Half-Bridge Zero Voltage Switching Converter with Three Resonant Tanks

Bor-Ren Lin† and Wei-Jie Lin∗
†∗Dept. of Electrical Eng., National Yunlin University of Science and Technology, Yunlin, Taiwan

Abstract

This paper presents a zero voltage switching (ZVS) converter with three resonant tanks. The main advantages of the proposed converter are its ability to reduce the switching losses on the power semiconductors, decrease the current stress of the passive components at the primary side, and reduce the transformer secondary windings. Three resonant converters with the same power switches are adopted at the low voltage side to reduce the current rating on the transformer windings. Using a series-connection of the transformer secondary windings, the primary side currents of the three resonant circuits are balanced to share the load power. As a result, the size of both the transformer core and the bobbin is reduced. Based on the circuit characteristics of the resonant converter, the power switches are turned on at ZVS. The rectifier diodes can be turned off at zero current switching (ZCS) if the switching frequency is lower than the series resonant frequency. Therefore, the reverse recovery losses on the rectifier diodes are overcome. Experiments with a 1.6kW prototype are presented to verify the effectiveness of the proposed converter.

Key words: DC/DC converter, PWM, Resonant converter

I. INTRODUCTION

High efficiency power converters have drawn a great deal of attention for use in modern power electronic applications such as renewable energy conversion systems, Photovoltaic (PV) inverter systems, industry power conversion systems and personal commercial power units. To meet the efficiency requirements of the Environment Protection Agency (EPA) and the Climate Savers Computing Initiatives (CSCI) for modern power supply units, soft switching converters are generally adopted. Zero voltage switching (ZVS) techniques such as active clamp techniques and full-bridge phase shift pulse-width modulation (PWM), have proposed to reduce the switching losses of MOSFETs. However, the ZVS ranges of these techniques are limited to specific input voltage ranges or load conditions. Series resonant converters and parallel resonant converters have proposed in [1], [2]. They exhibit both high efficiency and low noise. However, the output voltage cannot be properly regulated at the no-load condition in conventional series resonant converters. The LLC series resonant converters in [3]-[11] have been proposed with the advantages of high voltage gain, high conversion efficiency and high power density. All of the power switches can be turned on at ZVS. If the operating switching frequency is lower than the series resonant frequency, the rectifier diodes can be turned off at zero current switching (ZCS). As a result, the reverse recovery losses for the rectifier diodes are reduced.

This paper presents a new resonant converter with three series resonant circuits and a full-wave diode rectifier to achieve soft switching for all of the power switches. Due to the resonant behavior, the power switches can be turned on under ZVS with wide input voltage ranges and load conditions. If the operating switching frequency is lower than the series resonant frequency, the rectifier diodes can be turned off under ZCS. Therefore, the switching losses of the power switches and the reverse recovery problem of the rectifier diodes can be improved. Three resonant circuits with the same power switches are adopted in order to reduce the size of the magnetic cores and the current stress on the primary windings. The secondary windings of two transformers are connected in series in order to balance the primary currents and to share the input current. Finally, the design procedure and test results obtained with a 1.6kW prototype are provided to verify the effectiveness of the proposed converter.

© 2014 KIPE
II. CIRCUIT CONFIGURATION

A conventional LLC with a half-bridge converter can be adopted in renewable energy DC/DC converters. Basically, the output voltage of a renewable energy source is low voltage. As a result, the input voltage of the LLC converter is a low voltage such as 24V-48V, and the output voltage of the LLC is a high voltage such as 400V. In order to reduce the input current stress of the LLC converter, a parallel connection of several LLC converters can be adopted. However, more power switches are needed in this parallel LLC topology. Fig. 1 gives the circuit configuration of the proposed converter with the ZVS/ZCS feature. The proposed converter is controlled by using the frequency modulation technique to regulate the output terminal voltage under input voltage and load current variations. Three resonant tanks with the same power switches are adopted in the proposed converter. The three resonant circuits have the same power switches Q1 and Q2 and secondary side components D1-D4 and C. The first resonant tank includes C1, L1 and L3. The components of the second resonant tank are C2, L2 and L4. The third resonant tank includes C3, L3 and L5. Each resonant tank transfers one-third of the power to the output load. As a result, the current ratings of the resonant inductors, resonant capacitors, and transformers are reduced. In order to balance the primary side currents of the three resonant tanks, the secondary windings of T1-T3 are connected in series. V_in and V_out are the input and output primary voltages, the power switches Q1 and Q2 make up a half-bridge network, (C1, L1 and L3), (C2, L2 and L4) and (C3, L3 and L5) make up the three resonant tanks. T1-T3 are the three isolation transformers. D1-D4 are the rectifier diodes. C1, C2, C3 are the output capacitances of Q1, Q2, respectively. C is the output capacitance. Based on the resonant behaviors, the power switches Q1 and Q2 are turned on under ZVS within all of the load ranges. If the switching frequency is lower than the series resonant frequency at the full load and maximum input voltage condition, the rectifier diodes D1-D4 can be turned off under ZCS. Therefore, the reverse recovery losses on the rectifier diodes are improved. General fast reverse recovery diodes instead of ultra-fast reverse recovery diodes can be adopted at the output side.

![Fig. 1. Circuit configuration of proposed resonant converter.](image)

III. OPERATION PRINCIPLE

Before discussing the proposed converter, the following assumptions are made to simplify the system analysis. The transformers T1-T3 are identical with the same magnetizing inductances \(L_m = L_{m2} = L_{m3} = L_m \) and turns ratio \(n = n_{r} \). The power switches have the same output capacitances \(C_{out} = C_{out2} = C_{out3} \). The four resonant capacitances are \(C_1 = 2C_2 = 2C_3 = C \). The three series resonant inductances are identical \(L_1 = L_2 = L_3 = L \). A frequency modulation scheme is adopted to regulate output voltage at the desired voltage level. If the switching frequency is greater than the series resonant frequency, there are four operation modes during one switching cycle. However, there are six operation modes in a switching cycle if the switching frequency is less than the series resonant frequency. Since the switching frequency of the proposed converter at full load is designed to be less than the series resonant frequency, there are six operating modes in the proposed converter. The key waveforms of the proposed converter in a switching cycle are given in Fig. 2, and the equivalent circuits of the proposed converter at different operation modes are shown in Fig. 3. Before time \(t_0 \), Q1 and Q2 are both turned off. The drain voltage \(v_{Q1,2} \) decreases, the drain voltage \(v_{Q2,4} \) increases and \(D_1 \) and \(D_3 \) are both conducting.

Mode 1 \([t_0 \leq t \leq t_1] \): At \(t_0 \), the drain voltage \(v_{Q1,2} \) is decreased to zero voltage, and the drain voltage \(v_{Q2,4} \) is increased to the input voltage \(V_{in} \). Since \(i_{Q1} \) is negative, the anti-parallel diode of \(Q_1 \) is conducting. Before \(i_{Q1} \) is positive, \(Q_1 \) can be turned on at this moment to achieve ZVS. In this mode, diodes \(D_1 \) and \(D_3 \) are conducting so that the secondary winding voltages \(v_{T2} = v_{T3} = V/3 \) and \(v_{T4} = V/3 \). As a result, the magnetizing voltages \(v_{L1} = v_{L3} = nV/3 \) and \(v_{L2} = -nV/3 \). The magnetizing current \(i_{Lout} \) decreases linearly with the slope of \(-nV/(3L_m) \).
and the magnetizing currents i_L_{m1} and i_L_{m2} both increase linearly with the slope of $nV/(3L_m)$. L_3 and C_3 in resonant tank 1 are resonant with the applied voltage $nV/3$. L_2 and C_2 in resonant tank 2 are resonant with the applied voltage $V_m-nV/3$. In the same manner, C_{31}, C_{41} and L_3 are resonant in circuit 3 with the applied voltage $V_m/2-nV/3$. The resonant frequency in the three resonant circuits is equal to $f_r = 1/2\sqrt{L_rC_r}$. Power is delivered from the input terminal voltage V_m to the output load through resonant circuits 2 and 3. In resonant circuit 1, the energy stored in L_1 and C_1 is transferred to the output load through Q_1, C_{11}, L_{11}, T_1 and D_1. Since the switching frequency is less than the series resonant frequency in the proposed converter, the secondary winding current will be decreased to zero before switch Q_1 is turned off. This mode ends at time t_1 when the secondary side current $i_2=0$.

Mode 2 $[t_1, t_2]$: At time t_1, $i_{L_{m1}}=i_{L_{m2}}$ and $i_{L_{m3}}=i_{L_{m4}}$. As a result, the secondary winding current is equal to zero and D_1 and D_4 are off. In this mode, switch Q_1 is still in the on-state. Therefore, C_1, L_1 and L_{m1} are resonant in circuit 1; C_{21}, L_2 and L_{m2} are resonant in circuit 2; and C_{31}, C_4 and L_3 are resonant in circuit 3. The resonant frequency in this mode is equal to $f_r = 1/2\sqrt{L_rC_r}$.

Mode 3 $[t_2, t_3]$: At t_2, Q_1 is turned off. In this mode, D_2 and D_3 are conducting so that the primary winding voltages $v_{L_{m1}}=nV/3$ and $v_{L_{m2}}=v_{L_{m3}}=-nV/3$. The magnetizing current $i_{L_{m1}}$ increases with the slope of $nV/(3L_m)$ and $i_{L_{m2}}$ and $i_{L_{m3}}$ both decrease with the slope of $-nV/(3L_m)$. Since the inductor current $i_{L_{m1}}$ at time t_3 is negative, and $i_{L_{m2}}$ and $i_{L_{m3}}$ at time t_2 are positive, the current $i_{L_{m2}}+i_{L_{m3}}+i_{L_{m1}}$ charges C_{out1} and discharges C_{out2}. If the energy stored in $L_{m1}-L_3$ is greater than the energy stored in C_{out1} and C_{out2}, then C_{out2} can be discharged to zero voltage. Since $C_{out} << C_{11}-C_{14}$, the drain to source voltages of Q_1 and Q_2 are approximately equal to:

$$v_{Q_1,dr}(t) \approx i_{L_{m2}}(t_2)+i_{L_{m3}}(t_2)-i_{L_{m1}}(t_2) \left(t-t_2 \right)$$

(1)

$$v_{Q_2,dr}(t) \approx V_m - i_{L_{m2}}(t_2)+i_{L_{m3}}(t_2)-i_{L_{m1}}(t_2) \left(t-t_2 \right)$$

(2)

Mode 4 $[t_3, t_4]$: At t_3, the drain voltage $v_{Q_L,dr}$ decreases to zero and the anti-parallel diode of Q_2 is forward biased. Before $i_{L_{m4}}$ becomes positive, Q_2 must be turned on to achieve ZVS. Since D_2 and D_3 are conducting in this mode, the magnetizing voltages $v_{L_{m1}}=nV/3$ and $v_{L_{m2}}=v_{L_{m3}}=-nV/3$. The magnetizing current $i_{L_{m1}}$ increases, and $i_{L_{m2}}$ and $i_{L_{m3}}$ decrease. In resonant circuit 1, $V_m-nV/3$ is applied to the resonant components L_1 and C_1. In resonant circuit 2, voltage $nV/3$ is applied to the resonant components L_2 and C_2. In the same manner, L_3, C_3 and C_4 in resonant circuit 3 are resonant with the applied voltage $V_m/2-nV/3$. Power is delivered from the input terminal voltage V_m to the output load through resonant circuits 1 and 3. In resonant circuit 2,
the voltage of the resonant tank is a square wave voltage. If the
voltage at
since the switching frequency is less than the series resonant frequency in
the proposed converter, the secondary winding current \(i_t \) will be
decreased to zero before switch \(Q_t \) is turned off. This mode ends at
time \(t_s \) when the secondary side current \(i_s = 0 \).

Mode 5 \([t_s \leq t < t_2]:\) This mode starts at \(t_s \) when \(i_{Lm1} = i_{Lr1} \),
i_{Lm2} = i_{Lr2} \) and \(i_{Lm3} = i_{Lr3} \). Therefore, the secondary winding
current \(i_s = 0 \). Diodes \(D_2 \) and \(D_3 \) are all off. Since \(Q_s \) is still
conducting, \(C_s \), \(L_s \) and \(L_{m1} \) are resonant in circuit 1; \(C_s, L_s \) and
\(L_{m2} \) and \(L_{m3} \) are resonant in circuit 2; and \(C_s, C_{r4}, L_s \) and \(L_{m3} \) are
resonant in circuit 3. At time \(t_s \), \(Q_s \) is turned off.

Mode 6 \([t_2 < t < T + t_3]:\) At \(t_s \), \(Q_s \) is turned off. In this mode,
diodes \(D_1 \) and \(D_3 \) are conducting so that the magnetizing voltages
\(V_{m1} = V_{m2} = V_{m3} = nV_o/3 \) and \(V_{m1} = nV_o/3 \). The magnetizing
current \(i_{Lm3} \) decreases, and \(i_{Lm2} \) and \(i_{Lm1} \) increase in this mode.
Since the inductor current \(i_{Lr3} \) at \(t_s \) is positive and \(i_{Lr2} \) and \(i_{Lr3} \)
at \(t_s \) are negative, \(C_{m1} \) is discharged and \(C_{m2} \) is charged. If the
energy stored in \(L_{r1} \) is greater than the energy stored in
\(C_{m1} \) and \(C_{m2} \) then \(C_{m1} \) can be discharged to zero
voltage.

\[
v_{Q1,ds}(t) = V_{in} + \frac{i_{Lr3}(t)}{C_{m1}} - \frac{i_{Lr1}(t)}{C_{m2}}(t - t_s) \tag{3}
\]

\[
v_{Q2,ds}(t) = \frac{i_{Lr1}(t)}{C_{m1}} - \frac{i_{Lr2}(t)}{C_{m2}} - \frac{i_{Lr3}(t)}{C_{m2}}(t - t_s) \tag{4}
\]

At time \(T + t_b \), the drain voltage \(v_{Q(t,ds)} \) decreases to zero
voltage, and the anti-parallel diode of \(Q_t \) is forward biased.
Then the operating modes of the proposed converter in one
switching cycle are completed.

IV. CIRCUIT CHARACTERISTICS

The resonant tank is basically a band-pass filter. The input
voltage of the resonant tank is a square wave voltage. If the
bandwidth of the band-pass filter is much less than the
switching frequency, the harmonics of the input square wave
voltage can be neglected at the output of the resonant circuit.

A frequency modulation scheme is used to regulate
the output voltage. An equivalent circuit of the proposed
converter is given in Fig. 4. The duty ratio of each power
switch is 0.5 so that the input voltage to the resonant tank is
a square waveform. Based on a Fourier series analysis, the
input voltages of the resonant tanks are expressed as:

\[
v_{input,1} = v_{input,2} = \frac{V_{in}}{2} + \sum_{m=1,3,5,...}^{\infty} \frac{2V_{in}}{m\pi} \sin(2\pi mf_t) \tag{5}
\]

\[
v_{input,3} = \sum_{m=1,3,5,...}^{\infty} \frac{2V_{in}}{m\pi} \sin(2\pi mf_t) \tag{6}
\]

There is a DC voltage level \(V_o/2 \) on the input voltages
\(v_{input,1} \) and \(v_{input,2} \). This DC voltage level is blocked by the
input resonant capacitors \(C_{r1} \) and \(C_{r2} \). Therefore, the input AC
voltage components of the three resonant tanks are identical.
Since the three resonant tanks have the same circuit
components and parameters, only resonant tank 1, as shown
in Fig. 5, is discussed to derive the system AC voltage gain.
The secondary side current \(i_{ds} \) is a quasi-sinusoidal current.
When the inductor current \(i_{Lr1} > i_{Lm1} \), rectifier diodes \(D_2 \) and
\(D_3 \) are conducting and \(V_{m1} = nV_o/3 \). If \(i_{Lr1} < i_{Lm1} \), then
\(V_{m1} = nV_o/3 \) and rectifier diodes \(D_1 \) and \(D_3 \) are conducting.
Generally the capacitor charge/discharge time intervals in
modes 3 and 6 and the time intervals in modes 2 and 5 are
much less than the time intervals of the series resonant
circuit by \(L \) and \(C \), in modes 1 and 4. Therefore, the
magnetizing inductor voltage is a quasi-square waveform
and is expressed as:

\[
v_{Lm1} = \sum_{m=1,3,5,...}^{\infty} \frac{4nV_o}{3m\pi} \sin(2\pi mf_t - \theta_m) \tag{7}
\]

where \(\theta_m \) is the phase angle of the \(m \)-th harmonic
frequency. The peak fundamental magnetizing inductor
voltage is equal to \(\hat{V}_{Lm1,f} = 4nV_o/(3\pi) \). Since the average
value of the secondary winding current is equal to the load
current, the peak value of the transformer secondary winding
current is expressed as:

\[
i_s = \frac{nI_o}{2} \tag{8}
\]

Therefore, the load resistance \(R_o \) reflected to the
transformer primary side is given as [2]:

\[
R_{ac,1} = R_{ac,2} = R_{ac,3} = R_{ac} = \frac{\hat{V}_{Lm1,f}}{i_{L1}/n} = \frac{8n^2}{3\pi^2} R_o \tag{9}
\]

The AC voltage gain of resonant tank 1, shown in Fig. 5,
is derived as:

\[
|G_{ac}(f)| = \frac{1}{\sqrt{[1 + k(f_f^2/Cf_s^2)]^2 + Q^2(f_f^2 - f_s^2)^2}} \tag{10}
\]
where \(k=L_r/L_{m1} \), \(Q = \sqrt{L_r/C_r/R_{ac,1}} \), \(f_r = 1/(2\pi\sqrt{L_rC_r}) \), and \(f_s \) is the switching frequency. The AC voltage gain at the no-load condition \((Q=0)\) and \(f_s=\infty \) is given in (11).

\[
|G_{ac}(f)|_{NL,f_s=\infty} = 1/(1+k)
\]

If the minimum DC voltage gain at the maximum input voltage case is greater than the AC voltage gain at the no-load condition in (11), the output voltage of the proposed converter can be controlled.

\[
G_{ac,min} = \frac{n(V_o + 2V_J)/3}{V_{in,max}/2} > \frac{1}{(1+k)}
\]

where \(V_J \) is the voltage drop across diodes \(D_1-D_4 \). From (12), the minimum turns ratio of transformers \(T_1-T_3 \) is obtained in (13).

\[
n_{min} = \frac{3V_{in,max}}{2(1+k)(V_o + 2V_J)}
\]

V. DESIGN EXAMPLE AND EXPERIMENTAL

RESULTS

Based on the system analysis in the previous section, a design example of the proposed converter is presented in this section. A laboratory prototype with a 1.6kW rated power was built to verify the effectiveness of the proposed converter. The output voltage and the load current are 400V and 4A. The input voltage range is from 250V to 300V. The selected series resonant frequency \(f_s \) is 120kHz. The inductance ratio \(k=L_r/L_{m1} \) is selected as 0.2.

Step 1: Turns ratio of \(T_1-T_3 \)

The minimum DC gain at the maximum input voltage is designed to be unity (at the series resonant frequency). Therefore, the theoretical turns ratio of \(T_1-T_3 \) is given as:

\[
n = \frac{n_p}{n_s} = \frac{3V_{in,max}}{2(V_o + 2V_J)} = \frac{3 \times 300}{2(400 + 2 \times 1.7)} = 1.115
\]

where \(V_J \) is the voltage drop on diodes \(D_1-D_4 \). The actual primary and secondary turns used in the prototype circuit are \(n_p=33T \) and \(n_s=30T \).

Step 2: DC voltage gain

The actual minimum and maximum DC gains of the proposed converter are:

\[
G_{ac,min} = \frac{2(V_o + 2V_J)n_p}{3V_{in,max}n_s} = \frac{2 \times (400 + 2 \times 1.7) \times 33}{3 \times 300 \times 30} = 0.986
\]

\[
G_{ac,max} = \frac{2(V_o + 2V_J)n_p}{3V_{in,min}n_s} = \frac{2 \times (400 + 2 \times 1.7) \times 33}{3 \times 250 \times 30} = 1.183
\]

Step 3: \(Q \) value at a full load

Step 4: AC equivalent resistance

Based on (9), the AC equivalent resistance \(R_{ac} \) at a full load is given as:

\[
R_{ac} = \frac{8n^2}{3\pi^2} = \frac{8 \times (33/30)^2}{3 \times 3.141592^2} = \frac{400}{4} = 32.7\Omega
\]

Step 5: Resonant capacitances and inductances

Since

\[
f_r = \frac{1}{2\pi\sqrt{L_rC_r}} = 120kHz
\]

\[
Q = \frac{\sqrt{L_r/C_r}}{R_{ac}} = 0.4
\]

in (10), the resonant capacitances and inductances are derived as:

\[
L_r = \frac{QR_{ac}}{2\pi f_r} = \frac{0.4 \times 32.7}{2 \times 120000} \approx 17\mu H
\]

\[
C_r = \frac{1}{4\pi^2 L_r f_r^2} \approx 100nF
\]

\[
C_{r1} = C_{r2} = C_r = \frac{1}{4\pi^2 L_r f_r^2} \approx 0.5C_r = 50nF
\]

The selected \(k=L_r/L_{m1}=1/5 \). Therefore, the magnetizing inductances of \(T_1-T_3 \) are given as:

\[
L_{m1} = L_{m2} = L_{m3} = L_r / k = 17\mu H / 1/5 = 85\mu H
\]

Step 6: No load condition

From (13), the minimum turns ratio of the transformers at the no-load condition is obtained as:

\[
n_{min} = \frac{3V_{in,max}}{2(1+k)(V_o + 2V_J)} = \frac{3 \times 300}{2(1+0.2)(400 + 2 \times 1.7)} = 0.93
\]

The adopted turns ratio of \(T_1-T_3 \) is \(n=33/30=1.1\rightarrow n_{min} \). Therefore, the output voltage of the proposed converter can be controlled at the no-load condition.

Step 7: Power semiconductors

The input maximum voltage is 300V and the input DC current is 1600W/300V=5.3A. Therefore, MOSFETs...
Half-Bridge Zero Voltage Switching Converter with Three Resonant Tanks

Fig. 7. Measured gate voltage, drain voltage and switch current of Q_1 and Q_2 at (a) 25% (b) 100% full load conditions.

Fig. 8. Measured gate voltage $v_{Q1,gs}$, and inductor currents i_{L1}-i_{L3} at (a) 25% load (b) full load.

Fig. 9. Measured resonant capacitor voltages v_{C1}-v_{C4} at (a) 25% load (b) full load.

Fig. 10. Measured waveforms of diode currents at full load condition.

(IRFP460) with a 500V voltage rating and a 20A current rating are used for power switches Q_1 and Q_2. The output voltage is 400V and the load current is 4A. FSF10A60 with a 600V voltage rating and a 10A current rating are used for rectifier diodes D_1-D_4 in the prototype circuit.

Experiments based on a laboratory prototype with the circuit parameters derived in the previous section are provided to verify the effectiveness of the proposed converter. Fig. 7 shows the measured waveforms of the gate voltage, drain voltage and switch current of Q_1 and Q_2. Before switches Q_1 and Q_2 are turned on, the drain voltage is
In order to decrease the reverse recovery current on the rectifier diodes and less current stress for the primary inductors, as a result, the switching losses on the power switches are reduced, and the reverse recovery current on the rectifier diodes is overcome. Three resonant circuits with the same power switches are adopted at the primary side, and each resonant circuit delivers one-third of the load power to the output side. The secondary windings of the three transformers are connected in series to balance the three primary side currents. A full-wave diode rectifier is adopted at the high voltage side to limit the voltage stress of the rectifier diode at the output voltage. A frequency modulation scheme is adopted to derive the AC voltage conversion ratio. Finally, experimental results are presented to verify the effectiveness of the converter.

VI. CONCLUSIONS

A new ZVS converter with three resonant circuits with the same power switches is proposed to achieve the functions of ZVS turn-on of the power switches, ZCS turn-off of the rectifier diodes and less current stress for the primary inductors. As a result, the switching losses on the power switches, ZCS turn-off of the rectifier diodes and less current stress for the primary inductors. As a result, the switching losses on the power switches, ZCS turn-off of the rectifier diodes and less current stress for the primary inductors. As a result, the switching losses on the power switches, ZCS turn-off of the rectifier diodes and less current stress for the primary inductors. As a result, the switching losses on the power switches, ZCS turn-off of the rectifier diodes and less current stress for the primary inductors. As a result, the switching losses on the power switches, ZCS turn-off of the rectifier diodes and less current stress for the primary inductors.

ACKNOWLEDGMENT

This project is supported by the National Science Council of Taiwan under Grant NSC 102-2221-E-224 -022 -MY3.

REFERENCES

Bor-Ren Lin received his B.S. degree in Electronic Engineering from the National Taiwan University of Science and Technology, Taipei, Taiwan ROC, in 1988, and his M.S. and Ph.D. degrees in Electrical Engineering from the University of Missouri, Columbia, MO, USA, in 1990 and 1993, respectively. From 1991 to 1993, he was a Research Assistant with the Power Electronic Research Center, University of Missouri. Since 1993, he has been with the Department of Electrical Engineering, National Yunlin University of Science and Technology, Douliu, Taiwan ROC, where he is currently a Distinguished Professor. He is an Associate Editor of the *Institution of Engineering and Technology Proceedings—Power Electronics* and the *Journal of Power Electronics*. His main research interests include power-factor correction, multilevel converters, active power filters, and soft-switching converters. He has authored more than 200 published technical journal papers in the area of power electronics. Dr. Lin is an Associate Editor of the *IEEE Transactions on Industrial Electronics*. He was a recipient of Research Excellence Awards in 2004, 2005, 2007 and 2011 from the College of Engineering, National Yunlin University of Science and Technology. He received Best Paper Awards from the 2007 and 2011 IEEE Conference on Industrial Electronics and Applications, the 2007 Taiwan Power Electronics Conference, the 2009 IEEE–Power Electronics and Drive Systems Conference, the 2012 Taiwan Electric Power Engineering Conference, and the 2014 IEEE-International Conference Industrial Technology.

Wei-Jie Lin is currently working toward his M.S. in Electrical Engineering from the National Yunlin University of Science and Technology, Douliu, Taiwan ROC. His current research interests include the design and analysis of power factor correction techniques, switching mode power supplies and soft switching converters.