Multilevel Inverter to Reduce Common Mode Voltage in AC Motor Drives Using SPWM Technique

Mohan M. Renge† and Hiralal M. Suryawanshi∗

† Dept. of Electrical Eng., Shri Ramdeobaba Kamla Nehru Engineering College, Nagpur, India.
∗ Dept. of Electrical Eng., Visvesvaraya National institute of Technology, Nagpur, India

Abstract

In this paper, an approach to reduce common-mode voltage (CMV) at the output of multilevel inverters using a phase opposition disposed (POD) sinusoidal pulse width modulation (SPWM) technique is proposed. The SPWM technique does not require computations therefore, this technique is easy to implement on-line in digital controllers. A good tradeoff between the quality of the output voltage and the magnitude of the CMV is achieved in this paper. This paper realizes the implementation of a POD-SPWM technique to reduce CMV using a five-level diode clamped inverter for a three phase induction motor. Experimental and simulation results demonstrate the feasibility of the proposed technique.

Key Words: Common-mode voltage, Medium voltage drives, Multilevel inverter, Sinusoidal pulse width modulation

I. INTRODUCTION

Energy saving has never been more important than it is today. In industrialized countries, about 70% of all of the generated electric energy is used by electrical motors. In addition, more than 60% of all the electric energy converted into mechanical energy is consumed by pump and fan drives with induction motors. This fact points out the importance of energy savings in these types of drives. High power pumps and fans need medium-voltage (MV) Drives. At this rating, MV machine designs offer significant cost savings and improvements in the thermal performance of their power components. The switching devices are connected in series to raise the blocking capacity in conventional two-level MV inverters.

The simultaneous switching of series connected fast devices generates voltage with a high dv/dt at the output terminal of the inverter. The combination of a short rise time of the inverter output voltage and a long cable are potentially hazardous for the motor insulation and the cable itself. The phenomenon, which is worsened with a shorter rise time, appears on motors as a leakage current. In motor drive applications, this may lead to electromagnetic interference noise that causes a nuisance trip of the inverter drive, problems with the protection scheme of the supply transformer and interference with other electronic equipment in the vicinity [1]. In addition, a conventional two-level inverter based drive faces problems with the CMV. The CMV is responsible for the shaft voltage and the premature failure of the bearings [2]. It is very important to reduce CMV itself or to limit this voltage to within certain bounds. Some approaches have been presented to cope with the CMV issue include four leg inverters, passive filters, passive elements with active circuitry and dual bridge inverters [3]–[6].

A multilevel inverter can reduce as well as eliminate the CMV. Multilevel inverters have a high number of switching states so that the output voltage is stepped in smaller increments. This allows mitigation of the harmonics at low switching frequencies thereby reducing switching losses. Further, the leakage current is reduced because of the lower dv/dt. The H-bridge multilevel inverter presented in literature has been implemented successfully in industrial applications for high power drives. However, the drawback is that these inverters need a large number of dc sources or isolation transformers on the ac side.

The diode clamped multilevel structure is more suitable for high and medium voltage drives which are directly connected to the utility power system (direct to drive topology). This topology requires only one ac power supply (with a front end active converter and an inverter at the drive end) therefore; it is very attractive for industrial adjustable speed drives (ASD). The CMV reduction technique is well discussed in many papers using a higher level cascaded H Bridge multilevel inverter and a three-level diode (neutral) clamped inverter. The application of a five-level diode clamped inverter to reduce common mode voltage using POD-PWM has not been reported in literature.
Recently, several methods to implement SVM for multilevel converters have been presented. These techniques have been successfully used to reduce as well as cancel the CMV. In [7], a five-level inverter is used to eliminate CMV but the levels of the phase voltages of the star connected load are reduced from five to three and the magnitude of the line voltage transition increases. The same source also reported that the trade off between the magnitude of the CMV and the switching states gives rise to lower order harmonics in the phase voltage. In this paper CMV reduction is proposed using the POD SPWM technique. A five level diode clamped multilevel inverter is fabricated for a three-phase, 3 hp, 400 V induction motor (Fig. 1). Sinusoidal PD-SPWM and POD-SPWM techniques are implemented using a Texas Instruments DSP TMS320F2812. For a switching frequency of 1050 Hz and a modulating index, \(m_a = 0.9 \); simulation and experimental results are provided to validate the implement of the five-level diode clamped inverter.

II. COMMON-MODE VOLTAGE

CMV is defined as the voltage at the star point of the load and the system ground. The magnitude of the CMV depends on grounding system. In this paper, CMV is defined with respect to the dc midpoint (\(V_{com} \) in Fig. 2) because this definition of CMV consists of the well defined edges that are responsible for common mode current.

\[
V_{com} = \frac{1}{3}(V_{ag} + V_{bg} + V_{cg})V_{dc} = V_{ng}. \tag{1}
\]

Since the VSI cannot provide purely sinusoidal voltages and has discrete output voltages synthesized from the fixed dc-bus voltage \(V_{dc} \), the CMV is always different from zero and may take the values of ±\(V_{dc}/6 \) or ±\(V_{dc}/2 \), depending on the inverter switch states selected. During the switch state changes, the CMV changes by ±\(V_{dc}/3 \), regardless of the changing states. The CMV transitions are shown in Fig. 3. The change in CMV from \(-V_{dc}/2 \) to \(-V_{dc}/6 \) constitutes step of \(V_{dc}/3 \). When the level changes from \(-V_{dc}/6 \) to \(V_{dc}/6 \), the change is again \(V_{dc}/3 \).

III. FIVE-LEVEL DIODE CLAMPED INVERTER

The multilevel inverters have become a research hotspot in high-voltage and high-power applications because of their many merits. With the trade off between complexity of implementation and improved performance, multilevel inverters are usually chosen to be between three-level to nine-level [8]. The PWM output voltages of two-, three-, four- and five-level inverter are shown in Fig. 4 (a). Fig. 4 (b) shows the THD in the output voltages of these inverters with the SPWM technique for a modulating index of 0.1 to 1.0. The THD in the output voltage of a multilevel inverter decreases as the levels (\(N \)) of the output voltage increase.
Medium and high power drives designed for conventional two-level topologies use six switching devices in each pole as shown in Fig. 5(a) [9]. This configuration can be converted into a four-level inverter by simply adding clamping diodes as shown in Fig. 5(b) which reduces voltage equalization circuit as well as the dv/dt of inverter output voltage. The output voltage of a four-level inverter is shown in Fig. 4(a).

From Eq. (1), the CMV is one third of the summation of the instantaneous voltages in a three phase system. From Eq. (1), the CMV is one third of the summation of the instantaneous voltages in a three phase system. A N-level inverter produces an N-level output voltage and a three phase system has N_3 voltage combinations. A two-level inverter has eight voltage combinations without zero common mode voltage [7]. A four-level inverter has 64 combinations of three-phase voltage without zero common mode voltage. A five-level inverter has 125 combinations of three-phase voltage. Out of these 125 combinations, only 19 combinations can generate zero CMV. In a four-level three phase inverter, the summation of the instantaneous voltages has a definite value other than zero. Therefore a four-level inverter is unable to eliminate the CMV because zero CMV exists only in multilevel inverters with an odd number of levels. If the circuit is modified to a three-level diode clamped, eight switching devices (two additional) are required in each pole of the inverter (Fig. 5(c)). Three-level inverters can be fabricated using four devices but in medium voltage drives to achieve the required output voltages of 3.4 kV and 4.16 kV, which means a dc-link voltage above 6.0 kV, the use of three-level technology with existing device ratings is not sufficient, therefore, internal series connection is necessary [10]. A five-level inverter can also be configured using eight switching devices in each pole as shown in Fig. 5(d). This configuration gives the advantages of a low dv/dt, a low harmonics magnitude and a high quality output at a low switching frequency.

The drawback of the additional requirement of a clamping diode can be justified by eliminating the equalization circuit, the lower magnitude of the harmonics at a low switching frequency, less THD at a low switching frequency, low switching losses, a low dv/dt, a reduced or zero CMV and a smaller size sine filter, dv/dt filter and/or CMV filter. This topology is also suitable for retrofitting. In this paper, a five-level diode clamped multilevel inverter is explored to reduce CMV.

IV. MODULATION TECHNIQUES

A fundamental issue in the control of a multilevel converter is to determine the switching angles (times) so that the converter produces the required fundamental voltage and does not generate specific lower order dominant harmonics. The selective harmonic elimination PWM (SHEPWM) technique for multilevel inverters has the theoretical potential to achieve the highest output power quality at a low switching frequency in comparison to other modulation methods. With the same number of stages as fundamental switching, SHEPWM provides more degree of freedom to eliminate the more specific lower order harmonics without increasing the amount of hardware. The main challenge associated with the SHEPWM technique is to obtain the analytical solution of the system of nonlinear transcendental equations that contains a trigonometric turn providing multiple sets of solutions.

Carrier based modulation techniques control each phase leg of an inverter separately and allow the line to line voltage to be developed implicitly. In contrast, SVM identifies each switching state of a multilevel inverter as a point in complex space. Then a reference phasor rotating in the plane at the fundamental frequency is sampled within each switching period, and the nearest three inverter switching states are selected with duty cycles calculated to achieve the same volt-second average as the sampled reference phasor. This directly controls the inverter line to line voltages, and only implicitly develops the phase leg voltages. Conventional two-level hysteresis current control operates by comparing a current error (i.e., the difference between the measured and the demanded phase currents) against a fixed hysteresis band. When the error falls below the lower hysteresis limit, the inverter phase-leg output is switched to high, and when the error rises above the upper hysteresis limit, the inverter output switches to low. Unlike conventional two-level inverters, multilevel inverters use numerous dc levels for the synthesis of their output voltage waveforms. The hysteresis current control of multilevel inverters therefore requires additional logic to select an appropriate voltage level at any time instant so as to confine the current error to within the hysteresis band.

The SPWM technique does not require computation therefore, this technique is easy to implement on-line in a digital controller. The multilevel carrier based SPWM for N-level inverter uses a set of $N-1$ adjacent level triangular carrier waves with the same peak-to-peak amplitude and the same frequency. Each carrier wave has a distinct dc bias level such that the disposition of all the waveforms together fit the vertical span of the reference (V_{m} where $i = a, b, c$) as shown in Fig. 6. Three alternative carrier disposition SPWM strategies from [10] are as follows:

i) All of the carriers are in phase disposition (PD) (Fig. 6(a)).

ii) All of the carriers above the zero reference are in phase, but in opposition to those below (POD). (Fig. 6(b)).

iii) All of the carriers are alternatively in opposition disposition (A POD) (Fig. 6(c)).

Fig. 7 illustrates the carriers, the reference waveform and the output voltage of five-level inverter. The four carriers (C_1, C_2, C_3, and C_4) are used for a five-level inverter. The reference (modulating) waveform V_{m} is compared with the carrier waveforms and the switching patterns are developed to get the required voltage at the inverter terminal as:

$$V_{ig} = \begin{cases} \frac{V_g}{3} : & V_{m}(t) > V_{c4}(t) \text{ and } S_i = 2 \\ \frac{V_g}{3} : & V_{c4}(t) > V_{m}(t) > V_{c3}(t) \text{ and } S_i = 1 \\ 0 & V_{c3}(t) > V_{m}(t) > V_{c2}(t) \text{ and } S_i = 0 \\ -\frac{V_g}{3} : & V_{c2}(t) > V_{m}(t) > V_{c1}(t) \text{ and } S_i = -1 \\ -\frac{V_g}{3} : & V_{c1}(t) > V_{m}(t) \text{ and } S_i = -2 \end{cases}$$

When the frequency index m_f (the ratio of the carrier frequency to the reference waveform frequency) is high,
there are no substantial differences among the three carrier dispositions. This is because all of the harmonics are shifted to high frequencies which can be easily filtered. The comparison becomes significant when m_f is not sufficiently high. In this case the PD-SPWM seems the least interesting option due to the large magnitude of the harmonics at the carrier frequency in the phase voltage.

The fundamental and harmonics voltages in a three phase multilevel inverter with $m_f = 21$ is studied for PD-SPWM and POD-SPWM. 3-D phasor representations of this are shown in Fig. 8. The horizontal axis represents the frequency. At the pole and line voltages of a three-phase with amplitude, the phase shift and phase sequence at the fundamental frequency and the 19th, 21st and 23rd harmonics are shown in Fig. 8. In PD-SPWM, the harmonics of those are cophasal in the output voltage of the inverter as shown in Fig. 8 (a) and will not be present in the line voltage. Therefore, PD-SPWM becomes popular due to a much lower value of the other harmonics in a three-phase system. The POD-SPWM output voltage has no carrier harmonics but it has the first side band harmonics i.e. 20th and 22nd. These side band harmonics are not cophasal, therefore, they appear in the line voltage. This is shown in the phasor diagram in Fig. 8 (b). The side band harmonics in POD-SPWM have a higher magnitude when compared to the side band harmonics that appear in PD-SPWM. Hence, the THD in the line voltage of a POD-SPWM controlled inverter is higher than the THD in an inverter controlled with PD-SPWM.

V. CMV REDUCTION BY POD-SPWM

In this section the POD SPWM technique is discussed to reduce common mode voltage. The multilevel carrier based PWM for a N-level inverter uses a set of $N-1$ adjacent level triangular carrier waves with the same peak-to-peak amplitude and frequency. Each carrier wave has a distinct dc bias level such that the disposition of all of the waveforms together fit the vertical span of the modulating signal and none of them overlaps each other. As shown in Fig. 9, four carriers are used for a five-level inverter. The modulating/reference waveform is compared with the carrier waveforms and the switching patterns are generated using (2). The minimum step size of the CMV is $V_{dc}/(3(N-1))$ with the SPWM technique. In PD-SPWM, the CMV is reduced in the step of $V_{dc}/12$ at the crossing of each reference wave with the rising edge of the carrier signal as shown in Fig. 9. The CMV changes in three steps (maximum) and has four (maximum) distinct CMV levels in a half period of T_s during the rising edge of the carrier waveform. Similarly, the CMV is increased in the step
Fig. 8. Three dimensional phasor representation of fundamental and harmonics voltage in three-phase system. (a) PD-SPWM. (b) POD-SPWM.

Fig. 9. Reference phase voltages, carrier waveforms and CMV when PD-SPWM is applied switching to five-level inverter.

Fig. 10. Reference phase voltages, carrier waveforms and CMV when POD-SPWM is applied to five-level inverter.

In POD-SPWM, in the first half of the carrier wave, the carrier waves have a positive slope (rising edge) above the reference axis where as below the reference axis the carrier waves have a negative slope (falling edge). Similarly, in the second half of the carrier wave, the carrier waves have a falling edge above the reference axis and a rising edge below the reference axis. In a three-phase system, there are three reference signals; therefore, three crossings with the carrier signals are expected in every half cycle of the carrier wave. In each half cycle of the carrier wave, there are either two crossings above the reference axis and one crossing below the reference axis or one crossing above the reference axis and two crossings below the reference axis. The CMV is reduced in the step of $V_{dc}/12$ at the crossing of each reference wave with the rising edge of the carrier signal above the reference axis as shown in Fig. 10 and it is reduced in the step of $V_{dc}/12$ at the crossing of each reference wave with the falling edge of the carrier signal below the reference axis. In PD-SPWM, the CMV increases in same direction (positive or negative) at the crossing of the reference wave with the carrier signal in each half cycle of a carrier period. Whereas, in POD-SPWM, the CMV has two transitions in one direction and one transition in the other. The CMV varies within the band of $(\pm 2V_{dc}/6) \pm (V_{dc}/6)$ in POD-SPWM as shown in Fig. 10. The POD-SPWM technique is implemented for a five-level inverter.
VI. SIMULATION AND EXPERIMENTAL RESULTS

Simulation results using MATLAB are provided in this section to verify the concepts and experimental results are provided to confirm the value of the proposed algorithms. A three phase five-level diode clamped multilevel inverter is fabricated in the laboratory for a three-phase, 400V, 50 Hz, 3 hp, star/delta induction motor. The output voltage of each rectifier is 162.5 V. This inverter is controlled by the SPWM technique for $m_a = 0.9$, $m_f = 21$ at 50 Hz using asymmetrical sampling. A DSP TMS320F2812 is used as a controller and it has a 32 bit fix point, 150 MHz processor which performs 150 MIPS. A LeCroy WaveRunner 6030 digital storage oscilloscope (DSO) is used for measurements and analysis.

Initially the five-level inverter is operated as a two-level inverter by switching all of the upper switches simultaneously to get a $+V_{dc}/2$ voltage at the output terminal and all of the lower four switches are turned on simultaneously to get $-V_{dc}/2$ at the output. Multilevel inverters have an inherent ability to reduce common mode voltage. Fig. 11 shows the CMV developed within an induction motor when connected to a five-level diode clamped inverter. The inverter is controlled by the PD-SPWM technique with a carrier frequency of 1050 Hz and a modulating index of 0.9. In comparison, the experimental results with a two-level inverter, from Fig. 12, show a significant reduction in the magnitude of CMV and have good agreement with the simulation results. The maximum magnitude of the CMV is found to be within the band of $\pm V_{dc}/6$ as presented in Fig. 12 (a) using the PD-SPWM technique. It changes with a step of $V_{dc}/12$. The PD-SPWM technique cannot further reduce the CMV because its switching states are not controllable. The magnitude of the CMV (maximum) is reduced to $\pm V_{dc}/12$ using the APOD-SPWM (Fig. 12.(b)) and POD-SPWM (Fig. 12.(c)) techniques. It changes with a step of $V_{dc}/12$. However, the THD in the line voltage is higher with the APOD-SPWM technique. Comparisons of the THD in the pole voltage and the line voltage, and the CMV are given in Table I.

Table I: Comparision of THD in Pole Voltage, Line Voltage and CMV

<table>
<thead>
<tr>
<th>SPWM Technique</th>
<th>Pole Voltage THD</th>
<th>Line Voltage THD</th>
<th>CMV</th>
</tr>
</thead>
<tbody>
<tr>
<td>PD</td>
<td>24.97%</td>
<td>15.01%</td>
<td>$\pm V_{dc}/6$</td>
</tr>
<tr>
<td>POD</td>
<td>24.25%</td>
<td>20.03%</td>
<td>$\pm V_{dc}/12$</td>
</tr>
<tr>
<td>APOD</td>
<td>26.24%</td>
<td>24.44%</td>
<td>$\pm V_{dc}/12$</td>
</tr>
</tbody>
</table>

Fig. 13 shows the experimental result with the PD-SPWM and POD-SPWM techniques. This is implemented in software without adding any hardware. With the PD-SPWM technique, the CMV changes a maximum of six times with a maximum of seven segments and four discrete levels with two zero voltage levels during a carrier period. The POD-SPWM technique reduces the nonzero CMV levels and increases the zero CMV levels in a carrier period.

VII. CONCLUSION

A conventional two-level inverter generates CMV which is responsible for a leakage current and the premature failure of motor bearings. A multilevel inverter has the inherent ability to reduce CMV. Simulation and experimental results prove
that the PD-SPWM technique reduces the magnitude of CMV to $V_{dc}/6$ and that it has a minimum THD in the line voltage and current. The POD-SPWM technique further reduces the magnitude of CMV to $V_{dc}/12$ at the cost of an increase in the THD in the line voltage and current. A multilevel inverter reduces the dv/dt in its output voltage and therefore the leakage current is also reduced.

REFERENCES

Mohan M. Renge received his M.E. in Electrical Engineering from the Walchand College of Engineering, Sangli, India, in 1988. He received his Ph.D. from the Visvesvaraya National Institute of Technology, Nagpur, India, in 2010. He is currently working as a Professor in the Department of Electrical Engineering, Shri Ramdeobaba Kamla Nehru Engineering College, Nagpur, India. His current research interests include electric drives, multilevel converters and FACTs devices.

Hiralal M. Suryawanshi was born in Nagpur, India, on January 1, 1963. He received his B.E. in Electrical Engineering from the Walchand College of Engineering, Sangli, India, in 1988 and his M.E. in Electrical Engineering from the Indian Institute of Science, Bangalore, India, in 1994. He received his Ph.D. from Nagpur University, Nagpur, India, in 1998. He is a member of IEEE, IEE and MIE(I). He is currently working as a Professor in the Department of Electrical Engineering, Visvesvaraya National Institute of Technology, Nagpur, India. He was awarded the IETE - Bimal Bose Award - 2009 for a distinguished contribution, and an Outstanding Achievements Award - 2007 by the Energy Society of India (Govt. of Pondicherry) and the Pondicherry Engineering College, India. His current research interests are in the field of power electronics, emphasizing developmental work in the areas of resonant converters, power factor correction, active power filters, FACTs Devices, multilevel converters and electric drives.