Primary Side Constant Power Control Scheme for LED Drivers Compatible with TRIAC Dimmers

Junming Zhang*, Ting Jiang+, Lianghui Xu+, and Xinke Wu+

*+College of Electrical Engineering, Zhejiang University, Hangzhou, China

Abstract

This paper proposes a primary side constant power control scheme for TRIAC dimmer compatible LED drivers. The LED driver is a Flyback converter operated in boundary conduction mode (BCM) to minimize the switching loss. With the proposed control scheme, the input power of the Flyback converter can be controlled by the TRIAC dimming angle, which is not affected by AC input voltage variations. Since the output voltage is almost constant for LED load, the input current can be changed by controlling the input power with a given conversion efficiency. The isolated feedback circuit is eliminated with the proposed primary side control scheme, which dramatically simplifies the whole circuit. In addition, the input current automatically follows the input voltage due to the BCM operation, and the resistive input characteristic can be achieved which is attractive for TRIAC dimming applications. Experimental results from a 15W prototype verify the theoretical analysis.

Key words: Flyback, LED driver, PFC, Primary side control, TRIAC

I. INTRODUCTION

With the rapid development of high brightness LED technologies, both the performance and the cost of phosphor converted white LEDs (WLED) has improved significantly. The efficacy (light output per watt) of WLED is now competitive with compact fluorescent lamps [1], [2]. Solid state lighting technology using LEDs as an efficient lighting source for commercial and residential lighting has recently become more attractive.

The most convenient way to use LED lighting is to replace existing lighting fixtures directly to reduce cost and avoid waste [3], [4]. The replacement of incandescent lamps with LED bulbs is already ongoing in many countries to reduce carbon emissions and save energy. However, there are still a lot of new issues during this direct replacement.

The most important issue of replacement is related to dimming [5], [6]. Although there are quite a lot of dimming methods, the dominant domestic and architectural dimming systems are based on TRIAC (phase-cut) dimmers. A traditional lighting system using a TRIAC dimmer and an incandescent bulb is shown in Fig.1. A variable resistor R2 can be used to adjust the dimming angle (firing angle or phase angle) 0, as shown in Fig. 1, i.e. the energy delivered to the lamp. For the proper operation of a TRIAC, it has minimum latching current and holding current requirements. When a TRIAC is triggered, the voltage across the device must be sufficient to enable the flow of the minimum latching current. After the device has been latched, a continuous holding current must flow through the device in one direction [7].

An incandescent lamp is purely resistive and works well with a TRIAC dimmer because the lamp resistance can provide sufficient damping to the parasitic ring and holding current to the TRIAC dimmer after it has been triggered.

However, LED lamps are totally different from purely resistive bulbs, which results in a considerable difference in the way the dimmer works. Since a LED should be powered by a DC current, there is a LED driver to convert the AC input to the required DC output. The conventional low power LED driver has an input rectifier bridge and a capacitive input filter as shown in Fig. 2. Therefore, the current is drawn from the input only during a very short period when the input voltage exceeds the DC bus voltage, and it drops below the holding current quickly. It is not possible to control the TRIAC conduction angle in such a circuit, which may cause issues like flickering, audible noise, improper dimming function or even damage of the lamp or dimmer [5]–[6]. Special design efforts are necessary to make LED drivers compatible with TRIAC dimmers.
To meet safety requirements, the output of a LED driver is usually galvanic isolated. The TRIAC dimming signal is detected in the transformer primary side while the output current is sensed in the secondary side. An extra galvanic isolation circuit is required to implement the dimming function and the output current regulation, which further complicates the whole circuit.

In order to further reduce cost and size, regulation of the output current in the primary side is preferred. Many primary side control schemes have been proposed for the Flyback topology [13]-[20]. Most of them are only suitable for discontinuous conduction mode (DCM) operation with a relatively stable DC input, and the primary side peak current is usually fixed in order to achieve a constant output current [13]-[16]. Therefore, they are not able to achieve a high power factor at the same time, which makes them unsuitable for TRIAC dimming applications.

In [17]-[19], primary side current control methods based on switch peak current detection were proposed for Flyback PFC converters. These methods can achieve output current regulation and a high power factor. The most popular industry solutions for TRIAC compatible primary side controlled LED drivers with PFC are based on a similar concept. However, the output current accuracy is affected by the internal delay time and the current rising slew rate [19]-[21]. The output current accuracy with a different delay time is also discussed in [19]. In [20], a more accurate primary side current control method based on the average switch current was proposed. However, the delay time of the zero current detection will affect the output current accuracy.

Based on the issues discussed above, this paper proposes a new primary side constant power control scheme for LED driver applications based on the Flyback topology, which features TRIAC dimming compatible, resistive input characteristic, no isolation feedback circuit and a nearly constant output power. With input voltage and dimming angle signal feedforward, the output current can be controlled and adjusted by the dimming angle, and no secondary side current feedback is required, which dramatically simplifies the whole circuit. The Flyback converter is operated in BCM to minimize the switching loss. The detailed operation principle will be illustrated in section II. The design considerations are given in section III. Section IV will present the experimental results from a 15W prototype with a TRIAC dimmer.

II. PRINCIPLE OF OPERATIONS

In order to design a LED driver compatible with a TRIAC dimmer, the input characteristic of the LED driver should be resistive. Generally, the conventional PFC control can make the LED driver look like a pure resistor from the AC input side, which helps provide the holding current of the TRIAC dimmer. For low power LED driver applications, the Flyback converter in DCM or BCM operation is widely adopted due to its simplicity and inherent high input PF. A conventional Flyback PFC converter with output current feedback control

![Figure 1: Conventional incandescent bulb with TRIAC dimmer.](image1)

![Figure 2: Conventional LED driver with TRIAC dimmer.](image2)
A. Peak Current Mode Control

Based on the power stage shown in Fig. 4, the diagram of the proposed primary side control scheme for PCM control is shown in Fig. 5. The rectified input voltage \(V_d(t) \) is used for the input voltage feedforward, the current waveshape and the TRIAC dimming angle detection. These three signals are fed to a multiplier to generate a current reference signal \(I_{REF}(t) \) to set the peak current value of the switch current \(I_{sw} \). The transformer third winding voltage signal \(V_3 \) is also used for zero current detection and duty cycle compensation. The steady state waveforms of the Flyback PFC converter in boundary conduction mode (BCM) operation are shown in Fig. 6.

While \(Q_1 \) is on, the primary side current (same as the switch current \(I_{sw} \)) increases. As soon as \(I_{sw} \) reaches the reference \(I_{REF}(t) \), switch \(Q_1 \) turns off. The magnetizing current is transferred to the secondary side and decreases linearly. Once the current reaches zero, \(Q_1 \) turns on again. The zero current detection (ZCD) block shown in Fig. 5 is used to detect when the secondary side current reaches zero based on the third winding voltage signal \(V_3 \). Once the secondary side current reaches zero, \(V_3 \) starts to decrease from the reflected output voltage due to resonance between the transformer magnetizing inductor and the circuit parasitic capacitors, which can be used for ZCD.

Fig. 7 shows the circuit implementation and the related waveforms of the control blocks shown in Fig. 5. \(V_{ac}(t) \) is the input voltage waveshape signal derived from the rectified input voltage \(V_d(t) \) by a simple resistor divider. The feedforward voltage \(V_f \) is the average value of \(V_{ac}(t) \), which is determined by the AC input voltage amplitude and the dimming angle \(\theta \). A low pass filter (LPF) can be used to obtain \(V_f \) from \(V_{ac}(t) \) as shown in Fig. 7(a). The dimming angle detection circuit detects the TRIAC dimming angle \(\theta \) and generates a dimming angle voltage signal \(V_{\theta} \) proportional to \(\theta \). The comparator compares the rectified input voltage signal \(V_{ac}(t) \) with a small threshold (0V shown in Fig. 7) and generates a pulse signal \(V_{CMP} \). The \(V_{CMP} \) signal has a fixed amplitude \(V_c \) and its pulse width is proportional to the dimming angle \(\theta \). The dimming angle voltage signal \(V_{\theta} \) is the average value of \(V_{CMP} \) which is also proportional to \(\theta \).
Based on Fig 7, the expressions \(V_d(t) \), \(V_i \), and \(V_{ac}(t) \) are given below.

\[
V_d(t) = \begin{cases}
0, & \text{if } 0 < \omega t \leq \theta \\
V_p \cdot \sin(\omega t), & \text{if } \theta < \omega t \leq \pi
\end{cases}
\]

(1)

\[
V_{ff} = \frac{1}{\pi} \int_0^\pi V_d(t) \cdot d(\omega t) = k_v \cdot V_p \cdot \frac{1 + \cos(\theta)}{\pi}
\]

(2)

\[
V_i = V_c \cdot \frac{\pi - \theta}{\pi}
\]

(3)

\[
V_{ac}(t) = k_v \cdot V_d(t)
\]

(4)

where \(V_p \) is the peak value of the AC input voltage; \(k_v \) is the gain of the resistor divider shown in Fig 7; \(\omega \) is the input line frequency in rad/s; and \(V_c \) represents the fixed voltage amplitude of the pulsed dimming angle detecting signal.

The waveform signal \(V_{ac}(t) \), the input voltage feedforward voltage \(V_{ff} \), the dimming angle signal \(V_i \) and the duty cycle compensation \(K_{df}(t) \) are fed to the multiplier to generate the current reference signal \(I_{REF}(t) \). The current reference can make the input current follow the input voltage waveform and achieve a constant input power with a given dimming angle and various input voltages, which is given as:

\[
I_{REF}(t) = k_m \frac{V_{ac}(t) \cdot V_i^m \cdot K_D(t)}{V_{ff}^2}, \quad m=2 \text{ or } 3
\]

(5)

In (5), \(k_m \) is the constant multiplier gain and \(m \) is the coefficient for the dimming angle signal. Unlike the conventional Boost converter, the input current of the Flyback topology is discontinuous. The duty cycle compensation factor \(K_D(t) \) is used to compensate the difference between the average input current and the peak input current. From Fig 6, \(K_D(t) \) is given as:

\[
K_D(t) = \frac{2(T_m + T_{af} + T_d)}{T_m}
\]

(6)

where \(T_m \) is the switch on time and \(T_{af} \) is the secondary side current decreasing time. \(T_d \) is the delay time between the secondary side current drop to zero and the switch turn on, which depends on the ZCD detecting threshold and the circuit delay. In conventional BCM operation, the delay is usually half the parasitic resonant period in order to minimize the turn on switching loss, which is usually small when compared to the switching period. For the sake of simplicity, this delay time is neglected and \(K_D(t) \) can be simplified as:

\[
K_D(t) = \frac{2(V_i(t) + N \cdot V_o)}{N \cdot V_o}
\]

(7)

where \(N \) is the transformer turn ratio and \(V_o \) is the output voltage, which can be sampled from the auxiliary winding voltage \(V_i \) during the flyback period.

Based on (4) to (7), assuming that the input peak current follows the reference current given in (5), the theoretical input power is given in (8), which is also shown in Fig 8(b).

\[
P_i = \frac{1}{\pi} \int_0^{\pi} V_i(t) \frac{I_{REF}(t)}{K_D(t)} d(\omega t)
\]

(8)

\[
= \frac{V_i^m \cdot V_o \cdot (\pi - \theta)^m}{(1 + \cos \theta)^2} \cdot \frac{\pi - \theta + \sin(2\theta)}{2} \cdot \pi^{m-1}
\]

It is clear that the average input power is not affected by the AC input voltage amplitude and can be controlled by the dimming angle \(\theta \).

In some conventional Boost PFC controllers, such as the UC3854, it already utilizes input voltage feedforward to achieve the constant maximum input power limitation at
different AC input voltages. In TRIAC dimming applications with the Flyback topology, it is no longer effective. Since the input voltage feedforward signal is related to the input voltage amplitude and the dimming angle, the dimming angle signal \(V_f \) should also be included in the current reference to achieve a constant input power at different input voltages.

Fig. 8(a) shows the input power versus the dimming angle \(\theta \) with the input voltage feedforward only and with dimming angle signal feedforward only. From Fig 8(a), it can be seen that the input power varies with the input voltage. However, it decreases with an increased dimming angle if there is only a dimming angle signal feedforward. With the input voltage signal feedforward only, the input power increases with an increased dimming angle because the input voltage feedforward signal \(V_f \) is also affected by the dimming angle \(\theta \) as given in (2). Therefore, there should be a signal that contains the dimming angle information to make the input power decreases with an increased dimming angle \(\theta \). Fig. 8(b) shows the average input power with the proposed feedforward control scheme as given in (8) with \(m=2 \) and \(m=3 \), respectively. It is clear that the input power varies almost linearly with the dimming angle \(\theta \) and it is not affected by the input voltage amplitude. To simplify the multiplier calculation, \(m=2 \) is usually preferred in practical applications.

The duty cycle compensation is related to the Flyback topology itself. Fig 9 shows the average input power with and without the duty cycle compensation. The theoretical input power decreases with an increase in the input voltage if there is no duty cycle compensation. It is true that the Flyback converter only draws input current when the primary side switch is on. In addition, the duty cycle of the primary side switch decreases with the input voltage.

B. Voltage Mode Control (Constant on Time Control)

The PCM control limits the switch current with a calculated current reference \(I_{ref}(t) \) based on feedforward signals. In order to reduce the complexity of the multiplier shown in Fig 5, constant on time control can be used. Constant on time control does not need current waveshape signals. The control circuit diagram is shown in Fig 10, and it differs slightly from Fig 5. The switch current \(I_s \) is replaced by a sawtooth voltage signal generated by a current source and a capacitor. As soon as the voltage on the capacitor reaches the control voltage, the switch turns off. The switch turns on again when the secondary side current reaches zero. The converter is operated in BCM mode and the steady state waveforms are shown in Fig. 6.

The control voltage to determine the on time is given in (9). The switch on time is given in (10). The peak current is automatically proportional to the input voltage and the on time. When compared to the PCM control, the constant on control can be treated as a voltage mode control.

\[
V_{ctrl}(t) = k_m \cdot \frac{V_f^2 \cdot K_d(t)}{V_f} \quad (9)
\]

\[
T_{on}(t) = \frac{V_{ctrl}(t) \cdot C_t}{I_{charge}} \quad (10)
\]

where \(C_t \) is the timing capacitor to set the on time and \(I_{charge} \) is the charge current for the timing capacitor, as shown in Fig 10, which can be treated as constant.

The input power can be derived based on (2), (3), (7), (9) and (10), which is given as:

\[
P_{in} = \frac{1}{\pi} \int_0^\pi \frac{V_d(t) \cdot V_f(t) \cdot T_{on(t)}}{L_p} \cdot \frac{1}{K_p} \cdot d(\omega t)
\]

\[
= \frac{V_f^2 \cdot k_m \cdot (\pi - \theta)^2}{2 \cdot (1 + \cos \theta)^2} \cdot \frac{\pi - \theta + \sin(2\theta)}{2 \cdot \pi \cdot L_p} \cdot \frac{C_t}{I_{charge}}
\]
where L_m is the transformer magnetizing inductance.

The input power characteristic is exactly the same as that shown in Fig. 8(b) with $n=2$ since they have the exact same circuit operation. Comparing (11) and (8), although the input power can be controlled by the dimming angle θ, the input power for constant on time control is also affected by the tolerance of L_p. This is not preferred for constant input power control since the inductance usually has a large tolerance in real applications, such as ±10%.

III. DESIGN CONSIDERATIONS

Based on the analysis given above, the PCM control is attractive due to the fact that the input power is not affected by the primary side inductance tolerance. In the following analysis, the control diagram shown in Fig. 5 will be used.

With the assumption that the output voltage (LED forward voltage drop) is constant and the converter is ideal, the output current can be regulated by regulating the input power. However, the LED forward voltage may have some tolerance, which results in output current tolerance even when the input power is the same. The voltage compensation can be applied to adjust the input power based on the difference between the actual output voltage and the nominal output voltage. Fig. 11 shows the circuit diagram of the output voltage compensation. The output voltage is sampled from the third winding voltage V_o after a short delay $T_{\text{S&H}}$ when Q_2 is off. Thus the parasitic ring caused by the leakage inductance will not affect the output voltage sampling accuracy. The ratio of the sampled output voltage to the reference voltage is the output voltage compensation factor K_{oc}. This can be used as an input of the multiplier shown in Fig. 5 to adjust the current reference. To simplify the multiplier, the output voltage compensation factor can be merged into the duty cycle compensation factor given in (7). The new duty cycle compensation factor $K_D'(t)$ can be expressed as:

$$K_D'(t) = \frac{V_d(t) + N \cdot V_o}{N \cdot V_{\text{REF}}}, \quad V_o = \frac{V_d(t) + N \cdot V_o}{N \cdot V_{\text{REF}}}$$

(12)

where V_{REF} is the reference for the nominal output voltage.

Therefore, once the output voltage is higher than the nominal value, the input power increases proportionally, which keeps the output current constant.

IV. EXPERIMENTAL RESULTS

To verify the proposed constant power control scheme, a LED driver with a 30V/0.5A output and an AC 160~265Vrms input for TRIAC dimming applications is designed and built. Since there is no commercial integrated circuit (IC) with the desired control function, shown in Fig. 5, it must be built using external circuits. In the prototype, a conventional L6562 PFC controller is used to implement the BCM operation. A S12XS128 microcontroller (MCU) from Freescale is used as an analog multiplier to generate the desired current reference since it is in line frequency.

The bus voltage, the dimming angle signal and the third winding voltage signal are fed to the MCU A/D input. The current reference is calculated by (5) and the duty cycle compensation $K_D'(t)$ is calculated by (12) considering output voltage compensation. The system diagram of the prototype is shown in Fig. 12. The current reference generated by the MCU is sent to an input of the L6562’s internal multiplier and the other input of the multiplier is fixed to 3V to set the
Damp the parasitic ring when the TRIAC turns on. This can cause undesirable behaviors such as flickering or a limited dimming range. An extra damping circuit is used to overcome this issue. A passive damper circuit comprised of \(C_d \) and \(R_d \) is used in the prototype, as shown in Fig. 12. The damping capacitance \(C_d \) should be 3 to 5 times the capacitance of \(C_{in} \). \(R_d \) was selected to minimize the parasitic ringing. In the prototype, the value of \(C_{in}, C_d \) and \(R_d \) are 68nF, 220nF and 220 Ohm, respectively.

Fig. 13 shows the chopped AC input voltage \(V_{in} \) and the line input current \(I_a \) at different dimming angles. It is clear that the input current follows the input voltage and the input characteristic is resistive. In addition, there is no severe parasitic ring with the proper passive damper in the circuit. Due to the limited charge time of the RC inside the TRIAC, the maximum and minimum dimming angles are limited. The minimum dimming angle (maximum output) that can be achieved is 20° and the maximum dimming angle is around 160°.

Fig. 14 shows the input power \(P_{in} \) and output power \(P_{out} \) versus the input voltage \(V_{in} \) under the no dimming condition. From Fig. 14, it is clear that \(P_{in} \) is almost constant with the proposed control scheme. It can also be seen that \(P_{out} \) is proportional to \(P_{in} \). The maximum input power variation in the entire input range is around 5.4%. The output current also follows the same shape of the input power, as shown in Fig. 15. The maximum output current difference is around 5.5%, which is almost same as that of \(P_{in} \). For comparison, the output current variation with the conventional feedback control shown in Fig. 3 is also given in Fig. 15. It is clear that the output current variation is very small when using the conventional isolated feedback circuit. However, it needs an opto-coupler which increases the cost and complexity.

The measured efficiency at the no dimming condition is shown in Fig. 16. The variation is less than 2% in the entire input range, which is quite small as expected. Fig. 17 shows the power factor (PF) versus the input voltage under the no dimming condition. The PF is well above 0.9 in the entire input range, which can meet the related regulations. Fig. 18 shows the dimming curve at different input conditions. For comparison, the theoretical dimming curve is also shown in Fig. 18. It is clear that these dimming curves match each other quite well when the dimming angle is small. When the dimming angle is increased to a certain level, the output current begins to decrease a little faster due to converter efficiency decreases with a reduced output power and the saturation of the current reference generated by the MCU.

Table 1 shows the measured dimming curve at different input voltages. There is small output current fluctuation, which is mainly caused by dimming angle detection errors at different input voltages.

![Prototype circuit diagram](image)

Fig. 12. Prototype circuit diagram.

TABLE I

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Symbol</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>AC input voltage</td>
<td>(V_{in})</td>
<td>160-265V (RMS)</td>
</tr>
<tr>
<td>Output</td>
<td>(V_o/I_o)</td>
<td>30V/0.5A</td>
</tr>
<tr>
<td>Primary side inductance</td>
<td>(L_p)</td>
<td>1mH</td>
</tr>
<tr>
<td>Transformer Core</td>
<td></td>
<td>EE25/26/7</td>
</tr>
<tr>
<td>Transformer turns ratio</td>
<td>(N_p/N_s/N_d)</td>
<td>90:30:12</td>
</tr>
<tr>
<td>Primary side switch</td>
<td>(Q_1)</td>
<td>P10NK70J</td>
</tr>
<tr>
<td>Secondary rectifier</td>
<td>(D_s)</td>
<td>F10LC20U</td>
</tr>
<tr>
<td>Output capacitance</td>
<td>(C_o)</td>
<td>2000μF/35V</td>
</tr>
<tr>
<td>Current sense resistance</td>
<td>(R_1)</td>
<td>0.5Ω</td>
</tr>
<tr>
<td>TRIAC dimmer</td>
<td></td>
<td>Siemens STG0 752</td>
</tr>
</tbody>
</table>
Fig. 13. V_{in} and line current I_{in} at different dimming angle.

Fig. 14. P_{in}, P_{out} vs. V_{in} @ $\theta=0^\circ$.

Fig. 15. I_o vs. V_{in} @ $\theta=0^\circ$.

Fig. 16. Efficiency vs. V_{in} @ $\theta=0^\circ$.

Fig. 17. PF vs. V_{in} @ $\theta=0^\circ$.

Fig. 18. I_o vs. dimming angle θ (rad).

Fig. 19. P_{in} vs. V_{in} at different dimming angle θ.

Fig. 20. I_o vs. V_{in} at different dimming angle θ.

Fig. 21 shows the LED voltage and current waveforms. The LED current has a line frequency ripple which depends on the output filter capacitance. The larger the capacitance, the smaller the current ripple.

The minimum switching frequency of the prototype at the no dimming condition and a low AC input (160Vrms) is around 100 kHz, and the maximum switching frequency is limited by the L6562 internal maximum switching frequency limitation.
V. CONCLUSIONS

This paper proposes a primary side constant power control scheme for TRIAC dimmable LED drivers. With the proposed control scheme, the input power can be controlled by the TRIAC dimming angle and it is not affected by AC input voltage variations. Therefore, the output power can also be controlled with a given conversion efficiency. For the LED load, since the output voltage is nearly constant, the output current can be changed by controlling the input power. In addition, a conventional isolated feedback circuit is not needed, which dramatically simplifies the whole circuit. Considering the output voltage variation in practical applications, the voltage compensation method is also presented to improve the performance of the proposed feedforward control scheme. The implementation of the proposed primary side control scheme for a BCM Flyback converter with PCM control and constant on time control is analyzed. A 15W prototype based on PCM control is implemented and tested. The experimental results from the prototype verify the theoretical analysis and the advantages mentioned above.

Since a lot of primary side control schemes for LED driver applications have been proposed in recent years, a comparative study of these control schemes based on a common base is necessary and will be a future work. This study should consider the output current accuracy, sensitivity to parameter tolerances, delay time effect, cost, efficiency, etc.

ACKNOWLEDGMENT

This work is supported by the National Nature Science Foundation of China under grant 50907061, 51277161, 51007081, and the Fundamental Research Funds for the Central Universities (No. 2013QNA4022).

REFERENCES

Junning Zhang received his B.S., M.S. and Ph.D. in Electrical Engineering from Zhejiang University, Hangzhou, China, in 1996, 2000 and 2004, respectively. He is currently an Associate Professor in the College of Electrical Engineering, Zhejiang University. His research interests include power electronics system integrations, power management, high performance DC/DC converters and inverters.

Ting Jiang was born in Sichuan, China, in 1989. She received her B.S. in Electrical Engineering from Zhejiang University, Hangzhou, China, in 2011, where she is currently working toward her M.S. in Electrical Engineering. Her current research interests include the various current sharing methods for multi-channel LED drivers.

Lianghui Xu was born in Anhui, China, in 1988. He received his B.S and M.S. in Electrical Engineering from Zhejiang University, Hangzhou, China, in 2008 and 2011, respectively. He is currently an Engineer in the Electric Power Research Institute, Nanjing, China.

Xinke Wu was born in Jiangsu, China, in 1978. He received his B.S. and M.S. in Electrical Engineering from the Harbin Institute of Technology, Harbin, China, in 2000 and 2002, respectively. He received his Ph.D. in Electrical Engineering from Zhejiang University, Hangzhou, China, in 2006. He is currently an Associate Professor in the College of Electrical Engineering of Zhejiang University. His current research interests include the soft switching of power converters, high efficiency DC-DC power converters and power electronics system integrations.