Quasi Resonant DC Link Inverter with a Simple Auxiliary Circuit

Mohammad Reza Amini† and Hosein Farzanehfard∗

†∗Dept. of Electrical and Computer Engineering, Isfahan University of Technology, Isfahan, Iran

Abstract

In this paper, a new soft switching three phase inverter with a quasi-resonant dc-link is presented. The proposed inverter has a dc-link switch and an auxiliary switch. The inverter switches are turned on and off under zero voltage switching condition and all auxiliary circuit switches and diodes are also soft switched. The control utilizes PWM and the auxiliary switch does not require an isolated gate drive circuit. In this paper, the operation analysis and design considerations of the proposed soft switching inverter are discussed. The presented experimental results of a realized prototype confirm the theoretical analysis.

Key Words: Pulse Width Modulation (PWM), Quasi-resonant dc-link (QRDCL), Soft switching inverter, Zero Voltage Switching (ZVS)

I. INTRODUCTION

Inverters have many applications in power electronic devices such as motor drives, active power filters and uninterruptible power supplies. In order to decrease the size of the output filter and to eliminate audio noise, the switching frequency must be increased. In hard switching inverters, a higher switching frequency leads to increased switching losses which consequently increases the size of the snubber circuits and heatsinks. In addition, electro magnetic interference (EMI) increases and efficiency decreases. To overcome these problems, the application of soft switching techniques is essential [1]–[10].

Quasi-resonant dc-link (QRDCL) inverters are one type of soft switching inverter that can be controlled by pulse width modulation (PWM) [11]–[19]. In these inverters, the input power supply is separated from the inverter dc-link by a switch, which is called a dc-link switch. Also, a resonant capacitor is placed in parallel with the inverter dc-link as shown in Fig. 1.

When a change in the state of the inverter switches is necessary, the dc-link switch is turned off and the resonant capacitor discharges by an auxiliary circuit and thus the state of the inverter switches can be changed under zero voltage switching (ZVS) condition. Then the auxiliary circuit charges the resonant capacitor and the dc-link switch is turned on again. The auxiliary circuit usually requires two or more switches in order to charge and discharge the dc-link capacitor.

One of the main QRDCL inverter research goals is to achieve soft switching conditions with a minimum number of auxiliary circuit elements. The auxiliary circuit in [11] has three auxiliary switches and the auxiliary circuits in [12]–[16] have two auxiliary switches. Reducing the number of auxiliary switches simplifies the control circuit and decreases the inverter cost. Therefore it is essential to offer QRDCL inverters with one auxiliary switch [17], [18]. In [17] the number of auxiliary switches is reduced at the cost of employing extra elements including three diodes, coupled inductors and a resonant capacitor. The auxiliary circuit presented in [18] has reduced the number of extra elements at the expense of adding a capacitive voltage divider at the inverter input and losing control over the zero voltage interval of the inverter dc-link. The control of the dc-link zero voltage interval, is used in some switching methods such as space vector modulation. The QRDCL inverter presented in [19] has no auxiliary switch and the soft switching condition is achieved by a dc-link switch. This advantage is achieved at the cost of a higher voltage stress on dc-link switch.

In this paper a QRDCL inverter with one switch in its auxiliary circuit is presented. This switch is turned on under zero current switching (ZCS) condition and turned off under an almost ZVS condition. Also, the auxiliary diode in this circuit turns on under ZVS condition and turns off under ZCS condition. Since the source of the auxiliary switch is
connected to the source of three inverter main switches, this switch does not require an isolated gate drive circuit. The proposed inverter has a lower number of extra elements than previously developed QRDCL inverters.

The proposed inverter is introduced and its operating intervals are discussed in the second section. The design considerations of the proposed inverter are provided in the third section and the experimental results of a 250W, 20kHz prototype inverter are presented in the forth section. The presented experimental results confirm the theoretical analysis.

II. PROPOSED INVERTER OPERATION

The circuit configuration of the proposed QRDCL inverter is illustrated in Fig. 2. The main inverter is composed of S_1 to S_6. The dc-link switch is S_{a1} and the dc-link resonant capacitor is C_r. The auxiliary circuit consists of switch S_{a2}, diode D_2 and the coupled inductors L_{r1} and L_{r2}. Diode D_1 is the anti-parallel diode of switch S_{a1}. Because the inductors L_{r1} and L_{r2} are much smaller than the load inductance, an inverter with a three phase load can be replaced by the current source I_o, as shown in Fig. 3. I_o is abruptly altered when the state of the inverter switches changes. Diode D_0 stands for the anti-parallel diodes of the inverter switches. In order to simplify the description of the inverter operating intervals, all circuit elements are assumed to be ideal. The proposed inverter has seven distinct operating intervals in a switching cycle as shown in Fig. 4 and the main theoretical waveforms are presented in Fig. 5. Before the first operating interval, it is assumed that S_{a1} is on and S_{a2} is off. Therefore, the output current I_{o1} flows through S_{a1}.

Interval 1 ($t_0 \leq t \leq t_1$): Whenever a change in the state of the inverter main switches is desired, S_{a2} is turned on. Due to existence of L_{r1}, the turn on of S_{a2} is under ZCS condition and L_{r1} increases linearly until it reaches I_{min} which is defined as the minimum required current of L_{r1} that guarantees the charging of C_r in interval 4. The design procedure of I_{min} is illustrated in section III. L_{r1} and the duration of this interval are as follows:

\[
i_{LR1}(t) = \frac{V_s}{L_{r1}}(t-t_0)
\]

\[
\Delta t_1 = t_1 - t_0 = \frac{L_{r1}I_{min}}{V_s}.
\]

Interval 2 ($t_1 \leq t \leq t_2$): When L_{r1} reaches I_{min}, switch S_{a1} must be turned off. S_{a1} is turned off under ZVS condition due to the existence of C_r. In this interval, a resonance starts between C_r and L_{r1} which decreases the dc-link voltage. The L_{r1} and C_r equations are:

\[
i_{LR1}(t) = \frac{V_s}{Z_r}(\omega_r(t-t_1))
\]

\[
+ (I_{min} + I_{a1})\cos(\omega_r(t-t_1)) - I_{a1}
\]

\[
v_{CR}(t) = V_s \cos(\omega_r(t-t_1)) - Z_r(I_{min} + I_{a1})\sin(\omega_r(t-t_1))
\]

where

\[
\omega_r = \frac{1}{\sqrt{L_{r1}C_r}} , Z_r = \sqrt{\frac{L_{r1}}{C_r}}.
\]

When the dc-link voltage reaches zero, this interval ends. The duration of this interval is:

\[
\Delta t_2 = t_2 - t_1 = \frac{1}{\omega_r} \tan^{-1}\left(\frac{V_s}{Z_r(I_{min} + I_{a1})}\right).
\]

Interval 3 ($t_2 \leq t \leq t_3$): At t_2, C_r reaches zero and diode D_2 turns on. Thus, a fraction of the flux linkage of L_{r1}, moves to L_{r2}. At beginning of this interval L_{r1} is:

\[
i_{LR1}(t_2) = I_1 = \sqrt{\frac{V_s^2}{Z_r} + (I_{min} + I_{a1})^2 - I_{a1}}
\]

The ampere-turns of the coupled inductors must be constant, therefore:

\[
N_1I_1 = N_1I_{LR1} + N_2I_{LR2}
\]

where I_{LR1} and I_{LR2} are the currents of L_{r1} and L_{r2}, and N_1 and N_2 are inductor winding turns of L_{r1} and L_{r2} respectively.

The dc-link voltage in this interval is $(nV_{on,sd} - V_{on,ad})/(n + 1)$ where $V_{on,sd}$ and $V_{on,ad}$ are the voltage drops of switch S_{a2} and diode D_2, and $n = N_2/N_1$. Since n is greater than unity, the dc-link voltage is small and positive which reverse biases the inverter anti-parallel diodes (D_0). Thus:

\[
I_{LR2} = I_{LR1} + I_{a1}
\]

By substituting equation (7) into equation (8) the following equations are obtained:

\[
I_{LR1} = \frac{I_1 - nI_{a1}}{n + 1}
\]

\[
I_{LR2} = \frac{I_1 + I_{a1}}{n + 1}.
\]

In order to operate at ZVS condition, the state of the inverter switches must be changed in this interval. In space vector modulation controllers this interval can be used as the zero vector.

Interval 4 ($t_3 \leq t \leq t_4$): At t_3, switch S_{a2} is turned off and the ampere-turns of L_{r1} move to L_{r2}. Thus, L_{r2} current increases and begins to charge C_r. Since the voltage of C_r is almost zero at the beginning of this interval, switch S_{a2} is turned off
under ZVS condition. Since the state of the inverter switches
was changed in the previous interval, \(I_{o1} \) is changed to \(I_{o2} \). \(L_r \) and \(C_r \) in this interval are:

\[
v_{Cr}(t) = Z_r(I_1 - nI_{o2}) \sin\left(\frac{\omega_r}{n}(t - t_3)\right)
\]

(12)

\[
i_{Lr2}(t) = \left(\frac{I_1}{n} - I_{o2}\right)\cos\left(\frac{\omega_r}{n}(t - t_3)\right) + I_{o2}.
\]

(13)

When \(C_r \) reaches \(V_s \), this interval ends. Thus, the duration of this interval is:

\[
\Delta t_4 = t_4 - t_3 = \frac{n}{\omega_r} \sin^{-1}\left(\frac{V_s}{Z_r(I_1 - nI_{o2})}\right).
\]

(14)

Interval 5 \((t_4 \leq t \leq t_5)\): In this interval, diode \(D_1 \) turns on under ZVS condition. Thus, switch \(S_{a1} \) can be turned on under zero voltage zero current switching (ZVZCS) condition. \(L_{r2} \) current decreases linearly from \(I_2 \) to \(I_{o2} \). Thus:

\[
i_{Lr2}(t) = I_2 - \frac{V_s}{L_{r2}}(t - t_4)
\]

(15)

where

\[
I_2 = \sqrt{\frac{Z_r^2(I_1 - nI_{o2})^2 - V_s^2}{nZ_r}} + I_{o2}.
\]

(16)

Duration of this interval is:

\[
\Delta t_5 = t_5 - t_4 = \frac{L_{r2}(I_2 - I_{o2})}{V_s}.
\]

(17)

Interval 6 \((t_5 \leq t \leq t_6)\): This interval starts when \(D_1 \) reaches zero and turns off under ZVZCS condition. Therefore \(S_{a1} \) begins to increase until it reaches \(I_{o2} \). The current of \(L_{r2} \) is:

\[
i_{Lr2}(t) = I_{o2} - \frac{V_s}{L_{r2}}(t - t_5).
\]

(18)

This interval continues until \(L_{r2} \) current reaches zero. Therefore, the duration of this interval is:

\[
\Delta t_6 = t_6 - t_5 = \frac{L_{r2}I_{o2}}{V_s}.
\]

(19)

Interval 7 \((t_6 \leq t \leq t_7)\): In this interval, \(I_{o2} \) flows through \(S_{a1} \). This interval continues until the state of the inverter switches needs to be changed again.
III. DESIGN CONSIDERATIONS

The design of the proposed inverter includes C_r, L_{r1}, n and the switch gate pulses. C_r is the turn off snubber capacitor for switch S_{a1} and L_{r1} is the turn on snubber inductor for switch S_{a2}. Therefore they can be designed like any conventional switch snubber [20].

The control circuit must drive the auxiliary switch and the dc-link switch at the proper time. It can be observed from Fig. 5 that when the control circuit decides to change the state of inverter switches, this action should be performed with a delay in order to have enough time to reduce the dc-link voltage to zero. Thus, switch S_{a2} is turned on first and L_{r1} current increases until it reaches I_{min}. This current must be large enough to guarantee charging C_r in interval 4. According to equation (12), to guarantee charging C_r to V_s, the following relation must be held:

$$Z_r(I_1 - nI_{o2}) \geq V_s.$$ \hfill (20)

By substituting II from equation (7) into relation (20), the following is obtained:

$$I_{min} \geq \sqrt{\left(\frac{V_s}{Z_r} + I_{o1} + nI_{o2}\right)^2 - \left(\frac{V_s}{Z_r}\right)^2 - I_{o1}}.$$ \hfill (21)

The right side of relation (21) is at its maximum when $I_{o1} = I_{o2} = I_{om}$ where I_{om} is the maximum value of I_o. Thus the value of I_{min} which provides ZVS condition is obtained as follows:

$$I_{min} = \sqrt{\left(\frac{V_s}{Z_r} + (n + 1)I_{om}\right)^2 - \left(\frac{V_s}{Z_r}\right)^2 - I_{o1}}.$$ \hfill (22)

To select a proper value for n, there is a tradeoff between I_{min} and the voltage stress of S_{a2}. According to (22), a larger n causes a larger I_{min} and thus greater current stresses on S_{a1} and S_{a2}. However a small value of n causes a higher voltage stress on S_{a2}. Therefore, a proper value for n is between 1.5 and 2.5. After determining n, Δt_1 can be obtained from equation (2).

The state of the inverter switches can be changed Δt_2 seconds after turning S_{a1} off. According to equation (6), the maximum value of Δt_2 is:

$$\Delta t_{2,\text{max}} = \frac{\pi}{2\omega_r}.$$ \hfill (23)
Fig. 8. Top: S_{a2} voltage (50V/div), Bottom: S_{a2} Current (2A/div), (time: 1μs/div).

Fig. 9. Top: S_{1} voltage (50V/div), Bottom: S_{1} Current (2A/div), (time: 5μs/div).

Fig. 10. Top: S_{1} voltage (50V/div), Bottom: S_{1} Current (5A/div), (time: 250μs/div).

Fig. 11. Three phase output currents (10A/div), time: (1ms/div).

Table I
INVERTER SPECIFICATIONS

<table>
<thead>
<tr>
<th>Specification</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Input State DC voltage</td>
<td>V_s</td>
</tr>
<tr>
<td>Switching frequency</td>
<td>f_s</td>
</tr>
<tr>
<td>Output frequency</td>
<td>f_o</td>
</tr>
<tr>
<td>Output Power</td>
<td>P_o</td>
</tr>
<tr>
<td>Load power factor</td>
<td>P_F</td>
</tr>
<tr>
<td>Modulation Index</td>
<td>M_a</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Specification</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Resonant Capacitor</td>
<td>C_r</td>
</tr>
<tr>
<td>Resonant Inductor</td>
<td>L_{r1}</td>
</tr>
<tr>
<td>Coupled Inductors turns</td>
<td>n</td>
</tr>
<tr>
<td>Ratio</td>
<td>2</td>
</tr>
<tr>
<td>Switches</td>
<td>$S_{a1}, S_{a2}, S_{1}-S_{6}$</td>
</tr>
<tr>
<td>Switches</td>
<td>IRF640</td>
</tr>
<tr>
<td>Diode</td>
<td>D_2</td>
</tr>
<tr>
<td>Diode</td>
<td>MUR460</td>
</tr>
</tbody>
</table>

IV. EXPERIMENTAL RESULTS

A prototype of the proposed QRDCL inverter is implemented at a 20kHz switching frequency as shown in Fig. 6. The inverter specifications and the employed components are shown in Table I and Table II respectively. L_{r1} and L_{r2} are very small and are realized by winding 5 and 10 turns respectively on an EI2820 ferrite core using a small air gap.

The experimental results are illustrated in Fig. 7. The soft switching conditions of S_{a1} and S_{a2} are shown in Fig. 7 and Fig. 8 respectively. The voltage and current of one of the inverter main switches are shown in Fig. 9. It can be observed from this figure that the inverter main switches are turned on and off under ZVS conditions. The voltage and current of this switch in one cycle of output current is shown in Fig. 10. Also, Fig. 11 shows the inverter three phase output currents.

V. CONCLUSIONS

In this paper a new soft switching three phase inverter with a quasi-resonant dc-link is presented. This inverter has one auxiliary switch in addition to the conventional dc-link switch. In other words, it has a lower number of extra elements than previously presented QRDCL inverters. In addition, all auxiliary switches and diodes are soft switched. A theoretical analysis and the design considerations of the proposed inverter are presented. The presented experimental results of a prototype inverter confirm the theoretical analysis.

REFERENCES

Mohammad Reza Amini was born in Isfahan, Iran, in 1984. He received his B.S. and M.S. in Electrical Engineering from the Isfahan University of Technology, Isfahan, Iran, in 2006 and 2009, respectively. He is currently pursuing his Ph.D. in Electrical Engineering at the Isfahan University of Technology. His research interests include soft switching techniques in DC-DC and DC-AC converters.

Hosein Farzanehfard was born in Isfahan, Iran in 1961. He received his B.S. and M.S. in Electrical Engineering from the University of Missouri, Columbia, Missouri, USA in 1983 and 1985, respectively. He received his Ph.D. from Virginia Tech., Blacksburg, Virginia, USA in 1992. Since 1993, he has been a Faculty Member in the Department of Electrical and Computer Engineering, Isfahan University of Technology, Isfahan, Iran. He is currently an Associate Professor and President of the Information and Communication Technology Institute. His research interests include high frequency soft switching converters, pulse power applications, power factor correction, active power filters and high frequency electronic ballasts. He is the author of more than 100 technical papers published in journals and conference proceedings.