A Study on Preventive Maintenance of Container Cranes

Won-Young Yun* · Bum-Shin Son** · Yong-Seok Choi†

* Department of Industrial Engineering, Pusan National University, Pusan 609-735, Korea
** Department of Logistics, Sunchon National University, Sunchon 540-742, Korea
† Department of Industrial Engineering, Pusan National University, Pusan 609-735, Korea

Abstract: Container cranes are main equipments to load and unload containers at container terminals. If a crane breakdowns, it can reduce the productivity of container terminals. This paper deals with Preventive Maintenance (PM) schedules for the container cranes. The cranes consist of many parts, and we analyze the structure of a container crane using the tree models. Next, we apply a Genetic Algorithm (GA) for determining optimal PM schedule and evaluate the performance of the proposed method through simulation system. Finally, we explain how to adjust the PM schedule found in industry based on work schedules.

Key words: Container Crane, Preventive Maintenance, Simulation System, Genetic Algorithm

1. 서 론

우리나라 항만에 인출하는 선박은 해안 증가하고 있으며, 입항하는 선박수의 증가에 비하여 선박의 수수가 현저하게 증가하고 있다. 이는 선박의 대형화가 급속히 진행되고 있음을 보이지 않는 것이다. 이러한 상황에서 컨테이너 터미널의 생산성을 높게 유지하기 위해서는 터미널의 장비, 즉 크레인들이 항상 사용 가능한 상태로 유지시키는 것이 필요하다. 이를 위해서는 기술적으로 터미널 설계, 관리단계에서 고장이 잘 일어나지 않고 신뢰성이 높은 장비를 구매하거나 또는 여운의 장비를 보유하여야 하는 경우에 대한 대처가 가능할 것이다. 그리고 장비의 운영단계에서는 고장 시 신속히 수리가 이루어질 수 있도록 수리가 가능한 장비기계의 보유, 적절한 보수 유무 등 같은 물류문제가 있다. 특히 부품을 구하기 힘들고 비용이 높은 경우에도 터미널 운영사가 대응할 수 있는 방법으로는 장비들의 적절한 예방장비를 미리 하여 고장으로 인한 손실을 줄이는 것이다.

이러한 기존 연구와 달리 본 연구에서는 컨테이너터미널에서 사용되는 다수의 크레인이에 대한 예방장비 계획을 이렇게 적절할 것인가를 다루고자 한다.

컨테이너 터미널에서 컨테이나를 취급하는 장비로는 크게 컨테이나 크레인(Container Crane : CC), 트랜스포크레인(Transfer Crane : TC), 이드 트랙트(Yard Tractor : YT) 등이 사용되고 있다. 이들 여러 장비 중 컨테이너 터미널의 생산성에
가장 적절적인 영향을 미치는 컨테이너 크레인을 대상 장비로 선정하였다. 기존의 운영과 맞는 터미널의 정비활동에 관해 서 조사한 결과 컨테이너 크레인이 트렌스 다리의 크레인과 달리 고 가의 장비로서 가용장비의 여유가 부족하여 작업의 상황 에 의존하여 최대한 생산성에 영향을 미치지 않는 장비의 유용 시점에 유용적으로 예방장비를 실시하고 있다(유 외., 2006). 예방장비는 대체 평균 5시간 이내에 정비가 완료되며, 고장 수리 는 2시간 가량 소요되고 있음을 알 수 있었다. 예방장비를 실시 함으로써 작업 중의 장비 고장 현상을 감소시킬 수 있으며, 예방장비를 먼저 실시하느냐에 대한 의사 결정은 생산성에 영 향을 미친다는 것을 알 수 있다. 예방장비 실시 동안 장비정비 의 중단으로 발생하는 생산성 감소와 고장의 발생으로 인한 생 산성 감소의 두 가지 시점에서 최적의 예방장비 주기를 산출하 는 것은 운영측면에서 중요한 일이다.

컨테이너 크레인의 고장은 선박의 입항과 짐차장의 운항에 연쇄적으로 영향을 미치며, 그 손실 또한 예방장비 비용과 비교하면 상대적으로 큰 손실을 발생시킨다. 따라서 비용 측 면의 관점에서는 고장 발생의 방지를 생산성 향상의 관점에서 정비 활동을 실시하고 있다.

따라서 본 연구에서는 컨테이너 터미널의 생산성과 적절한 관계가 있는 컨테이너 크레인의 개선도 최대한 목적으로 하여 컨테이너 크레인 한대의 예방장비 활동에 대하여 시뮬레이 션과 유전자 알고리즘을 이용하여 최적 주기를 결정하고 여러 대의 컨테이너 크레인의 연간 예방장비 주기를 계획하였다. 그리고 실제 컨테이너 크레인의 작업 양이 증가함에 따라, 초기에 계 획된 예방장비 일정과 작업 일정을 비교하여 컨테이너 크레인 작업에 영향을 미치는 유효시간에서 예방장비 활동이 이루어질 수 있도록 예방장비 일정을 조정하도록 하는 방안을 탐구하였으며,

2. 컨테이너 터미널의 예방장비 활동

컨테이너 터미널에서 가동되는 터미널의 장비인 컨테이너 크레인은 거의 24시간 동안 가동되고 있다. 기존 터미널에서의 정비 활동에 관하여 조사한 결과 컨테이너 크레인에 계획된 예방장비 작업은 주로 장비의 유동 시점에서 행해지고 있으며, 장비 중 고장이 발생하는 경우 즉시적인 수리 활동을 하 고 있다. 고장정비 소요시간보다 예방장비 소요시간이 짧으며, 이러한 컨테이너 크레인의 예방장비 및 고장 수리 활동은 장비 작업의 생산성에 적절적인 영향을 미친다.

일반적으로 컨테이너 크레인의 예방장비는 과거 오랜 기간 터미널을 운영해 오면서 얻어진 자료를 바탕으로 정비대비에서 높이 예방장비 일정을 운영팀에게 넘겨주게 되고, 운영팀은 선박 계획 시간의 예방장비 일정을 고려하여 선박을 배정한다. 예방장비시기에 관해서는 제조업체에서 제공하는 시즘 시와 실제 장비를 운용하면서 얻은 경험을 바탕으로 정비활동을 실시하게 된다. 예방장비 활동은 장비 전체에 대한 예방 정비와 개별 부품에 대한 예방정비로 나눌 수 있다. 전체 정비 활동은 장비 주기에 도달한 장비의 가동을 중지하고 장비 전체를 정비하는 방법이고, 후자의 경우 장비의 각 부품이 실제 사용된 시간을 파악하여 부품별로 정비를 실시하는 방 법이다. 장비 전체에 대한 정비 활동은 예방정비가 없을 때 가능한 정비 활동으로서 컨테이너 크레인과 같은 고가의 장비는 여유분이 충분하지 않으므로 후자의 정비 활동이 보다 적절하다고 볼 수 있다. 예방장비의 구분은 직점적 과정 활 동 및 체계의 운영 상황을 고려하여 연간 정비, 월간 정비, 주 간 정비로 나누어지고 현장적으로 선박의 스케줄 및 여러 작업 상황에 크게 의존되므로 정비 실시 일정이 유동적으로 변하 는 것이 현실이다.

컨테이너 크레인에 대한 고장 및 예방장비 활동에 관한 자료를 살펴보면 고장 수리보다는 예방정비에 의한 수리 시간이 더 긴다는 것을 알 수 있다. 장기간의 인원도로는 고장 수리가 대개 24시간 이내에 정비가 이루어지고 예방정비의 경우는 24시간 이내에 정비를 완료하는 경우도 많다. 이를 통해 컨테이너의 정비 활동 중 장비의 고장이 발생한다면 장비 자체의 수리비 또한 큰 비용이 소요되며, 그로 인해 발생하는 컨테이너 취급의 지연과 선박의 채류 등으로 나타나는 작업 생산성의 감소는 엄청난 금전적인 손실을 발생시킨다. 이러한 손실은 예방장비 수행 시 발생하는 비용보다는 훨씬 크다고 할 수 있다.

생산성의 향상에 미치고자 할 때 너무 많은 예방 정비의 실시는 오히려 생산성 감소로 이어질 수 있으며, 반면에 정비의 실시 횟 수를 줄이면서 작업 중 장비의 고장이 증가하여 더 큰 손실을 초래할 수 있다. 따라서 예방 정비 실시 횟수와 생산성의 관계를 잘 파악하여 적절한 예방 정비 주기를 합리화하는 것은 터미널 장비의 높은 신뢰도를 보장하기 위한 중요한 업무이며, 생산성 향상을 가져다주는 중요한 요소로 인식된다.

본 논문에서는 터미널의 적절한 차량 장비인 컨테이너 크레인의 적절한 예방정비 주기를 산출하고 정비 활동을 실시함에 있어서 크레인의 작업에 영향을 주지 않는 범위로 정비 일정을 조정한다.

3. 기초 데이터의 분석

3.1 컨테이너 크레인의 구조 및 구성품 기능 분석

컨테이너 크레인은 다양한 구성품이 시스템으로 여러 가지 종류의 고장이 발생한다. 그러므로 장비 구조를 명확히 표 현하는 것이 중요하다. 우선 컨테이너 크레인의 주요 구성품을
정의하였다. 컨테이너 크레인의 전체 구조와 주요 구성품은 Fig. 1과 같다.

컨테이너 크레인의 고장은 정의하기에 앞서 각 구성품이 가지는 기능을 분석한 결과는 아래의 Table 1과 같다. 크레인의 구조와 기능분석을 통하여 부품/부합 시스템의 고장을 보다 명확하게 정의할 수 있다.

![고장 현상 및 예방방안의 예시](image)

Fig. 1 The structure and components of container crane

<table>
<thead>
<tr>
<th>시스템</th>
<th>구성품</th>
<th>기능</th>
</tr>
</thead>
<tbody>
<tr>
<td>Boom Part</td>
<td>선박과 중물의 (\text{피하기}) \text{위하여 선박이 선박에 (\text{접근 및 상호작용}) \text{내용물} \text{대장치} \text{작용}) \text{시작함}</td>
<td></td>
</tr>
<tr>
<td>Operator’s Cabin</td>
<td>스프레더의 (\text{수지 길이} \text{위치} \text{서치} \text{와 \text{전선차량} \text{가 \text{크레인} \text{조작부위} \text{장치} \text{작용}})</td>
<td></td>
</tr>
<tr>
<td>Main Frame</td>
<td>컨테이너 크레인의 \text{구조물}</td>
<td></td>
</tr>
<tr>
<td>Gantry Part</td>
<td>컨테이너크레인을 \text{포교} \text{도\text{장치}} \text{보통 \text{배} \text{장치} \text{포\text{편}}</td>
<td></td>
</tr>
<tr>
<td>Hoist Part</td>
<td>\text{콘테이너를 \text{이동\text{완\text{장치}} \text{내리는 \text{작용}} \text{장치}</td>
<td></td>
</tr>
<tr>
<td>Spreader Part</td>
<td>\text{콘테이너를 \text{기 동\text{장치}} \text{포\text{편}}</td>
<td></td>
</tr>
<tr>
<td>Trolley Part</td>
<td>\text{작업을 \text{위하기로 \text{장치}} \text{포\text{편}}</td>
<td></td>
</tr>
</tbody>
</table>

Table 1 Function of each components of container crane

3.2 예방기법 정비 데이터의 분석

컨테이너 탑재시 장비의 예방기법 적용은 모든 부품에 대해서 이루어진다. 하지만 모든 부품에 대해서 정비 주기를 파악하고 계획하여 정비 활동을 실시한다는 것은 현실적으로 불가능하며, 현장에서는 대표적인 예방기법 적용에 대해서만 스케줄을 생성하고 계획한다. 원론에 계획된 정비 목록 이외의 부품에 대해서는 임상적인 점검과 장비의 이상상태에 따라 정비 활동을 실시한다.

컨테이너 크레인에 대한 최적 정비 주기를 결정하기 위해서 현재 실시하고 있는 예방정비의 목록 및 주기 그리고 정비 소요 시간과 정비 인원의 수를 조사하였다. 현재 실시 중인 예방 정비 활동의 경우 대상 부품이 사용후기간에 도달한 경우 한계 도달 시의 해당하는 주기가 장비의 유효 시간에 정비를 실시하고 있다. 정비 활동 목록에 대해서는 약 10가지의 계획 정비를 실시하고 있는 것으로 나타났다.

현재 실시중인 정비 대상 부품에 대하여 통계 분석 프로그램인 미니탑을 이용하여 고장 분포 및 관련 수명 모수를 추정하였다. 먼저 데이터의 적합 분포를 알아보았으며, 해당 분포의 수명 모수를 추정하였다. 분포 적합성의 여부 및 모수 조정은 Table 2에 표기하였다.

Table 2 Fittness distribution and parameter estimates

<table>
<thead>
<tr>
<th>부품명</th>
<th>적합 분포(좌표)</th>
<th>모수 추정값</th>
</tr>
</thead>
<tbody>
<tr>
<td>겸트리 안전시스템</td>
<td>정규 분포(와이어)</td>
<td>적도: 6310, 항상: 1.43</td>
</tr>
<tr>
<td>겸트리 DC 모터</td>
<td>로그 로지스틱(와이어)</td>
<td>적도: 3896, 항상: 1.18</td>
</tr>
<tr>
<td>케이블 밀</td>
<td>왜이블 분포(와이어)</td>
<td>적도: 4347, 항상: 1.65</td>
</tr>
<tr>
<td>호이스트 DC 모터</td>
<td>로그 로지스틱(와이어)</td>
<td>적도: 3866, 항상: 1.18</td>
</tr>
<tr>
<td>호이스트 왜이어</td>
<td>로그 정규분포(와이어)</td>
<td>적도: 1332, 항상: 2.37</td>
</tr>
<tr>
<td>Load Cell 시스템</td>
<td>로그 정규분포(와이어)</td>
<td>적도: 1735, 항상: 1.14</td>
</tr>
<tr>
<td>트로리 DC 모터</td>
<td>왜이블 분포(와이어)</td>
<td>적도: 8647, 항상: 1.70</td>
</tr>
<tr>
<td>트로리 왜이어</td>
<td>로그 로지스틱(와이어)</td>
<td>적도: 3886, 항상: 1.18</td>
</tr>
<tr>
<td>트로리 왜이어</td>
<td>로그 정규분포(와이어)</td>
<td>적도: 2465, 항상: 1.65</td>
</tr>
<tr>
<td>컨테이너 왜이어</td>
<td>로그 정규분포(와이어)</td>
<td>적도: 1584, 항상: 8.45</td>
</tr>
</tbody>
</table>

Table 2와 같이 부품별 수명 분포는 왜이블 모수, 로그 정규 분포, 정규 분포, 로그 로지스틱 분포로 추정되었으나, 신호성 분석 시 자주 사용되는 왜이블 분포로 가정하고 수명 모수를 추정하였다. 정비 구조 및 기능 분석, 그리고 예방정비 데이터 분석을 통한 수명 검증은 예방정비 최적 주기 결정을 위한 데이터로 사용된다.

4. 부품별 최적 예방정비 주기 결정

4.1 시뮬레이션 및 유전자 알고리즘을 이용한 최적화

컨테이너 크레인의 최적 예방정비 주기를 산출하기 위하여 유전자 알고리즘을 이용하여 해를 구하고 백색장 시뮬레이션을 이용하여 해를 평가한다. 시뮬레이션은 모형과 작업과 유해, 고장과 예방정비에 대한 가정은 Table 3과 같다.

- 431 -
유전자 알고리즘에서 사용되는 유전자 (Gene)의 구성은 예방검정 대상 부품의 갯수이며, 각 유전자는 4자리 정수로 구성된다. 이는 해의 범위를 1 - 9999시간으로 두어 최소한 일 년 중 한번은 정비가 이루어져야 함을 의미한다. 따라서 총 염색체 (Chromosome)의 개수는 4x종 정비 작업수로 구성된다. 모집단은 100, 교차는 엔티고, 그리고 선정 (Selection) 방식은 Top-pop-size방식으로 설정하였다. 최적해는 실물레이션 평 가점에서 적합도 (Fitness)가 가장 큰 염색체가 선택된다. 한 염색체의 적합도는 실물레이션을 이용하여 다음과 같이 추 정한다.

적합도 (Fitness) = \frac{\text{실물레이션에서 가용도의 총합}}{\text{실물레이션 반복 횟수}} \quad (1)

가용도 (Availability) = \frac{\text{장비의 가용시간}}{\text{장비의 가용시간 + 정비 시간}} \quad (2)

위와 같은 방법으로 산출된 예방검정 일정은 실물레이션 상황에서 수명 (Age) 시간 기반으로 산출된 결과이며, 정비 일정을 계획하기 위해서는 단력 (Calendar) 시간으로 변환시켜야 한다.

\begin{align*}
\text{Calendar Solution} &= \text{Optimal Solution} \times \frac{\text{Avg. Work Time} + \text{Avg. Idle Time}}{\text{Avg. Work Time}}
\end{align*} \quad (3)

4.2 연간 및 일간 예방검정 계획

4.1절에서는 단 단계 다 부품으로 이루어진 컨테이너 크레인 단일 장비의 최적 예방검정 일정을 결정하는 방법에 대해 설명 하였다. 하지만 실제 컨테이너 태무널에서는 동일한 구조를 가지는 여러 대의 장비가 가동되고 있다. 따라서 하나의 장비에 대해 정비 주기가 결정되면, 여러 대의 장비에 대한 예방검정 일정이 계획되어야 한다. 크레인 한 대에 대해 산출된 최적 주기를 여러 대의 장비로 적용하기 위해 최적 주기를 개별 부품의 현재 실 사용시간의 차이로 작은 범위 예방검정을 결정하고, 다음부터는 부품별 최적주기를 더해가면서 일정을 계획하도록 한다.

\[T_j = j \text{ 부품의 결정된 최적 예방검정 주기} \]
\[A_{ij} = j \text{ 장비 } j \text{ 부품의 현재 시점까지의 사용시간} \]
\[\text{매년 } \text{ 한 번 } \text{ 예방검정 주기 } : T_j - A_{ij} \]
\[\text{고 주의 예방검정 주기 } : (T_j - A_{ij}) + T_j \]

여러 장비에 대한 개별 부품의 연간 예방검정일정이 확정되 었다면 실제로 월간 예방검정일정 조정이 필요하다. 앞서 제시 한 연간 예방검정계획은 크레인의 작업과 예방검정인원의 제약 은 고려하지 않았다. 따라서 실제 크레인의 작업 일정이 수립되 면 예방검정 일정과 겹치는 상황이 발생할 수 있을 것이다.

\begin{figure}
\centering
\includegraphics[width=\textwidth]{fig2.png}
\caption{The allocation method for preventive maintenance using failure probability}
\end{figure}

\textit{Fig. 2 The allocation method for preventive maintenance using failure probability}
본 연구에서는 예방정비 일정과 크리에이티브 작업이 중복되었을 경우, 작업 중 고장 난 확률이 높은 부품은 우선순위로 작업이 제시되면 예방정비를 할당하는 방법과, 초기 연간 계획에서 제시한 최적의 이동을 최소화 하는 유전자 알고리즘을 개발하였다.

4.3 부품의 고장 확률 우선순위 방법

장비 가용도를 높이기 위해서는 정해진 예방정비 실시 시점보다 앞서 정비를 실시하면 시간에 고장 확률을 줄여서 장비 가용도를 높일 수 있다. 하지만 너무 과도하게 일정을 앞당기면 다음 예방정비 시점과의 시간 차가 많이 생겨 그 사이의 고장 발생 확률은 다시 커지게 된다. 또한 작업 일정과 예방정비 일정이 충돌된 경우 모든 예방정비를 작업 시작 시점에 실시한다고 하면 예방정비를 실시하는 대신 발생한 고장의 작업 종료 시점에 예방정비를 할당한다. 또한 고장 발생확률이 높은 부품은 우선적으로 작업 이전에 할당하고, 가능한 정비 인원을 넘어서게 되는 상황이 발생할 경우 크리에이티브 작업 종료 시점 이후 예방정비를 할당한다. 또한 고장 발생확률이 높은 장비 대상부품이라 할지라도 작업 시점 이전에 예방정비를 실시할만한 시간이 없다면 그 또한 작업 종료 이후에 실시하도록 한다. Fig. 2와 같은 방법으로 해당 월의 모든 장비의 정비활동에 대해서 고장확률을 계산하여 정비를 할당한다. 실제 사례를 적용하기 위해서는 부품의 현재까지의 실사용시간을 정확히 알 수 없으므로 역변환 방법을 이용하여 현재까지의 실사용시간을 계산하도록 한다. 역변환 방법으로 실사용시간을 계산하는 방법은 아래와 같다. 해당 모수 추정은 미리념을 이용하였으며, 0 ~ 1 사이의 수 범위에서 현재 시점까지의 사용시간을 발생시킨다.

\[n_i : \text{척도 모수} \]
\[\beta_i : \text{형상 모수} \]
\[U_i \sim U(0, 1) \]

현재까지 사용시간 (\(Age_i\)) = \(n_i(1 - \ln(U_i))^{\frac{1}{\beta_i}}\)

4.4 유전자 알고리즘을 이용한 방법

연간 예방정비 계획의 일정 조정 문제를 유전자 알고리즘을 사용해서 접근해 보고자 한다. 하지만 가용도 최대화 문제는 목적으로 했기 때문에 대부분 복합구조 시스템의 가용도를 수리적으로 계산하기가 상당히 어려우므로 연간계획에서 계산한 값을 최대한 유사하게 하는 것을 목적으로 하며, 제약 조건은 정비 인원, 작업과 예방정비 일정의 충돌로 한다. 문제를 해결하기 위한 수리모형은 아래와 같다.

\[\text{[기호]} \]
\[W_{ik}^- : i \text{장비의} \ k \text{번째 작업 시작 시점} \]
\[W_{ik}^+ : i \text{장비의} \ k \text{번째 작업 시작 종료 시점} \]
\[M_{ij}^- : j \text{장비의} \ j \text{번째 작업 계획 예방정비 시작 시점} \]
\[M_{ij}^+ : j \text{장비의} \ j \text{번째 계획된 예방정비 시작 시점} \]
\[U_j : j \text{부품의 예방정비 소요시간} \]
\[M_j : j \text{부품의 예방정비 소요시간} \]
\[R : \text{제한 가능한 정비 인원} \]

\[W_{ik}(d) = \left\{ \begin{array}{ll} 1 & W_{ik}^- \leq d \leq W_{ik}^+ \\ 0 & \text{otherwise} \end{array} \right. \]

\[A_j(d) = \left\{ \begin{array}{ll} 1 & M_{ij}^- \leq d \leq M_{ij}^+ + U_j \\ 0 & \text{otherwise} \end{array} \right. \]

\[d = 1, 2, 3, ..., 720 \text{ (30일 시간 환산)} \]

\[
\begin{align*}
\text{Min} & \sum_{i,j} W_{ik}(d) - M_{ij}^- \\
\text{subject to} & \sum_{i,j} M_{ij} \cdot A_j(d) \leq R \\
& \text{for } d = 2, 3, ..., 720 \\
& \sum_{d=M_{ij}^-}^{M_{ij}^+} W_{ik}(d) = 0 \text{ for } k = 1, 2, 3, ..., K
\end{align*}
\]

5. 적용 사례

5.1 시뮬레이션과 유전자 알고리즘을 이용한 최적 예방정비 주기

주어진 입력 값에 의해 설계를 통하여 컴퓨터 크리에이티브 필적 예방정비 주기를 산출하고자 한다. 시뮬레이션을 위한 입력 데이터는 아래 Table 4에 정의한다.
또한 최적해를 제공해주는 유전자 알고리즘을 위하여, 교체, 돌연변이를 그리고 세대 수와 모집단 수를 입력하게 된다. 본 논문에서는 심혈관질환 시뮬레이션 수행시간 10,000시간으로 반복 10회 실시하였다. 최적자 0.4, 돌연변이율은 0.5, 돌연변이는 각 비트단위로 수행되고 해의 0값 빈도를 위해 수행 후 한 경비의 주기가 아닌 경우 마지막 비트의 값은 1이 되도록 설정하였고 각 비율은 입력에 의한다. 세대수 100세대 전체화 하여 크레인의 예방경비 주기를 산출하고자 한다.

시뮬레이션과 유전자 알고리즘의 결과로 제공된 예방경비 주기는 Table 5와 같으며, 이때의 총 작업 시간은 8,258시간, 총 가동시간은 6,031시간 그리고 총 예방경비 시간은 117시간으로 나타났다. 이때의 총 가동율은 0.73으로 평가되었다.

<table>
<thead>
<tr>
<th>부품명</th>
<th>정비 내용</th>
<th>기종 정비 주기</th>
<th>제안된 정비 주기</th>
</tr>
</thead>
<tbody>
<tr>
<td>캔드리 안전 시스템</td>
<td>점검</td>
<td>4,500</td>
<td>1,732</td>
</tr>
<tr>
<td>캔드리 DC 모터</td>
<td>수리</td>
<td>4,380</td>
<td>8,009</td>
</tr>
<tr>
<td>테일 라이트</td>
<td>수리</td>
<td>4,380</td>
<td>4,307</td>
</tr>
<tr>
<td>보이스트 DC 모터</td>
<td>수리</td>
<td>4,380</td>
<td>3,844</td>
</tr>
<tr>
<td>보이스트 액세스</td>
<td>교환</td>
<td>1,500</td>
<td>1,390</td>
</tr>
<tr>
<td>Load Cell 시스템</td>
<td>수리</td>
<td>800</td>
<td>4,687</td>
</tr>
<tr>
<td>핸드브레이크</td>
<td>교환</td>
<td>2,000</td>
<td>2,161</td>
</tr>
<tr>
<td>트로일 DC 모터</td>
<td>수리</td>
<td>4,380</td>
<td>5,075</td>
</tr>
<tr>
<td>트로일 액세스</td>
<td>교환</td>
<td>1,100</td>
<td>1,017</td>
</tr>
<tr>
<td>카메라 액세스</td>
<td>교환</td>
<td>900</td>
<td>1,665</td>
</tr>
</tbody>
</table>

5.2 연간 및 월간 예방경비 일정

컨테이너 크레인의 부품 별 예방경비를 결정하였으나 현재 시점까지의 부품의 사용시간과 최적주기를 이용하여 어떤 대장비의 연간 일정을 세우는 4. 2절에서 언급한 방법으로 연간 계획을 실시하는데 있어서는 경비인원과 컨테이너 크레인의 작업 상황을 고려하지 않는다. 따라서 현재 계획된 연간 일정은 실제 예방경비를 실시하는데 있어서 만성적인 일정이며, 설계 가능한 일정으로 조정해줄 필요가 있다. 본 연구에서는 부산항의 실제 한달 간의 실적 입/출항 정보를 가지고 예방 실시 시점을 조정해보고자 한다. 본 논문에서는 선착 5선, 총 크레인수는 15대로 하며, 각 선착별로 3대의 크레인을 배치되어 있으며, 선박이 입항과 출항에 대한 동시에 작업을 시작하고 끝내고 기준화한다. 컨테이너 크레인의 모든 예방경비활동은 작업에 영향을 주지 않는 유후시간에만 이루어지여 힌작업과 중복이 되는 예방경비 일정은 조정되어야 한다. Table 6도 예방경비와 중복되는 작업에서 부품의 고장확률을 계산한 결과이다.

<table>
<thead>
<tr>
<th>정비 호기</th>
<th>부품명</th>
<th>작업 시작시간</th>
<th>작업종료 시간</th>
<th>고장 확률</th>
</tr>
</thead>
<tbody>
<tr>
<td>QC102</td>
<td>안전 시스템</td>
<td>4,099</td>
<td>5,007</td>
<td>0.095000</td>
</tr>
<tr>
<td>QC401</td>
<td>보이스트 하이어</td>
<td>872</td>
<td>890</td>
<td>0.012690</td>
</tr>
<tr>
<td>QC101</td>
<td>보이스트 하이어</td>
<td>735</td>
<td>753</td>
<td>0.011000</td>
</tr>
<tr>
<td>QC502</td>
<td>보이스트 하이어</td>
<td>660</td>
<td>668</td>
<td>0.004500</td>
</tr>
<tr>
<td>QC301</td>
<td>트로릴 하이어</td>
<td>690</td>
<td>703</td>
<td>0.004000</td>
</tr>
<tr>
<td>QC403</td>
<td>트로릴 하이어</td>
<td>958</td>
<td>972</td>
<td>0.003500</td>
</tr>
<tr>
<td>QC403</td>
<td>캔드리 DC 모터</td>
<td>396</td>
<td>414</td>
<td>0.003900</td>
</tr>
<tr>
<td>QC503</td>
<td>캔드리 하이어</td>
<td>386</td>
<td>387</td>
<td>0.003740</td>
</tr>
<tr>
<td>QC401</td>
<td>캔드리 DC 모터</td>
<td>2,338</td>
<td>2,306</td>
<td>0.002890</td>
</tr>
<tr>
<td>QC201</td>
<td>트로릴 하이어</td>
<td>1,694</td>
<td>1,700</td>
<td>0.002700</td>
</tr>
<tr>
<td>QC101</td>
<td>트로릴 하이어</td>
<td>1,624</td>
<td>1,685</td>
<td>0.002500</td>
</tr>
<tr>
<td>QC202</td>
<td>트로릴 하이어</td>
<td>1,889</td>
<td>2,002</td>
<td>0.002460</td>
</tr>
<tr>
<td>QC102</td>
<td>트로릴 하이어</td>
<td>746</td>
<td>754</td>
<td>0.002420</td>
</tr>
<tr>
<td>QC101</td>
<td>캔드리 DC 모터</td>
<td>2,001</td>
<td>2,014</td>
<td>0.002300</td>
</tr>
<tr>
<td>QC203</td>
<td>트로릴 하이어</td>
<td>1,121</td>
<td>1,129</td>
<td>0.002100</td>
</tr>
<tr>
<td>QC301</td>
<td>트로릴 DC 모터</td>
<td>2,995</td>
<td>3,007</td>
<td>0.001700</td>
</tr>
<tr>
<td>QC101</td>
<td>트로릴 하이어</td>
<td>785</td>
<td>773</td>
<td>0.001560</td>
</tr>
<tr>
<td>QC203</td>
<td>트로릴 하이어</td>
<td>2,238</td>
<td>2,251</td>
<td>0.001000</td>
</tr>
<tr>
<td>QC503</td>
<td>트로릴 하이어</td>
<td>141</td>
<td>154</td>
<td>0.001130</td>
</tr>
<tr>
<td>QC401</td>
<td>안전 시스템</td>
<td>3,889</td>
<td>3,899</td>
<td>0.001120</td>
</tr>
<tr>
<td>QC102</td>
<td>핸드브레이크</td>
<td>2,634</td>
<td>2,646</td>
<td>0.000100</td>
</tr>
<tr>
<td>QC203</td>
<td>핸드브레이크</td>
<td>947</td>
<td>959</td>
<td>0.000690</td>
</tr>
<tr>
<td>QC402</td>
<td>핸드브레이크</td>
<td>1,498</td>
<td>1,467</td>
<td>0.000040</td>
</tr>
<tr>
<td>QC103</td>
<td>헨드브레이크</td>
<td>2,586</td>
<td>2,697</td>
<td>0.000250</td>
</tr>
<tr>
<td>QC403</td>
<td>트로릴 하이어</td>
<td>630</td>
<td>642</td>
<td>0.000120</td>
</tr>
</tbody>
</table>
Table 7 The modification of preventive maintenance schedule by priority of failure probability (*: start time in changed schedule)

<table>
<thead>
<tr>
<th>장비 코드</th>
<th>부품명</th>
<th>조정 전 (시)</th>
<th>조정 후 (시)</th>
</tr>
</thead>
<tbody>
<tr>
<td>QC101</td>
<td>트롤리 왜이어</td>
<td>32</td>
<td>41*</td>
</tr>
<tr>
<td>QC101</td>
<td>겸트리 DC 모터</td>
<td>32</td>
<td>1*</td>
</tr>
<tr>
<td>QC101</td>
<td>호이스트 왜이어</td>
<td>56</td>
<td>56</td>
</tr>
<tr>
<td>QC103</td>
<td>트롤리 왜이어</td>
<td>80</td>
<td>80</td>
</tr>
<tr>
<td>QC103</td>
<td>트롤리 왜이어</td>
<td>104</td>
<td>104</td>
</tr>
<tr>
<td>QC103</td>
<td>트롤리 왜이어</td>
<td>104</td>
<td>104</td>
</tr>
<tr>
<td>QC103</td>
<td>케이블 밀림</td>
<td>104</td>
<td>104</td>
</tr>
<tr>
<td>QC103</td>
<td>호이스트 왜이어</td>
<td>128</td>
<td>128</td>
</tr>
<tr>
<td>QC103</td>
<td>호이스트 왜이어</td>
<td>176</td>
<td>176</td>
</tr>
<tr>
<td>QC103</td>
<td>호이스트 왜이어</td>
<td>200</td>
<td>200</td>
</tr>
<tr>
<td>QC103</td>
<td>호이스트 왜이어</td>
<td>224</td>
<td>224</td>
</tr>
<tr>
<td>QC103</td>
<td>호이스트 왜이어</td>
<td>248</td>
<td>248</td>
</tr>
<tr>
<td>QC103</td>
<td>호이스트 왜이어</td>
<td>272</td>
<td>272</td>
</tr>
<tr>
<td>QC103</td>
<td>호이스트 왜이어</td>
<td>320</td>
<td>315*</td>
</tr>
<tr>
<td>QC103</td>
<td>겸트리 DC 모터</td>
<td>320</td>
<td>313*</td>
</tr>
<tr>
<td>QC103</td>
<td>안전 시간</td>
<td>368</td>
<td>365*</td>
</tr>
<tr>
<td>QC103</td>
<td>안전 시간</td>
<td>392</td>
<td>392</td>
</tr>
<tr>
<td>QC103</td>
<td>안전 시간</td>
<td>412</td>
<td>412</td>
</tr>
<tr>
<td>QC103</td>
<td>안전 시간</td>
<td>416</td>
<td>416</td>
</tr>
<tr>
<td>QC103</td>
<td>호이스트 DC 모터</td>
<td>416</td>
<td>416</td>
</tr>
<tr>
<td>QC103</td>
<td>호이스트 왜이어</td>
<td>440</td>
<td>440</td>
</tr>
<tr>
<td>QC103</td>
<td>호이스트 왜이어</td>
<td>440</td>
<td>440</td>
</tr>
<tr>
<td>QC103</td>
<td>호이스트 왜이어</td>
<td>464</td>
<td>464</td>
</tr>
<tr>
<td>QC103</td>
<td>호이스트 DC 모터</td>
<td>464</td>
<td>458*</td>
</tr>
<tr>
<td>QC103</td>
<td>호이스트 DC 모터</td>
<td>464</td>
<td>459*</td>
</tr>
<tr>
<td>QC103</td>
<td>호이스트 왜이어</td>
<td>464</td>
<td>473*</td>
</tr>
<tr>
<td>QC103</td>
<td>호이스트 왜이어</td>
<td>488</td>
<td>482*</td>
</tr>
<tr>
<td>QC103</td>
<td>호이스트 왜이어</td>
<td>512</td>
<td>512</td>
</tr>
<tr>
<td>QC103</td>
<td>호이스트 왜이어</td>
<td>536</td>
<td>528*</td>
</tr>
<tr>
<td>QC103</td>
<td>호이스트 왜이어</td>
<td>536</td>
<td>521*</td>
</tr>
<tr>
<td>QC103</td>
<td>호이스트 DC 모터</td>
<td>560</td>
<td>559*</td>
</tr>
<tr>
<td>QC103</td>
<td>호이스트 왜이어</td>
<td>564</td>
<td>578*</td>
</tr>
<tr>
<td>QC103</td>
<td>안전 시간</td>
<td>656</td>
<td>642*</td>
</tr>
<tr>
<td>QC103</td>
<td>안전 시간</td>
<td>656</td>
<td>642*</td>
</tr>
<tr>
<td>QC103</td>
<td>안전 시간</td>
<td>680</td>
<td>680</td>
</tr>
<tr>
<td>QC103</td>
<td>헤드 플러그</td>
<td>704</td>
<td>695*</td>
</tr>
<tr>
<td>QC103</td>
<td>헤드 플러그</td>
<td>728</td>
<td>721*</td>
</tr>
</tbody>
</table>

5.4 유전자 알고리즘을 이용한 방법

유전자 알고리즘을 위한 입력데이터는 Table 8와 같으며, 세대 수와 돌연변이율, 교차율은 탐색시의 가변적 실험한 결과 돌연변이율은 0.5, 교차율은 0.4에서 가장 좋은 해를 찾아 나왔다.

Table 8 Input data for genetic algorithm

<table>
<thead>
<tr>
<th>입력수 모수</th>
<th>입력데이터</th>
</tr>
</thead>
<tbody>
<tr>
<td>개체수</td>
<td>100</td>
</tr>
<tr>
<td>세대수</td>
<td>1000</td>
</tr>
<tr>
<td>돌연변이율</td>
<td>0.5</td>
</tr>
<tr>
<td>교차율</td>
<td>0.4</td>
</tr>
</tbody>
</table>

유전자 알고리즘을 이용하여 일관 예방경비 일정을 조정한 결과는 Table 9와 같다.

Table 9 The result of monthly preventive maintenance schedule using genetic algorithm

<table>
<thead>
<tr>
<th>장비호기</th>
<th>부품명</th>
<th>조정 전</th>
<th>유전자 알고리즘</th>
<th>고장확률</th>
</tr>
</thead>
<tbody>
<tr>
<td>QC101</td>
<td>트롤리 왜이어</td>
<td>32</td>
<td>42</td>
<td>41</td>
</tr>
<tr>
<td>QC101</td>
<td>겸트리 DC 모터</td>
<td>200</td>
<td>308</td>
<td>171</td>
</tr>
<tr>
<td>QC101</td>
<td>호이스트 왜이어</td>
<td>320</td>
<td>313</td>
<td>315</td>
</tr>
<tr>
<td>QC101</td>
<td>안전 시간</td>
<td>632</td>
<td>631</td>
<td>632</td>
</tr>
<tr>
<td>QC102</td>
<td>트롤리 왜이어</td>
<td>224</td>
<td>225</td>
<td>210</td>
</tr>
<tr>
<td>QC102</td>
<td>안전 시간</td>
<td>368</td>
<td>365</td>
<td>365</td>
</tr>
<tr>
<td>QC102</td>
<td>호이스트 왜이어</td>
<td>464</td>
<td>464</td>
<td>464</td>
</tr>
<tr>
<td>QC102</td>
<td>헤드 플러그</td>
<td>728</td>
<td>720</td>
<td>721</td>
</tr>
<tr>
<td>QC103</td>
<td>호이스트 왜이어</td>
<td>128</td>
<td>119</td>
<td>120</td>
</tr>
<tr>
<td>QC103</td>
<td>트롤리 왜이어</td>
<td>584</td>
<td>578</td>
<td>578</td>
</tr>
<tr>
<td>QC103</td>
<td>호이스트 왜이어</td>
<td>128</td>
<td>128</td>
<td>128</td>
</tr>
<tr>
<td>QC103</td>
<td>겸트리 DC 모터</td>
<td>488</td>
<td>482</td>
<td>482</td>
</tr>
<tr>
<td>QC103</td>
<td>트롤리 왜이어</td>
<td>536</td>
<td>528</td>
<td>528</td>
</tr>
<tr>
<td>QC103</td>
<td>안전 시간</td>
<td>224</td>
<td>224</td>
<td>224</td>
</tr>
<tr>
<td>QC103</td>
<td>트롤리 왜이어</td>
<td>536</td>
<td>528</td>
<td>528</td>
</tr>
<tr>
<td>QC103</td>
<td>헤드 플러그</td>
<td>560</td>
<td>557</td>
<td>559</td>
</tr>
<tr>
<td>QC103</td>
<td>호이스트 왜이어</td>
<td>80</td>
<td>78</td>
<td>80</td>
</tr>
<tr>
<td>QC103</td>
<td>트롤리 왜이어</td>
<td>176</td>
<td>171</td>
<td>172</td>
</tr>
<tr>
<td>QC103</td>
<td>안전 시간</td>
<td>392</td>
<td>392</td>
<td>392</td>
</tr>
<tr>
<td>QC103</td>
<td>호이스트 왜이어</td>
<td>56</td>
<td>56</td>
<td>56</td>
</tr>
<tr>
<td>QC103</td>
<td>호이스트 DC 모터</td>
<td>464</td>
<td>455</td>
<td>458</td>
</tr>
<tr>
<td>QC103</td>
<td>안전 시간</td>
<td>200</td>
<td>200</td>
<td>200</td>
</tr>
<tr>
<td>QC103</td>
<td>호이스트 왜이어</td>
<td>464</td>
<td>459</td>
<td>459</td>
</tr>
<tr>
<td>QC103</td>
<td>안전 시간</td>
<td>272</td>
<td>272</td>
<td>272</td>
</tr>
<tr>
<td>QC103</td>
<td>트롤리 왜이어</td>
<td>416</td>
<td>416</td>
<td>416</td>
</tr>
<tr>
<td>QC103</td>
<td>호이스트 왜이어</td>
<td>464</td>
<td>467</td>
<td>473</td>
</tr>
<tr>
<td>QC103</td>
<td>호이스트 왜이어</td>
<td>512</td>
<td>512</td>
<td>512</td>
</tr>
<tr>
<td>QC103</td>
<td>겸트리 DC 모터</td>
<td>32</td>
<td>39</td>
<td>1</td>
</tr>
<tr>
<td>QC103</td>
<td>호이스트 왜이어</td>
<td>104</td>
<td>105</td>
<td>104</td>
</tr>
<tr>
<td>QC103</td>
<td>안전 시간</td>
<td>584</td>
<td>579</td>
<td>581</td>
</tr>
<tr>
<td>QC103</td>
<td>호이스트 왜이어</td>
<td>440</td>
<td>440</td>
<td>440</td>
</tr>
<tr>
<td>QC103</td>
<td>호이스트 왜이어</td>
<td>440</td>
<td>439</td>
<td>439</td>
</tr>
<tr>
<td>QC103</td>
<td>호이스트 왜이어</td>
<td>416</td>
<td>416</td>
<td>416</td>
</tr>
<tr>
<td>QC103</td>
<td>호이스트 왜이어</td>
<td>416</td>
<td>417</td>
<td>416</td>
</tr>
<tr>
<td>QC103</td>
<td>호이스트 왜이어</td>
<td>536</td>
<td>539</td>
<td>521</td>
</tr>
<tr>
<td>QC103</td>
<td>헤드 플러그</td>
<td>704</td>
<td>709</td>
<td>695</td>
</tr>
</tbody>
</table>
존재하는 업무에 급격한 변화가 발생할 경우, 컨테이너 크레인이 필요한 역할을 할 수 있도록 충분한 준비를 하여야 한다. 다양한 산업 분야에서 컨테이너 크레인의 사용이 급속도로 증가하고 있으며, 이러한 경향을 지속적으로 관찰할 필요가 있다.

6. 결론

컨테이너를 이용한 물류가 지속적으로 증가되고 있고, 이에 따라 컨테이너 물류의 중요성이 높아지면서 운송 최적화에 관한 연구도 많이 이루어지고 있다. 본 논문에서는 컨테이너 턴릴의 효율적 하역 장비의 컨테이너 크레인의 예방정비 일정을 수립하기 위하여 설계 턴릴에서 수행했던 고장 및 예방정비 데이터를 분석하고 예방정비 항목에 대해 보통 기수별 수명 문제와 오류를 추정하였다. 또한, 이상 단계로 구성된 컨테이너 크레인의 구조를 명확히 정의하기 위해 실제 크레인을 구현하기 위해 생략된 시뮬레이션 시스템과 유전자 알고리즘으로 최적 예방정비 주기를 결정하고 현 대의 장비로 구현한 최적 정비 주기를 동일한 목표 장비로 함당하여 현장 예방정비 일정을 계획하였다. 이러한 작업을 통해 컨테이너 크레인의 작업과 예방정비 일정을 비교하여 크레인의 작업에 영향을 주지 않는 범위에서 최적 예방정비 일정을 수정하기 위하여 유전자 알고리즘을 개선하였다.

향후 연구 과제로는 예방정비 주기를 결정하는 시뮬레이션 시스템에서 단순히 장비의 작업과 유류, 고장, 예방정비받을 고려할 것이 아니라 실제 턴릴에서 운영되는 상황, 즉 선박의 도착과 이동 장비의 이동 및 이어드 크레인의 작업과 고장까지 반영한 시뮬레이션 연구로 확장되어야 할 것이다.