The Sensitivity Evaluation of Probability Variables
to Durability Design of the RC Structures

Dong-Cheon, Park* · Sang-Gyun, Oh†
*Division of Architecture and Ocean Engineering, National Korea Maritime University, Busan 606-791, Korea
† Department of Architectural Engineering, Dong-eui University, Busan 614-714, Korea

Abstract: Simulation method based on probability was developed to evaluate the durability of reinforced concrete structures about chloride attack. The effects of the probability parameters (surface chloride ion concentration, initial combined chloride ion concentration, the depth of cover thickness of concrete, and the chloride ion diffusion coefficient), probability distribution function and its variation were calculated using the Monte Carlo method and Fick's 2nd law. From the durability design method proposed in this study, the following results were obtained: 1) The effects of the distance from the coast and the chloride ion diffusion coefficient to the corrosion probability were quite high. 2) The effect of the variation of each parameter was relatively low.

Key words: Coastal reinforced concrete structure, Chloride attack, Probability based properties evaluation, Monte Carlo simulation, Corrosion probability

1. 서 론

콘크리트 구조물은 도로, 터널, 교량, 건축, 항만 등 다양한 분야에서 사용되고 있으며 많은 사람들이 이용하면서 구조의 안전성은 어떤 가치보다도 우선되어야 한다. 그러나 구조 안전성 중심의 설계서의 계획과 달리 환경적인, 재료의 요인에 의하여 구조물은 복잡하게 변형되며 내구수명 단축으로 인한 안전성 문제 가 사회적 문제로 대두되기 시작하였다(정, 2004).

일반적으로 철근 콘크리트 구조물의 내구성에 미치는 주요인 자는 중성화, 염해, 알칼리물질반응, 화학적 침식 등이 대부분을 차지하고 있으며 이에 대하여 계획단계에서 내구성계를 설치하게 되고 있다. 그 방법으로는 물시멘트비, 파복우리, 사용 단위수량 등의 제한을 통하여 건설성 확보를 달성하는 방법이 일반적이나 이러한 방법만으로는 건물 사용수명의 장기적인 정보 기술 그 중 상황이며 현재에는 유한요소해석과 같은 수치해석을 통한 결정론적 방법을 통해서 각각의 실험변수가 가지는 변동 계수를 고려한 확률적 성능평가 방법을 많이 제안하고 있는 실정이다.

본 연구에서는 중재의 결정론적 방법에 의한 성능평가 방법 이 가지는 결과, 즉 설계확률변수의 변동성에 대한 미 고려를 극복하기 위하여 몬테카를로 시뮬레이션(Monte Carlo Simulation) 기법(크로, 2005)을 이용한 확률화 계산이 가능한 수법을 정립하였으며 각각의 변수가 가지는 영향력에 대하여 믿음도 평가를 통한 고찰을 실시하였다.
2. 확률론에 근거한 시뮬레이션

2.1 염해에 의한 열화 예측 모델

‘철근’ 콘크리트의 경우 시멘트 수화성물의 존재 하에 약 pH 12.5 정도의 강염갈리성의 용액에 약 2 년 3개월 동안 설계를 주는 경우, 철근의 높은 온도에 의해 철근이 탄화수소에 의해 탄화수소가 속도가 빠르게 발생하여 부식이 일어난다. 이로 인해 철근의 부식이 증가하게 되며, 이러한 부식은 수년 동안 계속되며, 점차적으로 부식이 증가하게 된다. 따라서 시멘트 콘크리트의 내구성은 철근의 부식에 따라 크게 영향을 받는다.

철근의 부식을 예측할 수 있는 방법으로는 철근의 부식률을 예측하는 방법이 있다. 앞서 본 연구에서 사용한 철근의 부식률은 다음과 같이 구할 수 있다.

\[
\frac{dC}{dt} = D \frac{\partial^2 C}{\partial x^2}
\]

여기서,
- \(C \): 염소이온 농도 (kg/m³)
- \(x \): 콘크리트 표면으로부터의 깊이 (m)
- \(D \): 확산계수 (콘크리트의 재료, 배합, 시공상태 및 환 수 등에 따라 결정됨의 CNO의 중의 확산계수 (m²/sec), \(x \): 경과 시간 (sec)

\[C = (C_0 - C_{init}) \cdot \left(1 - \frac{\text{erf} \left(\frac{x}{2\sqrt{Dt}} \right)}{x} \right) + C_{init} \]

여기서,
- \(C_0 \): 콘크리트 표면의 염화물 이온농도 (kg/m³)
- \(C_{init} \): 콘크리트 중의 초기염화물 이온농도 (kg/m³)
- \(\text{erf} \): 오차함수

2.2 몬테카르로법 (MSC Monte Carlo Simulation)의 개요

본 연구에서는 MSC의 방법을 적용하여 열화 발생시의 철근 콘크리트 구조물의 내구성에 대한 확률론적 신뢰예측을 실시하였다. 각 시도의 결과물치, 시험단품의 사용시 각 변수들의 반영률은 고려하지 않았다. 그동안의 실험에서 얻은 각종 파라미터의 값을 대입하여 균의 용액을, 변형 또는 안전성을 계산하고 그 값이 허용값 또는 설계요건을 만족하는지를 체크하는 과정으로 이루어졌다. 그리고 실재로 철근 위치에서 염화물 이온의 농도가 일정치에 도달하였는지로 파악하기 위해서는 할 수 있으며, 철근 부식의 시작 가능성을 나타내고 또 구조물의 사용에는 크게 문제가 발생하지 않는다는. 따라서 순상동급에 따른 관리활용률을 구하는 것이 확률론적 설계에 있어 중요한 요소가 된다.

![Image 1 The model of deterioration by chloride attack](source)

![Image 2 The flow of Monte Carlo Simulation](source)
Fig. 2(Alfredo H-S. Ang, Wilson H, 1975)는 본태이의 시
토레이션의 흐름을 모식적으로 나타낸 것이다. 신뢰성 설계법
은 설계시범서에 정해져 있는 설계기준식(식(2))을 그대로 성능
함수로 이용하고, 사용하는 변수는 모두 확률변수로 취급함으
로서 이 변수들이 가지는 확률적 특성을, 즉 변수들의 평균
값, 표준, 분산간의 상호작용을 고려하여 구한 파괴함수(PS)
에 기초하여 안전성을 평가하게 된다. 즉 신뢰성설계법에서는 각
변수의 평균을 사용하는 것과 그 값들의 범위를 감안해서 그
관하에 설계기준식(성능함수)을 만족하지 않는 비율을 구하여
파괴확률을 평가하게 된다. 단, 각 변수는 투두하며 선별되는
것이 아니라 변수가 가지는 확률적 특성을 만족하도록 선정한 필요가 있다.
따라서, 저급 확률변수가 가지는 확률적 특성을 만족하
는 변수의 값이 각각 추출되었다면, 그 값(Sample)을 설계
기준식(성능함수)에 대입함으로써 기준식을 만족하는지, 그
외로 잘못된지를 직접 검산할 수가 있다. 이 검산은 유의미히 추출된
한 조의 확률변수에 의한 시험(Trial)이므로, 시행의 횟수를 증
가시키면, 전 시험확률에 대한 설계기준식을 만족하지 않았던
즉 Z<0)의 비율은, 파괴확률에 가깝게 근접하게 된다.

3. 설계 변수의 불확실성과 부식화물에의 영향
3.1 해안에서의 평균 혼적 유인 영향
해안에서 콘크리트에 공급되는 비례분량은 해수증의 일반
농도, 파랑조건, 푸른, 부식, 해안의 상황, 해안으로부터의 거
리, 해수면 또는의 높이, 강우량, 강시류, 건조 및 더우기, 구조물
또는 부재의 형상, 콘크리트의 성장등 많은 요인에 영향을
받는다. 일반적인 지형으로서는 비례분량은 해안에서 내륙
으로 멀어질수록 따라 쏟인다.

\[C_r = \frac{-2860}{d^2} + 510 \quad (\text{m}^2 / \text{d} + 1.64) \times y/100 \]
\[C_b = a \cdot b \cdot C_r / L \]

여기서,
\(d \): 해안선에서 부터의 거리(m)
\(w \): 풍속(m/s)
\(C_r \): 콘크리트 표면부의 염소이온농도(kg/m³)
\(a \): 콘크리트에 침투하는 비율
\(b \): 성장상태의 항목
\(C_b \): 연간 비례염소이온농도(kg/m²/year)
\(L \): 폭도를시에 1년간의 염소이온 집수량(m²)

식(3)는 기존의 연구결과 등으로 분석한 Utada(용도, 1992)의
논문에서 사용한 식이다. 또 일본부식학회 발간 젠콘크리트
조 건축물의 내구성과 사경지정(안ۃ-동해물(日本建築学会, 2004)

\(\)을 참조한 식(4)에 의하여 경계조건이 되는 침투 염소이온 농도
가 결정되게 된다. 부산의 풍속을 평균 4 m/s로 하여 해안에서
거리에 따른 표면부의 비례 물질의 배출는 Fig. 3과 같이 계산.

Fig. 3 The concentration of chloride by the distance from the coastline (Busan)
그리고, 일반의 영향은 해수면의 높이에 따라서도 변동하게
된다. 간판대(Tidal Zone)에서는 조수의 영향으로 염소이온이
콘크리트 표면 부착단지등에 섞기 나가므로 농도가 그다지
높지 않다. 비말대(Splash Zone)는 비례염과 해수면에 직접 노
출되는 부분으로 반복되는 건설의 영향으로 농도가 상당히 높
으며, 대기부(Aerosol Atmospheric Zone)는 간판대와 비말대 보다는 높
은 지역을 의미하며 해수의 직접적인 영향은 아니라 비례염
분의 구조물에 영향을 미치는 부분이다. 노출된 빛과 노출 시
간에 대한 영향도 해수면의 높이와 더불어 설계변수의 변동계
수가 된다.

Fig. 4 Corrosion probability vs. the distance from the coastline
Fig. 4는 해안에서의 거리의 차에 의한 부식화물의 변화를 나
타내었다. 10m, 30m, 50m, 70m에 대하여 분산계수(COV : Coefficient Of Variation) 10%, 최고께 50mm, 확산계수
1.33(cm²/year), 초기 함유 염소이온농도 0.061(kg/m³)에 대한
시뮬레이션 결과이다. 파괴확률 10%에 도달하는지를 초월되는
시간이 흐면서 거리 10m, 30m, 50m로 증가함수록 각각 5.3, 12.9, 63.9으로 급격히 증가하는 것을 알 수 있었다.

![Fig. 5 Corrosion probability vs. the COV of surface chloride ion concentration](image)

Fig. 5는 표면 염소이온 농도의 변동계수의 차에 의한 부식확률의 변화를 나타낸 것이다. 변동계수가 1~30%로 증가함에 따라 파괴확률 10%에 소요되는 시간은 10.1년에서 13.1년으로, 파괴확률 50%(결정론적 방법의 부식확률 기간에 대응)에 소요되는 시간은 26.0년에서 28.4년으로 증가하였다. 즉 해안에서 거리 증가는 부식확률에 미치는 영향이 크다. 표면 염소이온 농도 변동계수가 크다는 영향은 그다지 심각하지 않다는 것을 알 수 있었다.

3.2 초기영화물 이온

![Fig. 6 Corrosion probability vs. the initial chloride ion concentration](image)

초기염소이온 농도 차에 의한 부식확률의 변화는 Fig. 6에 나타났다. 해안으로 부터의 거리 10m의 경우를 상정하여 표면 염소이온 농도는 3.11 kg/m^3로 하였다. 초기 염소이온 변동계수 및 피복 두께, 확산계수 및 그 변동계수는 그림에 기술된 대로이다. 초기 염소이온 농도가 0.3에서 0.06 kg/m^3으로 감소함에 따라 파괴확률 50%에 소요되는 시간은 8.1에서 10.4년으로 증가하는 영향을 나타내었다. 그러나 Fig. 7에서와 같이 초기염소이온 농도가 0.06 kg/m^3으로 고정한 채 그 변동계수만을 50%에서 200%까지 조절하였을 경우에는 파괴확률의 거의 영향을 미치지 않는 것으로 나타났다.

![Fig. 7 Corrosion probability vs. the COV of initial chloride ion concentration](image)

3.3 철근의 피복두께

철근의 피복두께를 증가시키면서 병합에 의하여 물질이동 저항성을 강화시키면 철근이 염소이온 농도에 이르러도 더 오래 시간이 소요되게 되어 내구성 확보에 유리하게 된다. 그러나 철근 콘크리트재의 내구성을 확보하기 위하여 두는 피복 두께는 여러 요인, 그 중에서도 특히 시공온차에 의하여 그 값에 변화를 가져올 수 있다.

![Fig. 8 Corrosion probability vs. the depth of cover concrete](image)

Fig. 8의 피복두께의 차에 의한 부식확률 변화를 나타내었다. 피복두께가 3에서 5 cm로 증가함에 따라 파괴확률은 3.7에서 20.4년으로 급격히 증가하는 것을 알 수 있었다. 그림9는 동일한 조건하에서 피복두께의 변동계수의 차에 의한 부식확률 변화를 나타낸 것으로 피복두께의 COV가 클수록 일반적 예상과
달리 초기에는 부식확률은 높아지나 약 10년을 경계로 그 경향이 역전되는 것을 알 수 있었다. 이는 기존연구(김, 2006)에서도 같은 경향을 보 수 있었다.

3.4 염소이온 확산계수

콘크리트의 염소이온 확산계수는 실측 또는 실험에 의하여 평가가 가능하다. 특히 상대의 구조물에 대한 실험의 경우에는 콘크리트의 초기물성에 대한 정도가 부족한 실정이며, 실험, 즉 전기정밀법 또는 정적에 의한 경우에는 그 확산 벡터가 필수적 환경과 상이하여 두 방법 모두 신뢰도 높은 데이터를 구하기 힘들다 할 수 있었다. 그 중에서도 최근에 가장 많이 이용되는 식이 기존 데이터의 회귀분석을 통해 구한 식(5)이다(日本建築学会, 2004).

$$\log D = -3.9 (W / C)^2 + 7.2 (W / C) - 2.5$$ \hspace{1cm} (5)

여기서, W / C: 물시멘트(합합재)비

![Fig. 9 Corrosion probability vs. the COV of the depth of cover concrete](image)

![Fig. 10 Chloride ion diffusion coefficient by the W/C](image)

![Fig. 11 Corrosion probability vs. the chloride ion diffusion coefficient](image)

![Fig. 12 Corrosion probability vs. the COV of chloride ion diffusion coefficient](image)

4. 결론

본 연구에서는 해양 콘크리트 구조물의 해양에 대한 내구수명 예측을 모데커스로법을 이용한 확률적 방법으로 실시하고 실험변수의 변동계수(COV)가 과파화물 미치는 영향에 대한 감도 분석을 통하여 아래와 같은 결과를 도출하였다.
1) 해안에서의 거리와 표면영상소음 농도, 초기값으로 영소이온 농도, 천연의 파복도, 영소이온 화학계수와 각각의 변동계수의 확률분포를 고려한 천연 콘크리트 내구성평가 시뮬레이션 수법을 구축하였다.
2) 해안에서의 거리의 차는 부식확률에 미치는 영향이 크나, 표면영상소음 변동계수의 영향은 미미하다.
3) 천연의 파복도의 변동계수 크기에 따라 어느 시점을 정계로 서로간의 부식확률이 역전되는 현상을 나타내었다.
4) 영소이온 화학계수의 차에 의한 영향은 크나, 그 변동계수의 영향은 매우 작게 나타났다.

참 고 문 헌

[3] 소기료(2005), 확률의 수학적 해석, 상보출판사, 충남

원고접수일 : 2009년 2월 16일
심사완료일 : 2009년 4월 28일
원고재검토일 : 2009년 4월 28일