chosen as the starting assignment for the next pass. Passes continue until no further improvement in the cutset weight can be made.

Definition 4: We define the gain \(g(t_a, P_i) \) of each node \(t_a \) in \(P_i \) over \(P_j \) (as the amount by which the cutset weight would decrease if \(t_a \) is moved from \(P_i \) to \(P_j \), i.e., a node with the largest gain is selected as the node to be moved.

For example, if the gain of \(t_a \) in \(P_i \) over \(P_j \) \(g(t_a, P_j) \), is maximum, \(t_a \) will be moved from \(P_i \) to \(P_j \), one-move operation. It will often be the case that the gain is non-positive. In that case, we still move the node with the expectation that the move will allow the algorithm to “climb out of local minima” as was done by Kernighan and Lin [1]. After all nodes have been forced to move, the best partition encountered during the pass is taken as the output of the pass.

To prevent the one-move process from “thrashing” or going into an infinite loop, we immediately “lock” each selected node in its new set for the remaining part of a pass. Thus, only “free” nodes are actually allowed to make one-move during the pass until all nodes are locked. After each pass, all nodes are released and hence become “free” again. After moving the selected node, we recalculate the gains of all the other free nodes. For example, if \(t_a \) in \(P_i \) is moved to \(P_j \), the new gains of free nodes are as follows:

\[
\begin{align*}
\hat{g}(t_a, P_i) &= g(t_a, P_i) + 2c_{i,j}, \text{ for all } t_a \in P_i \\
\hat{g}(t_i, P_i) &= g(t_i, P_i) + c_{i,j}, \text{ for all } t_i \in P_i, 1 \leq l(\neq i, j) \leq n, \\
\hat{g}(t_j, P_j) &= g(t_j, P_j) + 2c_{i,j}, \text{ for all } t_j \in P_j, \\
\hat{g}(t_b, P_j) &= g(t_b, P_j) - c_{i,j}, \text{ for all } t_b \in P_j, l \leq l(\neq i, j) \leq n, \\
\hat{g}(t_c, P_j) &= g(t_c, P_j) - c_{i,j}, \text{ for all } t_c \in P_j, l \leq l(\neq i, j) \leq n, \\
\hat{g}(t_e, P_j) &= g(t_e, P_j) + c_{i,j}, \text{ for all } t_e \in P_j, l \leq l(\neq i, j) \leq n.
\end{align*}
\]

The correctness of these expressions is easy to verify.

B. The minimum \(n \)-cut algorithm

In the first step, compute the gains for all nodes of vertices for an initial assignment. This assignment may be obtained simply by assigning all the nodes randomly. Set all the nodes “free”. In the second step, choose a free \(t_a \) in \(P_i \) such that

\[
g_t = g(t_a, P_i) = \sum_{e \in P_i} c_{i,j} - \sum_{e \in P_i} c_{i,j}
\]

is maximum; and move \(t_a \) from \(P_i \) to \(P_j \) and lock it. For notational convenience, mark \((t_a, P_i) \) as \((t_a, P_j) \). In the third step, recalculate the gains for all free nodes.

)}

Fig. 4. The minimum \(n \)-cut algorithm: MinCut.

Now, repeat the second step, choosing a free node \(t_a \)'s in \(P_j \) with the maximum gain of \(g_a \). Thus, \(g_2 \) is the additional gain when node \(t_a \) (as well as \(t_a \)) is moved, and this additional gain is maximum, given the previous choices. Move \(t_a \) to the corresponding set and lock it. Continue this process until all free nodes have been exhausted, thus identifying \((t_1, P_1), ..., (t_m, P_m) \), and the corresponding maximum gains \(g_3, ..., g_m \). If \(K = \{t_1, t_2, ..., t_k\} \), then the decrease in weight when the nodes in the set \(K \) are moved is precisely \(g_1 + g_2 + ... + g_k \). Note that some of the \(g_i \)'s may be negative.

Choose \(k \) that maximizes the partial sum \(\sum_{i=1}^{k} g_i = T \).

Now, if \(T > 0 \), a reduction in \(T \) can be made by moving the nodes in \(K \). After this is done, the whole procedure is repeated from the first step with the resulting
assignment as the initial assignment. If $T \leq 0$, we have arrived at a local optimum assignment. We now have the choice of repeating with another starting assignment. The algorithm described thus far will be called MinCut, which is formally described in a Pascal-like algorithm in Fig. 4. Especially, an M-tuple implemented in the form of an array Assign[M] is used to describe the current assignment. The k-th element of the array gives the processor number to which task t_k is assigned under the current assignment. History [M][2] is used to save the history of one-move operations. For example, when one-move on t_k is made from P_i to P_j, history $[k][1] = j$ and history $[k][2] = i$.

C. Time-Complexity Analysis

For time complexity analysis, we define a pass to be the operation involved in making one cycle from step 2 to step 5 of MinCut. The computing time needed for step 2 is $O(NM^2)$ since we need an $O(M)$ time to compute the gain of each node over each processor. Each iteration of step 3 needs an $O(NM)$ computing time due mainly to the selection of a node with the largest gain. Thus, the total time needed for step 3 is $O(NM^2)$. The computing time of $O(M)$ is sufficient for step 4 and 5. Therefore, the total computing time for a pass is $O(NM^2)$.

The number of passes required for MinCut to terminate is small. In our experiments on graphs with up to 200 nodes and with various values of N (up to 20), it has almost always been between 3 and 6. From these experiments, we can see that the number of passes does not strongly depend on the value of M.

D. The Assignment Algorithm

To determine the weighting factor a, we have to find $A_o \hat{\alpha}$ which corresponds to a minimum n-cut of the graph G' resulting from the modification of the original TIG with $\alpha = \hat{\alpha}$. After determining α, the final assignment can be found on the graph G modified from TIG with the value of α determined. Therefore, we have to run MinCut exactly twice to find the final assignment. The assignment algorithm TaskAssign is shown in Figure 5.

VI. EXPERIMENTAL RESULT AND ANALYSIS

A number of experiments were performed to evaluate the performance of MinCut. The experiments were performed for the task assignment problem with the constraint of perfect load balancing, i.e., to assign tasks so as to minimize communication cost while maintaining perfect load balancing. This problem is equivalent to the problem of perfectly balanced N-way partitioning of graphs [5]. On the basis of the experimental evidence as previously described, α is set to its approximate upper bound.

We have performed a number of experiments for regular and random graphs. For regular, we performed two experiments for the cases of 10×10 two-dimensional mesh and full binary trees of depth 7, respectively, to compare our algorithm with K&L for the balanced two-cut problem. For each experiment, 20 graphs were tested. Also, the experiments in case of $N = 4$ were performed for random graphs to compare our heuristic algorithm with K&L algorithm adapted to the general balanced n-cut problem.

![Fig. 6.10 × 10 2DMesh: Regular TIG.](image)
The experimental results for meshes and trees are summarized in Figure 6 and Figure 7. For each experiment, both K&L and our algorithm always found optimal solutions when \(r_s = 1 \). However, as can be seen in the figure, our algorithm significantly outperforms K&L as the size difference among the nodes increases.

As shown in these figures, the average communication cost for MinCut is much less than that for K&L. The performance gap becomes large as the balancing constraint becomes loose, i.e., as \(\delta \) decreases.

From these results of the experiment, we can see that our integrated approach is better than the existing approach for the task assignment problem considered in this paper.

VII. CONCLUSION

Our investigation of the static task assignment problem has resulted in the development of an "integrated" approach which systematically resolves the two conflicting goals, i.e., minimizing communication cost and balancing loads. To compare our "integrated" approach with an existing approach in which minimizing communication cost is the only optimization criterion and a balancing condition is given as a constraint, we modified the "pair wise-exchange" scheme of K&L algorithm as: any two different-size nodes can be candidates to be exchanged if the balancing constraint is satisfied after exchanging them.

The experiments for \(N = 4 \) were performed for random graphs. We compared the solution quality of our MinCut with that of modified K&L for compromise factor \(\delta \) (0 to 10). For the experiment, 100 random graphs were generated with 100 nodes and about 1500 edges where the weight of each edge was set to one.

As shown in these figures, the average communication cost for MinCut is much less than that for K&L. The performance gap becomes large as the balancing constraint becomes loose, i.e., as \(\delta \) decreases.

From these results of the experiment, we can see that our integrated approach is better than the existing approach for the task assignment problem considered in this paper.

VII. CONCLUSION

Our investigation of the static task assignment problem has resulted in the development of an "integrated" approach which systematically resolves the two conflicting goals, i.e., minimizing communication cost and balancing loads. To compare our "integrated" approach with an existing approach in which minimizing communication cost is the only optimization criterion and a balancing condition is given as a constraint, we modified the "pair wise-exchange" scheme of K&L algorithm as: any two different-size nodes can be candidates to be exchanged if the balancing constraint is satisfied after exchanging them.

The experiments for \(N = 4 \) were performed for random graphs. We compared the solution quality of our MinCut with that of modified K&L for compromise factor \(\delta \) (0 to 10). For the experiment, 100 random graphs were generated with 100 nodes and about 1500 edges where the weight of each edge was set to one.

The experimental results for random graphs are summarized in Figure 8 and Figure 9. Our algorithm is shown to outperform K&L in solution quality even when \(r_s = 3 \). Also, the time consumed by our algorithm is less than that in K&L.

As shown in these figures, the average communication cost for MinCut is much less than that for K&L. The performance gap becomes large as the balancing constraint becomes loose, i.e., as \(\delta \) decreases.

From these results of the experiment, we can see that our integrated approach is better than the existing approach for the task assignment problem considered in this paper.

VII. CONCLUSION

Our investigation of the static task assignment problem has resulted in the development of an "integrated" approach which systematically resolves the two conflicting goals, i.e., minimizing communication cost and balancing loads. This was done by using the variance statistics of load distribution to represent the degree of load balancing among processors. We proposed a new cost function which represents the inherent tradeoff between the two goals by combining them into a single objective function. We also proposed the weighting and compromise factors with which one can systematically make a compromise between the two conflicting goals according to the underlying task type. The task assignment problem has been shown to be transformed into the minimum \(n \)-cut problem which has only one objective, whereas the original problem has two objectives to optimize. Also, we have developed a heuristic algorithm for the transformed problem. Experimental results indicate that the algorithm performs quite well on a variety of task-processor systems.

Task assignment still poses to offer a variety of challenging problems such as assignment with resource relocation, real-time constraints, communication link loads, heterogeneous multi-processors, not to mention the precedence relationships and load balancing. While much work has been done dealing with each of these problems, it is interesting to extend our results by increasing the complexity of the model to include such factors.
REFERENCES

Joo-Man Kim received the B.S. degree in computer science from Soongsil University, Seoul, Korea in 1984 and the M.S. and Ph.D. degrees in computer engineering from Chungnam National University, Daejeon, Korea in 1998 and 2003, respectively. From 1985 to 2000, he worked for ETRI in Daejeon, Korea as principal member for research staff at the OS research team. From 2000 to 2005, he was an assistant professor in the Dept. of Informations and Communications Engineering, Miryang National University. He is currently an associate professor in the Dept. of Applied IT and Engineering, Pusan National University, Pusan, Korea. His research and teaching interests are in embedded system, real-time and ubiquitous computing.